2020年某银行数据仓库总体设计_demo参考模板
XX银行数据仓库建设项目方案

XX银行EDW/数据仓库项目方案目录第一章系统总体架构 ......................................... 41.1总体架构设计概述 ........................................ 41.1.1总体架构的设计框架.................................. 41.1.2总体架构的设计原则.................................. 41.1.3总体架构的设计特点.................................. 51.2EDW执行架构............................................. 51.2.1执行架构概述........................................ 51.2.2执行架构设计原则.................................... 51.2.3执行架构框架........................................ 61.3EDW逻辑架构........................................... 111.3.1逻辑架构框架...................................... 111.3.2数据处理流程...................................... 161.4EDW运维架构........................................... 161.4.1运维架构概述...................................... 161.4.2运维架构的逻辑框架................................ 171.5EDW数据架构........................................... 191.5.1数据架构设计原则.................................. 191.5.2数据架构分层设计.................................. 201.6EDW应用架构........................................... 211.6.1应用架构设计原则.................................. 211.6.2数据服务.......................................... 221.6.3应用服务.......................................... 22第二章 ETL体系建设........................................ 242.1ETL架构概述........................................... 242.2ETL设计方案........................................... 252.3ETL关键设计环节....................................... 252.3.1接口层设计策略.................................... 252.3.2 Staging Area设计策略 ............................. 252.3.3数据加载策略...................................... 262.3.4增量ETL设计策略.................................. 262.3.5异常处理.......................................... 272.3.6作业调度和监控.................................... 282.3.7元数据管理........................................ 282.3.8 ETL模块设计 ...................................... 282.3.9 ETL流程设计 ...................................... 302.3.10动态资源分配..................................... 322.3.11数据接口设计..................................... 33第一章系统总体架构1.1总体架构设计概述1.1.1总体架构的设计框架XX银行EDW项目的总体架构分为基础技术架构、应用架构和数据架构三个核心部分。
2020年数据仓库的设计方法参考模板

