反函数基础练习 +答案

合集下载

反函数练习

反函数练习

反函数练习一、选择题1.定义在R 上的函数y=f(x)有反函数,下列命题中假命题为( )A .y=f(x)与)(1y f x -=的图象不一定关于y=x 对称B .)(1x f y -=与)(1x f y --=的图象关于x 轴对称 C .y=f(x)与)(1x f y -=的图象不可能有交点 D .y=f(x)与)(1x f y -=的图象可能有交点,有时交点个数有无穷多个2.下列说法中正确的是( )①一函数图象上的任意两点的连线都不平行于x 轴,则此函数在定义域上一定是单调的 ②图象关于直线y=x 对称的函数一定有反函数,且其反函数是它自己③一函数是奇函数,且有反函数,则它的反函数也是奇函数④定义域是一个闭区间并且图象连续的函数,一定有最大值与最小值。

A .②③④B .②④C .③④D .①②③④二、填空题3.如果点(1,2)既在函数b ax x f +=)(的图象上,又在函数f(x)的反函数)(1x f -的图象上,那么a=__________b=__________。

4.函数196)(--+==x x x f y 的反函数为___________。

三、解答题5.已知实数a ≠0 ,a ≠1,函数)1,(11a x R x ax x y ≠∈--=且。

求证:函数)1,(11a x R x ax x y ≠∈--=且的图象关于直线y=x 成轴对称图形。

6.已知函数)2(12-≤-=x x y ,求)4(1-f 。

7.已知x x x f 32)3(+=,求)3(x f -。

8.已知x x x f 324)(++=,求)]([1x f f -及)]([1x f f -的解析式,并判定它们是否为同一函数。

9.已知y=f(x)的定义域为]0,(-∞,且x x x f 2)1(2+=+,求)2(1-f 。

10.设y=f(x)是单调递增函数,求证)(1x f y -=也是单调递增函数。

11.函数⎩⎨⎧-∞∈-+∞∈-=]0,( 1],0[ 22x x x x y 是否存在反函数,若存在,请求出来;若不存在,请说明理由。

反函数练习附答案

反函数练习附答案
解析:∵ ,∴ 不是常函数,且存在反函数.在f(x)的图象上取一点(0, ),它关于y=x的对称点( ,0)也在函数f(x)的图象上,可解得a=-5.
13.已知函数f(x)的定义域为[-1,1],值域为[-3,3],其反函数为1(x),则1(32)的定义域为,值域为.
解析:由于函数f(x)的定义域为[-1,1],值域为[-3,3],所以其反函数1(x)的定义域为[-3,3],值域为[-1,1].所以由-3≤32≤3,解得 ≤x≤ .
3.若函数y=f(1)的图象与函数 的图象关于直线y=x对称,则f(x)等于()
212x2122
解析:由函数y=f(1)的图象与函数 的图象关于直线y=x对称,可知y=f(1)与 互为反函数,有 x=e22,所以y=e22 y=f(1)=e22.故f(x)=e2x.答案
4.已知函数f(x)=231(x)是f(x)的反函数,若=16(∈),则1(m)1(n)的值为( )
又y=f(x)与y=1(x)关于y=x对称=x沿向量(-1,2)平移得到y=3,
∴y=f(1)+2与y=1(1)+2关于y=3对称.答案=3
三、解答题
15.已知函数 (x)=1(),求g(x).
解:由 ,得=1,∴ ,即 ,∴g(x)=1()= .
16.已知函数f(x)=2( )(a>0且a≠1).
8.设0<a<1,函数 ,则函数1(x)<1的x的取值范围是( )
A.(0,2) B.(2∞) C.(0∞) D.((2)∞)
解析(x)在(0,2)上是减函数,所以x>f(1)=0.故选C.
9.设函数为y=f(x)的反函数为y=1(x),将y=f(23)的图象向左平移2个单位,再作关于x轴的对称图形所对应的函数的反函数是( )

高三数学反函数试题答案及解析

高三数学反函数试题答案及解析

高三数学反函数试题答案及解析1.函数的反函数为_______.【答案】【解析】由题意得,,所以反函数为.【考点】反函数.2.函数是奇函数,且当时,,则= 。

【答案】-2【解析】∵时,,∴时,<0∵=-<0由反函数的性质得-=x=-2∴=-23.已知函数存在反函数,若函数的图像经过点,则的值是___________.【答案】2【解析】本题关键是出函数的反函数,由得,,即函数的反函数为,那么这个反函数图象一定过点,所以,.【考点】反函数的性质与求反函数.4.函数与的图像关于直线对称,则 .【答案】4【解析】由已知可知g(x)与f(x)是互为反函数,设g(3)=b,则1+logb=3,解得b=4,所以2g(3)=4.【考点】反函数的图象及其性质.5.函数的反函数________________.【答案】【解析】由函数≥2,可得x=2y-1(y≥2),所以所求的反函数为.【考点】反函数的求法.6.函数与的图像关于直线对称,则 .【答案】4【解析】因为函数与的图像关于直线对称,所以,与互为反函数。

就是为3时的x值,即由=3得,,x=4,故 4.【考点】本题主要考查反函数的概念,互为反函数的图象关系。

点评:简单题,函数f(x)的图象过(a,b),则其反函数的图象过(b,a)。

7.设函数的反函数是,且过点,则经过点.【答案】【解析】因为函数的反函数是,且过点,而的图象就是的图象沿x轴向右平移1单位的结果,所以反函数是的图象过(0,2),的图象过(2,0),故经过点(3,0).【考点】本题主要考查互为反函数的函数图象之间的关系,图象的平移。

点评:基础题,点(a,b)在函数的图象上,则点(b,a)在反函数的图象上。

8.已知函数,则________.【答案】-2.【解析】即x的值,解得:x=-2.【考点】本题主要考查互为反函数的函数关系。

点评:简单题,注意互为反函数的函数定义域,值域互换。

9.已知函数,则的反函数是()A.B.C.D.【答案】A【解析】解:因为,故f(x)的反函数即为再结合原函数的值域得到反函数的定义域,选A10.函数的反函数是,若,则( )A.B.C.D..【答案】D【解析】根据原函数与反函数定义域与值域的关系可知.11.函数的反函数的大致图象为【答案】C【解析】首先先找出的反函数。