在数据库运行和维护阶段,设计人员的主要工 作是将是运行后的数据库正式运行,并在运行过 程中,对数据库所反映出的问题不断修改、评价 、调试和完善。
实际上,数据库实际步骤也包括了数据库应用 系统的设计过程。
有关对数据处理特性的描述中,不同的数据库 的设计过程、数据库设计的不同阶段应该具有不 同的数据模式。如在需求分析阶段,应该是用户 应用需求模式;在概念设计阶段,应该是产品的 概念模式;而在逻辑设计阶段,则应该是有关数 据产品支持的数据模型。
从数据仓库的应用角度来看,DSS分析员一般 是企业的中上层管理人员,他们对决策分析的需 求不能预先做出规范的说明,只能给设计人员一 个抽象的(模糊的)描述。
应用需求 (数据、处理)
转换规则、 DBMS功能、
优化方法
应用要求, DBMS详 细特征
图3-1 数据库设计步骤
需求收集和分析 设计概念结构
需求分析阶段 概念设计阶段
设计逻辑结构 数据模型优化
逻辑设计阶段
设计物理结构
评价设计,性能预测 不满意
物理实现
不ቤተ መጻሕፍቲ ባይዱ意
试验性运行
使用、维护数据库
物理设计阶段 数据库实施阶段 数据库运行、维护阶段
图3-2 数据库结构设计(1)
设计 阶段
需求 分析
数据
设计描述
处理
数据字典、全系统中数据项、 数据流、数据存储的描述
了适应特定的商业应用提出数据仓库系统的发展 前景。 (2)规划和成长阶段:此阶段为开展商业活动。
(3)控制阶段:在这个阶段要用控制和整合的办 法将应用系统整合,把聚焦点正确地转移到“集中 化方法”上,以求在企业级的真正数据仓库中,为 企业决策分析提供强有力的支持,从而将多个数 据仓库结合起来,形成一个决策支持环境。
工商银行数据仓库总体设计demo46页PPT

21.11.2019
20
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 应用的竞争力
利用web展现工具输出报告,可以进 行网上直邮
21.11.2019
21
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 体现的概念
工商银行卡部在客户关系管理方案上 领先业界的尝试
抽样分析:SAS EG
21.11.2019
30
1.10 PCRM应用主题——深层分析
分布分析:SAS EG
21.11.2019
31
1.10 PCRM应用主题——深层分析
图形展示:SAS EG
21.11.2019
32
1.10 PCRM应用主题——深层分析
图形展示:SAS EG
21.11.2019
工商银行卡用户体验到自动的个性化 分析服务
IT部门开发产生直接的市场效益:
有先进的客户关系管理系统支持 的牡丹卡
21.11.2019
22
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 实现的方式
CB2000 每日加载 PCRM
数据
数据仓库
银行卡 数据集市
用卡行为月报
Hale Waihona Puke Web 展现工具21.11.2019
10
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在36-45,46-55的客户的存款利润最高,其中, 36-45岁的客户的存款利润最高,因为这类人群中, 理财风格保守,存款倾向性强者较多。
21.11.2019
工商银行数据仓库总体设计demo共43页文档

谢谢!
工商银行数据仓库总体设计demo
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
ቤተ መጻሕፍቲ ባይዱ
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
某银行数据仓库建设方案设计

据提取来源不明确、统计方法不一致等问题。基于以上问题,亟需建立一套统一的数据
Data Lab与敏捷分析
• Data Lab 是一项敏捷分析技术,可以让用户导入外部数据,进行灵活的组合分析
Data Lab 内涵 Enterprise Data Warehouse
Production
Reference Data
ORDER IT EM B ACKORDE RE D QUA NT IT Y CUS TOMER CUS TOMER CUS TOMER CUS TOMER CUS TOMER CUS TOMER CUS TOMER CUS TOMER CUS TOMER NUMBE R NA ME CIT Y POS T ST ADDR PHONE FA X
•知识获取 •知识编辑 •知识分享
分析成果固化
• 数据分析平台将实现对有价值的分析成果,以前端应用的形式固化下来 固化范围
•只有需重复进行,且经过验证过的有价 值的分析成果,才需要进行IT固化
固化方式
•按照不同的业务目的与应用场景,选择 合适的固化方式与展现形式
常规的重复性的分析需求
数据 报表