2017北师大新版九年级上册《反函数》各知识点典型练习及答案

2017北师大新版九年级上册《反函数》各知识点典型练习及答案

《反函数》经典练习题一.选择题(共30小题)1.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1 D.2y=x2.反比例函数y=﹣中常数k为()A.﹣3 B.2 C.﹣ D.﹣3.下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系4.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣15.已知函数y=(m﹣2)x是反比例函数,则m的值为()A.2 B.﹣2 C.2或﹣2 D.任意实数6.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.7.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B. C.D.8.在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.9.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤1610.反比例函数y=的图象在()A.第一,三象限B.第二,四象限C.第一,二象限D.第三,四象限11.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0 B.y1>0>y2C.0>y1>y2D.y2>0>y112.如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A.B.C.3 D.613.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2 C.4 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.215.反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣16.如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.817.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)18.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.19.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y220.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y= B.y= C.y= D.y=21.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣22.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD ⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣623.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)24.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(2,3),B(﹣6,﹣1),则不等式kx+b>的解集为()A.x<﹣6 B.﹣6<x<0或x>2C.x>2 D.x<﹣6或0<x<225.如图,是反比例函数y 1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A.1<x<6 B.x<1 C.x<6 D.x>126.如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为﹣3,﹣1.则关于x的不等式<x+4(x<0)的解集为()A.x<﹣3 B.﹣3<x<﹣1 C.﹣1<x<0 D.x<﹣3或﹣1<x<027.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.28.如图,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣(x<0)交于点B,若S=2,则b的值是()△AOBA.4 B.3 C.2 D.129.一次函数y 1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣2<x<0或x>1 B.﹣2<x<1 C.x<﹣2或x>1 D.x<﹣2或0<x<130.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1。

高三数学反函数试题答案及解析

高三数学反函数试题答案及解析

高三数学反函数试题答案及解析1.已知函数,则.【答案】1【解析】因为,所以因此【考点】反函数2.把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的反函数图像重合,则f(x)=()A.B.C.D.【答案】D【解析】将函数的图像向右平移一个单位长度变为,函数的反函数是,则有,设,则,所以,即函数.【考点】1.反函数;2.函数图像的平移变换3.在同一平面直角坐标系中,已知函数的图象与的图象关于直线对称,则函数对应的曲线在点()处的切线方程为.【答案】【解析】由题意知,,所求的切线斜率为,所以切线方程为化简即.【考点】互为反函数的函数图象的关系,导数的几何意义,切线方程的求法.4.函数的反函数是.【答案】【解析】对于函数=y,则可知2x-1=2,x= (2+1),互换x,y可知得到的反函数为,故答案为【考点】反函数点评:主要是考查了反函数的解析式的求解,属于基础题。

5.函数的反函数是()A.B.C.D.【答案】B【解析】根据已知函数,函数,由得,所求反函数为,选B。

【考点】反函数点评:主要是考查了反函数的求解,属于基础题。

6.若满足2x+="5," 满足2x+2(x-1)="5," +=A.B.3C.D.4【答案】A【解析】如图示:因为2x+=5,,所以有,可令,则即为两函数图像交点A的横坐标;又因为2x+2(x-1)=5,,可令,则即为此两函数图像交点B的横坐标,则点A、点B关于直线对称,即直线与直线的交点即是点A、点B的中点,所以有中点坐标公式可得,所以,选择A【考点】本题主要考查互为反函数的同底指对数函数图像的对称性。

点评:要求学生具有很好的数学功底与很好的逻辑思维能力,如果可以结合图像,数形结合的解决本题会使得思路更加清晰,处在选择题中应该可以归为难题了。

7.函数为奇函数,是y=f(x)的反函数,若f(3)=0则=_______.【答案】-1【解析】因为函数为奇函数,是y=f(x)的反函数,若f(3)=0则=-18.已知函数f (x)=a x+2-1(a>0,且a≠1)的反函数为.(1)求;(注意:指数为x+2)(2)若在[0,1]上的最大值比最小值大2,求a的值;(3)设函数,求不等式g(x)≤对任意的恒成立的x的取值范围.(x+1)-2(x>-1).(2)或.【答案】(1)=loga(3)满足条件的x的取值范围为.【解析】本题考查反函数,考查函数的最值及其几何意义,考查函数恒成立问题,综合性强,考查化归思想、方程思想、分类讨论思想的综合运用,属于难题(y+1)-2,即可得f-1(x);(1)由y="f" (x)=a x+2-1,求得x=loga(2)对底数a分a>1与0<a<1两类讨论,分别求得其最大值与最小值,利用f-1(x)在[0,1]上的最大值比最小值大2,即可求得a的值;(3)由题意可得转化为不等式x2≤a3+1对任意的恒成立,从而可求得x的取值范围。