•以数据属性的形式固化客 户偏好与知识 •以分析报表的形式固化常 用分析内容 •以挖掘模型的形式固化复 杂分析并定期执行 •以数据接口的形式固化信 息推送过程,或者通过第三 方分析工具实现灵活查询分 析
经过验证有业务价值的成果
模型
业务部门有强烈使用需求
XX银行数据仓库建设项目方案

XX银行数据仓库建设项目方案1. 项目概述本文档旨在介绍XX银行数据仓库建设项目的方案和目标。
数据仓库是一个用于集成和管理银行的各类数据的中央存储库,可为决策支持和业务分析提供有价值的信息。
本项目的目标是构建一个稳定、高效、可扩展的数据仓库,以提高XX银行的决策能力和业务竞争力。
2. 项目背景XX银行作为一家领先的金融机构,面临着数据分散、决策效率低下的问题。
传统的数据集成和分析方法已经无法满足业务需求,因此需要建立一个数据仓库来解决这些问题。
数据仓库将集中存储和管理各类数据,并提供强大的分析工具和报表功能,以支持XX银行的战略决策和业务优化。
本项目的目标是构建一个可靠、高效的数据仓库系统,具体包括以下几个方面:•数据集成:从各个业务系统中提取、清洗和转换数据,确保数据质量和一致性。
•数据存储:设计和构建合适的数据存储结构,包括数据表、索引等,以支持复杂的数据查询和分析。
•数据分析:开发和部署适合XX银行业务需求的数据分析工具和算法,提供灵活和高效的数据查询和报表功能。
•数据安全:确保数据仓库的安全性,实施访问控制和数据加密等措施,防止未授权的访问和数据泄露。
4.1 需求分析阶段在这个阶段,项目团队将与XX银行的不同业务部门和利益相关方进行沟通和需求收集。
我们将详细了解业务需求和数据源,并建立数据仓库的数据模型和架构设计。
4.2 数据集成阶段在数据集成阶段,我们将根据需求分析阶段的结果,从各个业务系统中提取和转换数据。
我们将设计和实现合适的ETL(提取、转换和加载)过程,确保数据质量和一致性。
4.3 数据存储阶段在数据存储阶段,我们将设计和构建数据仓库的存储结构,包括数据表、索引和分区等。
我们将利用合适的数据库技术和管理工具,如关系数据库和NoSQL数据库,来存储和管理数据。
4.4 数据分析阶段在数据分析阶段,我们将开发和部署适合XX银行业务需求的数据分析工具和报表功能。
我们将使用先进的分析算法和可视化技术,帮助XX银行的管理层和业务部门进行决策分析和业务优化。
商业银行企业级数据仓库系统架构设计书

商业银行企业数据仓库系统系统架构设计书目录1 概述 (1)1.1背景 (1)1.2目的 (1)1.3适用对象 (1)1.4范围 (1)1.5叁考文档 (2)2 概念性体系构架 (3)2.1数据源 (3)2.2数据仓库 (3)2.3分析 (3)2.4交互参考功能 (3)3 参考体系架构 (4)4 技术体系架构 (5)4.1源数据与数据接口 (6)4.1.1 数据源 (6)4.1.1.1 数据源范围 (6)4.1.2 文件缓冲区 (7)4.1.3 接口文件区 (7)4.2数据架构与存储 (10)4.2.1 接口文件区 (10)4.2.2 数据仓库 (10)4.2.2.1 细节数据暂存区SSA(SOR Staging Area) (10)4.2.2.2 细节数据SOR(System Of Record) (11)4.2.2.3 汇总数据区Summary (12)4.2.2.4 反馈数据区(Feedback Area) (12)4.2.2.5 元数据存储MDR(Meta Data Repository) (12)4.2.3 数据集市与多维立方体 (14)4.2.3.1 多维数据存储 (14)4.2.3.2 OLAP与多维立方体 (15)4.2.4 数据仓库应用 (17)4.2.5 实现中的一些特别因素 (17)4.2.5.1 参照表 (17)4.2.5.2 MQT的应用 (17)4.2.5.3 表与列的命名规则 (19)4.2.5.4 代理键的使用 (21)4.2.5.5 历史数据的处理 (21)4.3ETL处理架构 (22)4.3.1 ETL调度 (23)4.3.2 ETL监控 (23)4.3.3 数据质量控制 (24)4.3.4 ETL任务 (24)4.3.4.1 ETL0-数据抽取 (24)4.3.4.2 ETL1-处理接口文件 (25)4.3.4.3 ETL2-生成SOR (25)4.3.4.4 ETL3-数据汇总 (28)4.3.4.5 ETL4-生成数据集市 (28)4.3.4.6 ETL5-计算KPI (28)4.3.5 ETL规范 (28)4.3.5.1 SQL规范 (28)4.3.5.2 可重运行 (29)4.3.5.3 DB2 RUNSTATS (29)4.3.5.4 ETL工作流程 (30)4.4应用架构 (31)4.4.1 访问途径 (31)4.4.1.1 网络浏览器 (31)4.4.2 展示内容 (31)4.4.2.1 BST分析主题 (31)4.4.2.2 1104报表 (31)4.4.2.3 绩效考核 (31)4.4.2.4 输出服务 (31)4.5软硬件架构 (32)4.6系统管理 (33)4.6.1 备份恢复 (33)4.6.1.1 数据仓库的备份恢复 (33)4.6.1.2 接口文件的备份恢复 (35)4.6.1.3 开发环境的备份恢复 (35)4.6.2 配置管理 (35)4.6.3 安全与保密 (36)4.6.3.1 数据安全 (36)1概述1.1背景企业数据仓库系统是以业务支撑应用系统的数据以及其他相关数据作为基础数据源,采用科学的数据抽取、整理、存储等方法,建立企业级数据仓库;然后通过丰富的数据分析与挖掘方法找出这些数据内部蕴藏的大量有用信息,对客户、业务、市场、收益、服务、等各方面情况进行科学的分析,从而为市场决策管理者与市场经营工作提供及时、准确、科学的辅助决策依据。
某银行数据仓库建设情况汇报.pptx

2020/8/28
20
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 应用的竞争力
2020/8/28
4
日程安排
开发进度 最终应用展现 数据仓库架构
2020/8/28
5
1.8 主要应用
➢个人客户关系管理(PCRM) ➢业绩价值管理(PVMS) ➢信贷台帐报表(CMIS-REPT) ➢管理信息综合统计报表 ➢法人客户关系管理(CCRM) ➢开放式基金绩效分析
2020/8/28
透支利息 在 年龄段 上的分布
2020/8/28
14
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在25-35的客户的透支利润和消费回佣最高, 因为这类人群中,理财风格前卫,消费旺盛者居多。
消费回佣 在 年龄段 上的分布
2020/8/28
15
1.10 PCRM应用主题——深层分析
利用数据挖掘自动筛选优质客户, 针对优质客户提供个性化服务——
直邮用卡行为月报
2020/8/28
18
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 解决的问题
▪对优质客户提供详细的行为分析,帮 助客户更好掌握自己的用卡行为
▪针对客户用卡的具体情形提供促销性 建议,使优质客户感受到工商银行卡 部的人性化关注
2020/8/28
3
2.1 开发进展——个人客户关系管理(PCRM)
▪需求分析
2001/10/11-2001/10/31
▪总体方案
2002/11/01-2002/02/28
▪原型开发
2001/11/15-2001/12/31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情况汇报
数据仓库项目组
2020/7/30
1
日程安排
开发进度 最终应用展现 数据仓库架构
2020/7/30
2
二、 开发进展
2.1 个人客户关系管理(PCRM) 2.2 业绩价值管理(PVMS) 2.3 信贷台帐报表(CMIS-REPT) 2.4 管理信息综合统计报表
2020/7/30
4
日程安排
开发进度 最终应用展现 数据仓库架构
2020/7/30
5
1.8 主要应用
➢个人客户关系管理(PCRM) ➢业绩价值管理(PVMS) ➢信贷台帐报表(CMIS-REPT) ➢管理信息综合统计报表 ➢法人客户关系管理(CCRM) ➢开放式基金绩效分析
2020/7/30
2020/7/30
20
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 应用的竞争力
2020/7/30
10
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在36-45,46-55的客户的存款利润最高,其中, 36-45岁的客户的存款利润最高,因为这类人群中, 理财风格保守,存款倾向性强者较多。
2020/7/30
11
1.10 PCRM应用主题——深层分析
2020/7/30
3
2.1 开发进展——个人客户关系管理(PCRM)
▪需求分析
2001/10/11-2001/10/31
▪总体方案
2002/11/01-2002/02/28
▪原型开发
2001/11/15-2001/12/31
▪原型评估
2001/12/24-2002/02/09
▪银行卡设计开发
2002/01/04-2002/04/30
透支利息 在 年龄段 上的分布
2020/7/30
14
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在25-35的客户的透支利润和消费回佣最高, 因为这类人群中,理财风格前卫,消费旺盛者居多。
消费回佣 在 年龄段 上的分布
2020/7/30
15
1.10 PCRห้องสมุดไป่ตู้应用主题——深层分析
银行卡客户贡献度:初步结果
优质客户排名靠前的客户中,消费场所的分布 怎样
金融、证券等交易机构有较大金额占比, 饭店、旅游业其次,零售、百货等居于中游。 可以根据这个结果制定相应的消费场所促销策略
2020/7/30
17
1.10 PCRM应用主题——深层分析
深层分析:原有需求之外的考虑
PCRM数据仓库应用对银行卡部的用户 有什么直接的帮助?