反函数基础练习含标准答案

反函数基础练习含标准答案

反函数基础练习(一)选择题1.函数y =-x 2(x ≤0)的反函数是[ ]A y (x 0)B y (x 0)C y (x 0)D y |x|.=-≥.=≤.=-≤.=-x x x --2.函数y =-x(2+x)(x ≥0)的反函数的定义域是 [ ]A .[0,+∞)B .[-∞,1]C .(0,1]D .(-∞,0]3y 1(x 2).函数=+≥的反函数是x -2[ ]A .y =2-(x -1)2(x ≥2)B .y =2+(x -1)2(x ≥2)C .y =2-(x -1)2(x ≥1)D .y =2+(x -1)2(x ≥1)4.下列各组函数中互为反函数的是[ ]A y y xB y y 2.=和=.=和=x x x11C y y (x 1)D y x (x 1)y (x 0)2.=和=≠.=≥和=≥3131311x x x x x +-+-5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是[ ]A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数B.若y=f(x)是奇函数,则y=f-1(x)也是奇函数C.若y=f(x)是偶函数,则y=f-1(x)也是偶函数D.若f(x)的图像与y轴有交点,则f-1(x)的图像与y轴也有交点6.如果两个函数的图像关于直线y=x对称,而其中一个函数是x 1y=-,那么另一个函数是[ ] A.y=x2+1(x≤0)B.y=x2+1(x≥1)C.y=x2-1(x≤0)D.y=x2-1(x≥1)7.设点(a,b)在函数y=f(x)的图像上,那么y=f-1(x)的图像上一定有点[ ] A.(a,f-1(a))B.(f-1(b),b)C.(f-1(a),a) D.(b,f-1(b))8.设函数y=f(x)的反函数是y=g(x),则函数y=f(-x)的反函数是[ ] A.y=g(-x) B.y=-g(x)C.y=-g(-x) D.y=-g-1(x)9.若f(x-1)=x2-2x+3(x≤1),则函数f-1(x)的草图是[ ]10y g(x).函数=的反函数是,则13x[ ]A .g(2)>g(-1)>g(-3)B .g(2)>g(-3)>g(-1)C .g(-1)>g(-3)>g(2)D .g(-3)>g(-1)>g(2) (二)填空题1y 32y (x 0)y f(x)y x .函数=+的反函数是..函数=>与函数=的图像关于直线=对称,x x ++2121 解f(x)=________.3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________,b =________.4y (1x 0).函数=-<<的反函数是,反函数的定92-x义域是________.5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.6y 7y (x 1)(x 1)8f(x)(x 1)f ()1.函数=的反函数的值域是..函数=≥-<的反函数是:..函数=<-,则-=.121121232x x x x ---⎧⎨⎪⎩⎪-- (三)解答题1y 12f(x).求函数=+的反函数,并作出反函数的图像..已知函数=.x ax x +++252(1)求函数y =f(x)的反函数y =f -1(x)的值域;(2)若点P(1,2)是y =f -1(x)的图像上一点,求函数y =f(x)的值域.3.已知函数y =f(x)在其定义域内是增函数,且存在反函数,求证y =f(x)的反函数y =f -1(x)在它的定义域内也是增函数.4f(x)y g(x)y f (x 1).设函数=,函数=的图像是=+的图像2311x x +-- 关于y =x 对称,求g(2)的值.参考答案(一)选择题1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=--,∴反函数--≤.y x f (x)=(x 0)1-2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.(C)y =3x 1x (x 1)y =x 1x 3(x 3)y =3x 13x 1(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1 6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1-+1(x ≤0).选(A).7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).9.(C).解:令t=x -1.∵x ≤1,∴t ≤0,f(t)=t 2+2(t ≤0),即f(x)=x 2+2(x ≤0),值域为f(x)≥2,∴反函数f -1(x)的定义域是x ≥2,值域y ≤0,故选(C).10(B)g(x)=1x (0)33..解:∵在-∞,上是减函数,又-<-<1 00g(3)g(1)g(2)=120g(2)g(3)g(1)3,∴>->-而>,∴>->-.故选 (B).(二)填空题1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(x ≥3)2y =12x 1(x 0)y 1f(x)=1x2x(x 1).解:+>的值域<,其反函数-<. 3y =4x b y =14x x =ax .解:函数-的反函数是+,则++,b b41443 比较两边对应项系数得,.a =14b =12 4y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f -1 (x)=(223)--.反函数的定义为,.92x5.a6.[0,2)∪(2,+∞)7f (x)=x 1(x 1)1x (x 0)122.+≥-<-⎧⎨⎪⎩⎪8.-2(三)解答题1x 2y 1y =x 21=.解:∵≥-,得值域为≥.由++得反函数f x -1()(x -1)2-2,(x ≥1),其图像如右图.2.解(1):∵y=f(x)的定义域是{x|x ≠1,x ∈R ,∴y=f -1(x)的值域是{y|y ≠1,y ∈R}.解(2):∵点P(1,2)在,y=f -1(x)的图像上,点P(1,2)关于直线y=x的对称点为′,一定在的图像上,即由++得-,∴-+,其反函数-+.∵的定义域为≠-,∈,∴的值域为≠-,∈.P (21)y =f(x)=1a =f(x)=10x 2x 4f -(x)=104x 2x 1f -(x){x|x x R}y =f(x){y|y y R}112522121212a3.证明略.4f(x)=2x 3x 1f -(x)=x 3f (x 1)=11.略解;+-的反函数是+-,∴+x 2x 4x 1x 4x 1=2x =6g(2)=6+-,由+-得即.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

高一求反函数试题及答案

高一求反函数试题及答案

高一求反函数试题及答案1. 已知函数 \( f(x) = 2x + 3 \),求该函数的反函数。

答案:首先,我们设 \( y = 2x + 3 \),然后解出 \( x \) 以求得反函数。

将 \( y \) 代入得 \( x = \frac{y - 3}{2} \)。

因此,函数 \( f(x) = 2x + 3 \) 的反函数为 \( f^{-1}(x) = \frac{x - 3}{2} \)。

2. 给定函数 \( g(x) = \sqrt{x - 1} \),求该函数的反函数。

答案:对于函数 \( g(x) = \sqrt{x - 1} \),我们设 \( y =\sqrt{x - 1} \),然后平方两边得到 \( y^2 = x - 1 \)。

解出\( x \) 得到 \( x = y^2 + 1 \)。

因此,函数 \( g(x) = \sqrt{x - 1} \) 的反函数为 \( g^{-1}(x) = x^2 + 1 \)。

3. 函数 \( h(x) = \log_2(x + 1) \) 的反函数是什么?答案:对于函数 \( h(x) = \log_2(x + 1) \),我们设 \( y =\log_2(x + 1) \),然后利用指数和对数的关系,得到 \( 2^y = x + 1 \)。

解出 \( x \) 得到 \( x = 2^y - 1 \)。

因此,函数 \( h(x) = \log_2(x + 1) \) 的反函数为 \( h^{-1}(x) = 2^x - 1 \)。

4. 求函数 \( f(x) = \frac{1}{x} \) 在区间 \( (0, +\infty) \) 上的反函数。

答案:对于函数 \( f(x) = \frac{1}{x} \),我们设 \( y =\frac{1}{x} \),然后解出 \( x \) 得到 \( x = \frac{1}{y} \)。

数学分析23.3反函数定理和隐函数定理(含习题及参考答案)

数学分析23.3反函数定理和隐函数定理(含习题及参考答案)

第二十三章向量函数微分学3 反函数定理和隐函数定理一、反函数定理概念1:若定义在开集D⊂R n上的向量函数f: D→R m是一一映射,即不仅对每一个x∈D只有一个y∈R m与之对应,且对每一个y∈f(D)也只有惟一确定的x∈D, 使得f(x)=y. 于是由后者能确定一个定义在f(D)上的函数,记为f-1: f(D)→D,称它为函数f的反函数. 函数f与其反函数f-1满足:(1)(f-1◦f)(x)=x, x∈D;(2) (f◦f-1)(y)=y, y∈f(D).定理23.17:(反函数定理)设D⊂R n是开集, 函数f: D→R m满足条件:①在D上可微且f’连续;②存在x0∈D, 使det f’(x0)≠0,则存在邻域U=U(x0)⊂D, 使得:(1)f在U上一一映射,从而存在反函数f-1: V→U,其中V=f(U)是开集;(2)f-1在V上存在连续导数(f-1)’, 且(f-1)’(y)=(f’(x))-1, x=f-1(y), y∈V.证:1)将函数f变换为定义在零点邻域内的函数.设T=f’(x0), 由①②知存在点x0的邻域U⊂D, 使得f’(x)在U内非零.在U-x0={x-x0|x∈U}上定义函数F(x)=T-1[f(x0+x)-f(x0)], x∈U-x0.记U-x0为U1, 即有0∈U1, F(0)=0, F’(0)=I (单位矩阵), 且F在U1可微, F’连续, 对所有x∈U1, F’(x)≠0.(2)证明存在邻域U2⊂U1, 使得F在U2上是一一映射.设φ(x)=x-F(x), x∈U1, 则φ’(0)=0. 取定0<α<1, 由φ’(x)的连续性,存在中心在原点的开球U 2⊂U 1, 使得对x ∈U 2, )(x ϕ'<α.应用定理23.14微分中值不等式得)()(x x '-''ϕϕ≤αx x '-'', x ’,x ”∈U 2. ∴)()(x F x F '-''≥(1-α)x x '-'', 即F 在U 2上是一一映射. 若定义F 的反函数H: F(U 2)→U 2, H(F(x))=x, x ∈U 2, 则有H 连续. 3)证明F(U 2)⊃(1-α)U 2, U=H(V)是开集,其中V=(1-α)U 2. 任取y ∈(1-α)U 2, 对任何n>1, 应用迭代法构造x 0,…,x n 使得 x 0=0, x i =y+φ(x i-1), x i-1∈U 2, 1--i i x x ≤αi-1y , 1≤i ≤n. 于是有n x ≤∑=--ni i i x x 11≤∑=-ni i y 11α<y α-11, 即 x n ∈U 2, x n+1=y+φ(x n ), n n x x -+1=)()(1--n n x x ϕϕ≤α1--n n x x . 所以将n 换成n+1时归纳法假设也成立.由于α<1, 因此{x n }是R n 中的柯西序列,于是有x n →x ∈U 2. ∴∞→n lim F(x n )=∞→n lim (x n -φ(x n ))=∞→n lim (x n -x n+1+y)=y. 设V=(1-α)U 2, 于是有U=F -1(V). 由F 连续,而开集的原象是开集知, U 是开集. 4)证明:若y ∈V, x=H(y), 则H ’(y)=F ’(x)-1.设y ∈V, y+k ∈V, k ≠0, x=H(y), x+h=H(y+k), S=F ’(x), 于是有 H(y+k)-H(y)-S -1k=h-S -1k=S -1(Sh-k)= -S -1[F(x+h)-F(x)-Sh]. 由(1-α)h ≤k 得,kkS y H k y H 1)()(---+≤hShx F h x F S )1()()(1α---+-.当k →0时, h →0, 即有上式右边趋于0,∴H ’(y)=F ’(x)-1. 5)证明:H ’(x)在V 内连续.∵)()(y H k y H '-+'≤11)]([)]([--'-+'x F h x F≤11)]([)()()]([--''-+'+'x F x F h x F h x F .由F ’的连续性, 当h 充分小时, 1)]([)()(-''-+'x F x F h x F <21. ∴1)]([-+'h x F ≤21)]([-'x F , 于是)()(y H k y H '-+'≤2)()()]([21x F h x F x F '-+''-, ∴H ’也连续.例1:记w=(x,y,z)T , p=(r,θ,φ)T ,求函数w=f(p)=(rsin θcos φ,rsin θsin φ,rcos θ) 的反函数的导数.解:(f -1)’(w)=[f ’(p)-1]=10sin cos cos sin sin cos sin sin sin sin cos cos cos sin -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--θθϕθϕθϕθϕθϕθϕθr r r r r =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0cos sin sin sin cos sin cos cos sin cos sin sin sin cos sin sin 122222222ϕϕθϕθθϕθθθθϕθϕθθr r r r r r r r r=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--0sin cos sin sin sin sin cos cos cos cos sin sin cos sin θϕθϕθϕθϕθθϕθϕθr r r r r (r 2sin θ≠0). 将w=f(p)代入上式得:(f -1)’(w)=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+-++02222222222222y x x y x y r y x y x r yz yx r xzrz r y r x, (x 2+y 2≠0), 其中r=222z y x ++.二、隐函数定理概念2:设X ⊂R n , Y ⊂R m , Ω=X ×Y ⊂R n+m , F: Ω→R m . 考察向量函数方程 F(x,y)=0, x ∈X,y ∈Y. 若有向量函数f: U →Y(U ⊂X), 则F(x,f(x))≡0, x ∈U. 称函数f 是由方程F(x,y)=0确定的定义在U 上的隐函数.固定y∈Y时, 关于x的偏导数记为:F’x(x,y)或D x F(x,y) (为m×n矩阵); 固定x∈X时, 关于y的偏导数记为:F’y(x,y)或D y F(x,y) (为m×n矩阵).定理23.18:(隐函数定理)设X⊂R n,Y⊂R m是开集,Ω=X×Y⊂R n+m(为开集), F: Ω→R m. 若F满足下列条件:①存在x0∈X, y0∈Y, 使得F(x0,y0)=0;②F在Ω上可微,且F’连续; ③det F’y(x0,y0)≠0.则存在点x0的n维邻域U=U(x0)⊂X和点y0的m维邻域V=V(x0)⊂Y,使得在点(x0,y0)的n+m维邻域W=U×V⊂Ω内, 由方程F(x,y)=0惟一地确定了隐函数f: U→V,它满足:(1)y0=f(x0);(2)当x∈U时, (x,f(x))∈W, 具有恒等式F(x,f(x))≡0, x∈U;(3)f在U内存在连续偏导数f’, 且f’(x)=-[F’y(x,y)]-1F’x(x,y), (x,y)∈W. 证:定义函数G: Ω→R n×R m, G(x,y)=(x,F(x,y)), 即有det G’(x0,y0)=det F’y(x0,y0)≠0, G(x0,y0)=(x0,F(x0,y0))=(x0,0).应用定理23.17, 存在R n×R m中包含(x0,0)的开集U×V’, U⊂R n, V’⊂R m和R n×R m中包含(x0,y0)的开集U’×V, U’⊂R n, V⊂R m使得G: U’×V→U×V’具有可微反函数H: U×V’→U’×V. 由G(x,y)=(x,F(x,y))得H(x,y)=(x,k(x,y)),其中k(x,y)是从U×V’到V的可微向量函数. 定义映射π: R n×R m→R m, π(x,y)=y. 由于π◦ G=F, ∴F(x,k(x,y))=F◦ H(x,y)=(π◦ G)◦H(x,y)=π◦(G◦H)(x,y)= π(x,y)=y, ∴F(x,k(x,0))=0. 定义f(x)=k(x,0), 即有x∈U, f(x)∈V, F(x,f(x))=0, y0=f(x0). 