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在36-45,46-55的客户的存款利润最高,其中, 36-45岁的客户的存款利润最高,因为这类人群中, 理财风格保守,存款倾向性强者较多。
存款利润 在 年龄段 上的分布
2020/7/30
12
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
▪个人金融:存款类(综合帐户和个人理财等)设计开发 2002/02/01-2002/05/31
▪个人金融:贷款类设计开发
2002/05/05-2002/07/31
▪其他个人金融及住房信贷设计开发 2002/04/01-2002/08/31
▪银行卡应用集成测试和试运行
2002/05/31-2002/06/30
▪工商银行卡部可以更便捷地跟踪优质 客户的信息
2020/7/30
19
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型
应用的竞争力
▪利用数据挖掘进行优质客户自动筛选 ▪提高平均筛选精度,提高优质 客户促销的投资建效率 ▪降低筛选成本,提高筛选速度, 迎接他行的竞争(如交行的500 元个人理财报告)
2020/7/30
9
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
按照现有的贡献度指标体系, 什么样的客户对银行卡的贡献度最高
年龄在25-35,36-45的客户对银行卡的贡献度最高, 其中,36-45岁的客户的贡献度最高,因为这类人群 中稳定、高收入或高积蓄者较多。 贡献度 在 年龄段 上的分布
利用数据挖掘自动筛选优质客户, 针对优质客户提供个性化服务——
直邮用卡行为月报
2020/7/30
18
1.10 PCRM应用主题——深层分析
深层分析:直邮用卡行为月报原型 解决的问题
▪对优质客户提供详细的行为分析,帮 助客户更好掌握自己的用卡行为
▪针对客户用卡的具体情形提供促销性 建议,使优质客户感受到工商银行卡 部的人性化关注
银行卡客户贡献度:初步结果
对于银行卡客户发展的辅助作用
工行牡丹卡的客户中,25-55的年龄段为高贡献度 主流年龄段,其中,如果关注当前直接贡献度, 36-45岁的客户是最好的人群,如果关注发展潜力 以及对新产品、新消费渠道的接受程度,25-35岁的 客户是重点人群。
2020/7/30
16
1.10 PCRM应用主题——深层分析
单次透支金额、 还贷周期)。
客户群分析:
优质客户排名分析、卡业务存款分析、 用卡行为分析、 贡献度分析、 卡申领情况分析、 卡业务风险分析。
2020/7/30
8
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
按照现有的贡献度指标体系, 什么样的客户对银行卡的贡献度最高
年龄在25-35,36-45的客户对银行卡的贡献度最高, 其中,36-45岁的客户的贡献度最高,因为这类人群 中稳定、高收入或高积蓄者较多。
贡献度指标的具体分布怎样
年龄在25-35的客户的透支利润和消费回佣最高, 因为这类人群中,理财风格前卫,消费旺盛者居多。
2020/7/30
13
1.10 PCRM应用主题——深层分析
银行卡客户贡献度:初步结果
贡献度指标的具体分布怎样
年龄在25-35的客户的透支利润和消费回佣最高, 因为这类人群中,理财风格前卫,消费旺盛者居多。
6
1.10 PCRM应用主题
银行卡应用:按照需求开发 个人金融应用 住房信贷应用 深层分析:原有需求之外的考虑
2020/7/30
7
1.10 PCRM应用主题 ——银行卡应用
银行卡应用:按照需求开发
重点客户分析:
基本信息查询、存款余额分析、 用卡行为分析、贡献度分析、 透支分析(透支余额、单笔透支余额、