引入向量增量符号△f=f(x+△x)-f(x), x,x+△x∈U. 于是有F(x+△x,f(x+△x))-F(x,f(x))=F(x+△x,f(x)+△f)-F(x,f(x))=0.各分量运用微分中值公式: F i (x+△x,f(x)+△f)-F i (x,f(x))=k i i nk k i x f x f x x x F ∆∆+∆+∂∂∑=))(,(1θθ+j i i mj ji f f x f x x y F∆∆+∆+∂∂∑=))(,(1θθ=0 (i=1,…,m). 又k i mj ji x fx f x y F ∂∂∂∂∑=))(,(1=))(,(x f x x F k i ∂∂-(i=1,…,m; k=1,…,n).将这m ×n 个式子列成矩阵式,即有:F ’y (x,y)f ’(x)=-F ’x (x,y), y=f(x), (x,y)∈U ×V. 由F ’y 在U 内可逆, 解得: f ’(x)=-[F ’y (x,y)]-1F ’x (x,y), (x,y)∈W. 由条件②推得f ’(x)在U 上连续.例2:设Ω⊂R 4, F,G: Ω→R.若向量H=(F,G)T 在点(z 0,w 0)T ∈Ω的某邻域内 满足定理23.18条件, 其中z 0=(x 0,y 0)T , w 0=(u 0,v 0)T , 且det H w ’(z 0,w 0)≠0, 则方程H(x,y,u,v)=0. 在点z 0的某邻域内确定一个可微的隐函数w=f(z), 且f ’(z)=-[H ’w (z,w)]-1H ’z (z,w), 即f ’(z)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂y v xvyu x u=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂--y G x G yF x F vG u Gv F u F1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂-∂∂-∂∂-y G x Gy F x Fv F u G v F v GJ 1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂-),(),(),(),(),(),(),(),(1y u G F x u G F v y G F v x G F J , 其中J=),(),(v u G F ∂∂.三、拉格朗日乘数法设D ⊂R n 为开集, f: D →R, φ: D →R m , n=m+r, 用行向量记x=(x 1,…,x n )=(x 1,…,x r ,x r+1,…,x r+m )=(y,z), y ∈R r , z ∈R m , 当φ(x)=φ(y,z)=0时,求函数f(x)=f(y,z)的极值, 其格拉朗日函数为L(x,λ)=L(y,z,λ)=f(y,z)+λTφ(y,z), 其中λ=(λ1,…,λn)T为拉格朗日乘数向量.定理23.19:对上述所设函数f, φ若满足条件:(1)f, φ在D内有连续导数;(2)φ(x0)=φ(y0,z0)=0;(3)rank φ’(x0)=rank[φ’y(y0,z0),φ’z(y0,z0)]=m;(4)x0=(y0,z0)是f在φ(x)=φ(y,z)=0时的极值点.则存在A0∈R m, 使得(x0,A0)是函数L(x,λ)=f(y,z)+λTφ(y,z)的稳定点, 即满足L’(x0,A0)=[L x(x0,A0)+ Lλ(x0,A0)]=0, 其中λ=(λ1,…,λn)T,又由条件(2)有Lλ(x0,A0)=[φ(x0)]T=0, ∴L x(x0,A0)=f’(x0)+A0Tφ’(x0)=0.证:不妨设由条件(3)有det φ’z(y0,z0)≠0.由条件(1)(2)及上式满足定理23.18, 知由方程φ(x)=φ(y,z)=0确定惟一隐函数z=g(y), (y,z)∈U(y0)×U(z0)⊂D, 使得z0=g(y0), φ(y,g(y))≡0, y∈U(y0) 且g在U(y0)存在连续导数. 于是由复合函数求导法则得φy(y0,z0)+φz(y0,z0)g’(y0)=0. 又(y0,z0)是f的条件极值点,∴y0是h(y)=f(y,g(y))的极值点. 于是有f y(y0,z0)+f z(y0,z0)g’(y0)=0.取A0∈R m为方程f z(y0,z0)+ A0Tφz(y0,z0)=0的解. 由det φ’z(y0,z0)≠0知, A0存在. ∵A0Tφy(y0,z0)+A0Tφz(y0,z0)g’(y0)=0, ∴A0Tφy(y0,z0)-f z(y0,z0)=0,∴f y(y0,z0)+ A0Tφz(y0,z0)=0, 又f z(y0,z0)+ A0Tφz(y0,z0)=0, 得证.习题1、设方程组⎪⎩⎪⎨⎧=+-+=++-=+-+023*******u z y x u z y x u z y x , 证明:除了不能把x,y,z 用u 惟一表示出来外,其他任何三个变量都能用第四个变量惟一表示出来.证:令F(x,y,z,u)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321F F F =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+++-+-+u z y x u z y x u z y x 2322232, 则F ’(x,y,z,u)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---232212112113u . F 满足条件:(1)F(0,0,0,0)=0, 存在(0,0,0,0)T ∈R 4; (2)F 在R 4上可微, 且F ’连续;(3)令ω1=(x,y,z)T , ω10=(0,0,0)T , 则det F ’ω1(0,ω10)=322211113---=0; 令ω2=(x,z,u)T , ω20=(0,0,0)T , 则det F ’ω2(0,ω20)=232121013--=21≠0;令ω3=(x,y,u)T , ω30=(0,0,0)T , 则det F ’ω3(0,ω30)=222111013-=-12≠0;令ω4=(x,y,u)T , ω40=(0,0,0)T , 则det F ’ω4(0,ω40)=232121011---=3≠0; 根据定理23.17,在原点邻域,除了不能把x,y,z 用u 唯一表示出来,其他任何三个变量都能用第四个变量唯一表示出来.2、应用隐函数求导公式,求由方程组x=ucosv, y=usinv, z=v 所确定的隐函数之一z=z(x,y)的所有二阶偏导数.解:令F=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321F F F =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---v z v u y v u x sin cos , ω1=(x,y)T , ω2=(z,u,v)T , 依隐函数求导公式有f ’(ω1)=-[F ’ω2(ω1,ω2)]-1F ’ω1(ω1,ω2), 即⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂y v xv y u x u y z x z =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------001001101cos sin 0sin cos 01v u v v u v =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0010010cos sin 0sin cos cos sin 1v v v u v u u v v u =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----v vv u v u v v u cos sin sin cos cos sin 1, 其中u=),,(),,(321v u z F F F ∂∂. ∴xz ∂∂=u v sin -, y z ∂∂=u v cos , x u ∂∂=cosv, y u ∂∂=sinv, x v ∂∂=u v sin -, y v ∂∂=u v cos .又u=22y x +, cosv=22yx x +, sinv=22yx y +, 因此有22x z∂∂=2sin cos u vx u x v vu ∂∂-∂∂-=2sin cos 2u v v =222)(2y x xy +; yx z∂∂∂2=2sin cos u vy uy v vu ∂∂-∂∂-=222cos sin u v v -=22222)(y x x y +-;22yz∂∂=2cos sin u vyuy v vu ∂∂-∂∂-=2cos sin 2uv v -=222)(2y x xy +-.3、设方程组⎩⎨⎧=---=0),,(),,(z y x g uv z uv y uv x f u . 试问:(1)在什么条件下,能确定以x,y,v 为自变量, u,z 为因变量的隐函数组? (2)能否确定以x,y,z 为自变量, u,v 为因变量的隐函数组? (3)计算x u ∂∂,y u ∂∂,vu∂∂.解:设F=⎥⎦⎤⎢⎣⎡21FF =⎥⎦⎤⎢⎣⎡----),,(),,(z y x g uv z uv y uv x f u , F: R 5→R 2. 若F 满足下列条件: ①存在P 0(x 0,y 0,z 0,u 0,v 0)∈R 5, 使F(p 0)=0;②在邻域U(p 0)⊂R 5内,F 可微且F ’连续,则有f, g 可微且f ’, g ’连续; ③由行列式求导法知:F ’=⎥⎦⎤⎢⎣⎡''''+'+''+'+'+'-'-'-00)()(1321321321z y x g g g f f f u f f f v f f f (1)令ω1=(x,y,v)T , ω2=(u,z)T , ω10=(x 0,y 0,v 0)T , ω20=(u 0,z 0)T , 满足det F ’ω2(ω10,ω20)=g ’z [1+v(f 1’+ f 2’+ f 3’)]≠0时,在邻域U(ω10)⊂U(p 0)内, 由方程F=0, 能唯一确定隐函数f(ω1)=⎥⎦⎤⎢⎣⎡z u =⎥⎦⎤⎢⎣⎡),,(),,(v y x z v y x u . (2)令ω3=(x,y,z)T , ω4=(u,v)T , 则det F ’ω4(ω3,ω4)≡0,∴不能判断确定x,y,z 为自变量,u,v 为因变量的隐函数组. (3)由(1)所设, 有f ’(ω1)=-[F ’ω2(ω1,ω2)]-1F ’ω1(ω1,ω2), 即f ’(ω1)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂v z yz xzv u y uxu =⎥⎦⎤⎢⎣⎡'''+'+''-'-⎥⎦⎤⎢⎣⎡''-'+'+'+--0)(0)(13212113321y x z g g f f f u f f g f f f f v =⎥⎦⎤⎢⎣⎡'''+'+''-'-⎥⎦⎤⎢⎣⎡'+'+'+''∆-0)()(101321213213y x zg g f f f u f f f f f v f g =⎪⎪⎭⎫⎝⎛'+'+'+''+'+'+''+'+''''+''-''+''-∆-0)](1[)](1[)(1321321321323f f f v g f f f v g f f f g u g f g f g f g f y x z y z x z . 其中△=g ’z [1+v(f ’1+f ’2+f ’3)].∴xu ∂∂=∆''-''x z g f g f 3; y u ∂∂=∆''-''y z g f g f 32,v u ∂∂=∆'+'+''-)(321f f f g u z .4、设f(x,y)=(e x cosy,e x siny)T . 证明:(1)当(x,y)∈R 2时, det f ’(x,y)≠0, 但在R 2上f 不是一一映射; (2)f 在D={(x,y)|0<y<2π}上是一一映射,并求(f -1)’(0,e). 证:(1)当(x,y)∈R 2时, det f ’(x,y)=ye ye y e y e x x x x cos sin sin cos -=e 2x ≠0,令v=(x,y)T , 取v 1=(0,0)T , v 2=(0,2π)T , v 1≠v 2, 而f(v 1)=f(v 2)=[1,0]T , ∴f 在R 2上不是一一映射.(2)当(x,y)∈D={(x,y)|0<y<2π}时, 令v=(x,y)T, 而u=f(v)=⎥⎦⎤⎢⎣⎡y e y e x x sin cos .取v 1=(x 1,y 1)T , v 2=(x 2,y 2)T , 且x 1≠x 2, y 1≠y 2, 若有f(v 1)=f(v 2), 即e x1cosy 1=e x2cosy 2且e x1siny 1=e x2siny 2, 则有21x x e e =12cos cos y y =12sin sin y y , 从而有11cos sin y y =22cos sin y y , 即tany 1= tany 2, 由正切函数的周期性知|y 1-y 2|=π, 因此知cosy 1与cosy 2异号, 即不可能有21x x ee =12cos cos y y , ∴f(v 1)≠f(v 2),即f 在D 上一一映射.又f 在D 上可微, f ’连续,∴存在可导函数并求f -1:V →D, 其中V=f(D),则(f -1)’(u)=[f ’(v)]-1=1cos sin sin cos -⎥⎦⎤⎢⎣⎡-y e y e y e y e xx xx =⎥⎦⎤⎢⎣⎡-y e y e y e y e e x x x x x cos sin sin cos 12. 又e2x=u 12+u 22, e x cosy=u 1, e x siny=u 2,∴(f -1)’(u)=⎥⎦⎤⎢⎣⎡-+122122211u u u u u u , 从而(f -1)’(0,e)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0110ee .5、计算下列函数反函数的偏导数:u x ∂∂,v x ∂∂,u y ∂∂,vy ∂∂.(1)(u,v)T =Tx y x x y x ⎪⎭⎫ ⎝⎛sin ,cos ;(2)(u,v)T =(e x +xsiny,e x -xcosy)T . 解:令s=(u,v)T , t=(x,y)T , s=f(t), 则有(f -1)’(s)=[f ’(t)]-1, 即 (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂v y u y v x u x =1cos cos sin sin sin cos -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+x y x y x y x y x y x y x y x y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-x y x y x y x y x y x y x y x y sin cos sin cos sin cos =⎥⎥⎦⎤⎢⎢⎣⎡+⋅-⋅+u u v v v u v u v u v u arctan arctan 122. ∴u x ∂∂=22v u u +,v x ∂∂=22v u v +,u y ∂∂=22arctan v u v u v u +-⋅,v y ∂∂=22arctan vu u u v v ++⋅. (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂v y u y v x u x =1sin cos cos sin -⎥⎦⎤⎢⎣⎡-+y x y e y x y e x x =⎥⎦⎤⎢⎣⎡+--+-x x x x e y e y y x y x y e y e x sin cos cos sin )1cos sin (1. ∴u x ∂∂=1cos sin sin +-y e y e y x x , v x ∂∂=1cos sin cos +--y e y e y x x , u y ∂∂=)1cos sin (cos +--y e y e x e y x x x , v y ∂∂=)1cos sin (sin +-+y e y e x e y x x x .6、设D ⊂R n 为开集, φ, ψ:D →R, f: D →R 2且f(x)=[φ(x),φ(x)ψ(x)]T , x ∈D. 证明:在满足f(x 0)=0的点x 0处, rank f ’(x 0)<2. 但是由方程f(x)=0仍可能在点x 0的邻域内确定隐函数g: E →R 2, E ⊂R n-2, n>2.证:由f(x 0)=0, 得φ(x 0)=0, φ(x 0)ψ(x 0)=0, 依定理23.9求导公式得f ’(x 0)=⎥⎦⎤⎢⎣⎡'+''+''')()()()()()()()()()(0000000000111x x x x x x x x x x nn nx x x x x x ψϕψϕψϕψϕϕϕΛΛ=⎥⎦⎤⎢⎣⎡'''')()()()()()(00000011x x x x x x nnx x x x ψϕψϕϕϕΛΛ. 设f 在的导数矩阵两行线性相关,则rank f ’(x 0)<2.但f(x)=0仍可能在点x 0的邻域内确定隐函数g: E →R 2, E ⊂R n-2, n>2. 例如φ(x 1+x 2+x 3-x 4)=x 1+x 2+x 3-x 4, ψ(x)=(x 1-x 32-x 2x 4), 则f(x)=[φ(x),φ(x)ψ(x)]T =[x 1+x 2+x 3-x 4,(x 1+x 2+x 3-x 4)(x 1-x 32-x 2x 4)]T ,取x 0=(0,0,0,0)满足f(x 0)=0, 能由方程f(x)=0确定函数g(x 1,x 3)=Tx x x x x x x x x ⎥⎦⎤⎢⎣⎡-++-++2233223223221,1.7、设D ⊂R n 为开集, f: D →R n , 证明:当满足条件(1)f 在D 上可微,且f ’连续;(2)当x ∈D 时, det f ’(x)≠0. 则f(D)是开集. 证:对任一y 0∈f(D), 存在x 0∈D, 使y 0=f(x 0), 依定理23.17, 存在邻域U(x 0)⊂D, 使f 在U 上一一映射, 存在反函数f -1: V →U(V=f(U)), 且(f -1)’在V 上连续, x 0=f -1(y 0). 由开集U ⊂D, 取ε>0, 使U(x 0,ε)⊂U, 又 (f -1)’在V 上连续知f -1(y)在y 0连续, ∴存在δ>0, 当y ∈U(y 0,δ)时, f -1(y)∈U(x 0,ε)⊂D, 于是U(y 0,δ)⊂f(D), 可见y 0是f(D)的点,由y 在f(D)上的任意性知f(D)为开集.8、设D,E ⊂R n 为开集, f: D →E 与f -1: E →D 互为反函数. 证明:若f 在x ∈D 可微, f -1在y=f(x)∈E 可微, 则f ’(x)与(f -1)’(y)为互逆矩阵. 证:依定理23.13, 复合函数h=f -1◦f: D →D 在x 可微,且h ’(x)=(f -1◦f)’(x)=(f -1)’(y)f ’(x), 把h(x)=(f -1◦f)(x)看作以下两个变换的复合:(x 1,x 2,…,x n )↦(y 1,y 2,…,y n )↦(x 1,x 2,…,x n ), 则有(f -1)’(y)f ’(x)=h ’(x)=n nx x x x x x ∂∂∂∂∂∂0000000000002211ΛΛΛΛΛ=I. ∴f ’(x)与(f -1)’(y)为互逆矩阵.9、对n 次多项式进行因式分解P n (x)=x n +a n-1x n-1+…+a n =(x-r 1)…(x-r n ). 从某种意义上说,这也是一个反函数问题. 因为多项式的每个系数都是它的n 个根的已知函数,即a i =a i (r i ,…,r n ), i=0,1,…,n-1.要求得到用系数表示的根,即r j =r j (a 0,a 1,…,a n-1),j=1,2,…,n. 试对n=2与n=3两种情形,证明:当方程P n (x)=0无重根时, 函数组 a i =a i (r i ,…,r n ), i=0,1,…,n-1存在反函数组r j =r j (a 0,a 1,…,a n-1),j=1,2,…,n. 证:(1)当n=2时, P 2(x)=x 2+a 1x+a 0=(x-r 1)(x-r 2)=x 2-(r 1+r 2)x+r 1r 2.则有函数组a 1=-(r 1+r 2), a 0=r 1r 2. ),(),(2101r r a a ∂=1211r r --=r 2-r 1≠0(r 1≠r 2). 当r 1≠r 2时一切点偏导连续, 依定理18.5上述函数组确定反函数组: r 1=2)40211a a a -+-, r 2=2)40211a a a ---.(2)当n=3时,P 3(x)=x 3+a 2x 2+a 1x+a 0=(x-r 1)(x-r 2)(x-r 3)=x 3-(r 1+r 2+r 3)x 2+(r 1r 2+r 2r 3+r 3r 1)-r 1r 2r 3. 则有函数组a 2=-(r 1+r 2+r 3), a 1=r 1r 2+r 2r 3+r 3r 1, a 0=-r 1r 2r 3.),,(),,(321012r r r a a a ∂=213132213132111r r r r r r r r r r r r ---+++---≠0 (r 1,r 2,r 3互不相等时).在r1,r2,r3互不相等时,一切点上偏导连续, 依定理18.5确定反函数组:r1=r1(a2,a1,a0), r2=r2(a2,a1,a0), r3=r3(a2,a1,a0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 反函数·基础练习
(一)选择题
1.函数y =-x 2(x ≤0)的反函数是
[ ]
A y (x 0)
B y (x 0)
C y (x 0)
D y |x|
.=-≥.=≤.=-≤.=-x x x --
2.函数y =-x(2+x)(x ≥0)的反函数的定义域是 [ ]
A .[0,+∞)
B .[-∞,
1]
C .(0,1]
D .(-∞,0]
3y 1(x 2).函数=+≥的反函数是x -2
[ ]
A .y =2-(x -1)2(x ≥2)
B .y =2+(x -1)2(x ≥2)
C .y =2-(x -1)2(x ≥1)
D .y =2+(x -1)2(x ≥1)
4.下列各组函数中互为反函数的是
[ ]
A y y x
B y y 2
.=和=.=和=
x x x
11
C y y (x 1)
D y x (x 1)y (x 0)
2.=
和=≠.=≥和=≥313131
1x x x x x +-+-
5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是
[ ]
A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数
B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数
C.若y=f(x)是偶函数,则y=f-1(x)也是偶函数
D.若f(x)的图像与y轴有交点,则f-1(x)的图像与y轴也有交点
6.如果两个函数的图像关于直线y=x对称,而其中一个函数是
x 1
y=-,那么另一个函数是
[ ] A.y=x2+1(x≤0)
B.y=x2+1(x≥1)
C.y=x2-1(x≤0)
D.y=x2-1(x≥1)
7.设点(a,b)在函数y=f(x)的图像上,那么y=f-1(x)的图像上一定有点
[ ] A.(a,f-1(a))
B.(f-1(b),b)
C.(f-1(a),a) D.(b,f-1(b))
8.设函数y=f(x)的反函数是y=g(x),则函数y=f(-x)的反函数是
[ ] A.y=g(-x) B.y=-g(x)
C.y=-g(-x) D.y=-g-1(x)
9.若f(x-1)=x2-2x+3(x≤1),则函数f-1(x)的草图是
[ ]
10y g(x).函数=的反函数是,则1
3
x
[ ]
A .g(2)>g(-1)>g(-3)
B .g(2)>g(-3)>g(-1)
C .g(-1)>g(-3)>g(2)
D .g(-3)>g(-1)>g(2) (二)填空题
1y 32y (x 0)y f(x)y x .函数=+的反函数是.
.函数=>与函数=的图像关于直线=对称,
x x ++21
21 解f(x)=________.
3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________,b =________.
4y (1x 0).函数=-<<的反函数是
,反函数的定92-x
义域是________.
5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.
6y 7y (x 1)
(x 1)
8f(x)(x 1)f ()1
.函数=
的反函数的值域是

.函数=≥-<的反函数是:
..函数=<-,则-=

1
2
1121232
x x x x ---⎧⎨⎪⎩⎪--
(三)解答题
1y 12f(x).求函数=+的反函数,并作出反函数的图像.
.已知函数=.
x ax x +++25
2
(1)求函数y =f(x)的反函数y =f -1(x)的值域;(2)若点P(1,2)是y =f -1(x)的图像上一点,求函数y =f(x)的值域.
3.已知函数y =f(x)在其定义域内是增函数,且存在反函数,求证y =f(x)的反函数y =f -1(x)在它的定义域内也是增函数.
4f(x)y g(x)y f (x 1).设函数=
,函数=的图像是=+的图像23
1
1x x +-- 关于y =x 对称,求g(2)的值.
参考答案
(一)选择题
1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=
--,∴反函数--≤.y x f (x)=(x 0)1-
2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.
3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-
+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).
4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反
函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.
(C)y =3x 1x (x 1)y =x 1
x 3
(x 3)y =
3x 1
3x 1
(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有
交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1
6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1-
+1(x ≤0).选(A).
7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).
8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).
9.(C).解:令t=x -1.∵x ≤1,∴t ≤0,f(t)=t 2+2(t ≤0),即f(x)=x 2+
2(x ≤0),值域为f(x)≥2,∴反函数f -1(x)的定义域是x ≥2,值域y ≤0,故选(C).
10(B)g(x)=
1
x (0)33
..解:∵在-∞,上是减函数,又-<-<1 00g(3)g(1)g(2)=
1
20g(2)g(3)g(1)3
,∴>->-而>,∴>->-.故选 (B).
(二)填空题
1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(
x ≥3)
2y =
12x 1(x 0)y 1f(x)=1x
2x
(x 1).解:+>的值域<,其反函数-<. 3y =4x b y =14x x =ax .解:函数-的反函数是+,则++,b b
4144
3
比较两边对应项系数得,.a =
1
4
b =12 4y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f -1 (x)=(223)--.反函数的定义为,.92x
5.a
6.[0,2)∪(2,+∞)
7f (x)=x 1(x 1)1x
(x 0)
1
22
.+≥-<-⎧⎨⎪⎩⎪
8.-2
(三)解答题
1x 2y 1y =x 21=.解:∵≥-,得值域为≥.由++得反函数f x -1()
(x -1)2-2,(x ≥1),其图像如右图.
2.解(1):∵y=f(x)的定义域是{x|x ≠1,x ∈R ,∴y=f -1(x)的值域是{y|y ≠1,y ∈R}.
解(2):∵点P(1,2)在,y=f -1(x)的图像上,点P(1,2)关于直线y=x
的对称点为′,一定在的图像上,即由
++得-,∴-+,其反函数-+.∵的定义域为≠-
,∈,∴的值域为≠-,∈.P (21)y =f(x)=1a =f(x)=10x 2x 4f -(x)=104x 2x 1
f -(x){x|x x R}y =f(x){y|y y R}1
125221
2
121
2
a
3.证明略.
4f(x)=2x 3x 1f -(x)=x 3f (x 1)=11.略解;+-的反函数是+-,∴+x 2
x 4x 1x 4
x 1
=2x =6g(2)=6+-,由+-得即.。

相关文档
最新文档