《随机数的含义与应用》教案
高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.2 随机数的含义与应用》

随机数的含义与应用教学设计徐万山一、教学目标:1、知识与技能:(1)了解均匀随机数的概念;(2)掌握利用计算器(计算机)产生均匀随机数的方法;(3)会利用均匀随机数解决具体的有关概率的问题.2、过程与方法:(1)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学设想:(一)、旧知反馈(二)、自学引导三、合作探究(四)、思路点拨(五)、随堂检测(六)、巩固强化(七)、小结(八)、课后作业(九)、教学反思教学实施程序(二)、自学引导:(三).合作探究:2768m21632m21732m2868m 3m的概率有多大?0,1]的均匀随机数2运用:伸缩、平移变换3计算点数之比4得到概率近似值1.随机模拟方法产生的区间[0,1]上实数A.非等可能的 B.0出现的机会少 C.1出现的机会少 D.是均匀分布的0,1]内的均匀随机数转化为[-1,3]内的均匀随机数,需要实施的变换为3为了测算如图阴影部分的面积,作一个边长为6的正方形将其色包含在内,并向正方形内随机投掷800个点.已知恰有2021点落在阴影部分内,据此,可估计阴影部分的面积是________.1用均匀随机数进行随机模拟,可以解决()A 只能求几何概型的概率,不能解决其他问题B 不仅能求几何概型的概率,还能计算图形的面积C 不但能估计几何概型的概率,还能估计图形的面积D 最适合估计古典概型的概率2.几何概型的随机模拟试验中,得到阴影内的样本点数为N1,试验次数为N下列说法正确的是A.N1与N的大小无关是试验中的频率是试验中的概率 D.N越大,错误!应越小何概率公式,引入新课。
课件3:3.3.2 随机数的含义与应用

2.数形结合的思想的实质就是把抽象的数学语言、数量 关系和直观的图形结合起来.包含“以形助数”和“以数辅形” 两个方面.在本节中把几何概型问题利用坐标系转化成图形 问题(或符合条件的点集问题)去解决.
则构成事件 A“P 到点 O 的距离大于 1”的区域体积为 2π 4π
-23π=43π,由几何概型的概率公式得 P(A)=23π=23.
规律方法 如果试验的全部结果所构成的区域可用体积来度量,我
们要结合问题的背景,选择好观察角度,准确找出基本事件 所占的区域体积及事件 A 所占的区域体积.其概率的计算公 式为 P(A)=试验的构全成部事结件果A的构区成域的体区积域体积.
【思路点拨】 甲、乙两人中每人到达会面地点的时刻 都是 6 时到 7 时之间的任一时刻,如果在平面直角坐标系内 用 x 轴表示甲到达约会地点的时间,y 轴表示乙到达约会地点 的时间,用 0 分到 60 分表示 6 时到 7 时的时间段,则横轴 0 到 60 与纵轴 0 到 60 的正方形中任一点的坐标(x,y)就表示甲 乙两人分别在 6 时到 7 时时间段内到达的时间,而能会面的 时间由|x-y|≤15 所对应的图中阴影部分表示.
(1)投中大圆内的概率是多少?
图 3-3-3
(2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少? 【思路探究】 与面积有关的几何概型要表示平面图形 内的点必须有两个坐标,我们可以产生两组随机数来表示点 的坐标确定点的位置.
解 记事件 A={投中大圆内}, 事件 B={投中小圆与中圆形成的圆环}, 事件 C={投中大圆之外}. (1)用计算机产生两组[0,1]上的均匀随机数, a1=rand( ),b1=rand( ).
《3.3.2随机数的含义与应用》参考教案1-PDF

3.3.2 随机数的含义与应用本节教材分析三维目标1)知识与技能:(1)了解均匀随机数的概念;(2)掌握利用计算器(计算机)产生均匀随机数的方法;(3)会利用均匀随机数解决具体的有关概率的问题。
2)过程与方法:通过本节的学习培养逻辑思维能力和和探索创新能力。
3)情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
教学重点利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。
教学难点利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。
教学建议均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。
新课导入设计导入一直接导入随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样,随机数应用很广泛,利用它可以帮助我们进行随机抽样,还可以利用它在某一个范围得到每一个数机会是均等的这一特征来模拟试验,这样可代替我们自己做大量重复的试验,从而使我们顺利地求出有关事件的概率。
随机数的产生可以人工产生,例如抽签、摸球、转盘等方法,但这样做费时、费力,而且有时很难确保抽到每一个数的机会是均等的.因此,我们现在主要是通过计算器和计算机来产生随机数的。
现在大部分计算器都能产生0~1之间的均匀随机数(实数)。
导入二复习导入:1.几何概型的基本特点是什么?(1)基本事件有无限多个(不可数);(2)基本事件发生是等可能的。
2.提出问题随着计算机技术的不断发展,出现了一个非常实用的一门学科——计算机仿真学。
狭义的说计算机仿真就是将所研究的对象用计算机加以模仿的一种活动。
比如军事演习、飞行器风洞试验、核爆炸试验、宇宙飞船的飞行等都属于实物仿真的例子。
用计算机对一个系统的结构和行为进行动态演示, 以评价或预测一个系统的行为效果,为决策提供信息的一种方法.它是解决较复杂的实际问题的一条有效途径。
人教b版必修3高中数学3.3.2随机数的含义与应用word学案

3.3.2随机数的含义与应用
一、【利用说明】
一、课前完成导学案,牢记基础知识,掌握大体题型;
二、认真限时完成,规范书写;课上小组合作探讨,答疑解惑。
二、【重点难点】
重点:随机数的概念及其应用;
难点:如何把实际问题转化为概率的有关问题.
三、【学习目标】
一、了解并掌握随机数的概念及其应用;
二、能利用模拟实验来估量概率,初步体会几何概型的意义;
四、自主学习
一、几何概型的含义是什么?它有哪两个大体特点?
二、在几何概型中,事件A发生的概率计算公式是什么?
3、如何利用计算器和运算机产生随机数?
五、合作探讨
一、随机模拟掷硬币的实验,估量掷得正面的概率。
二、随机模拟“一海豚在水池中自由游弋,水池为长30m,宽20m的长方形”,并估量事件A:“海豚嘴尖离岸边不超过2m”的概率。
3、利用随机数和几何概型求π的近似值。
六、总结升华
一、知识与方式:
二、数学思想及方式:
七、当堂检测(见大屏幕)。
随机数字教案设计方案模板

一、教学目标1. 让学生了解随机数字的概念和性质。
2. 培养学生运用随机数字解决实际问题的能力。
3. 提高学生数学思维和逻辑推理能力。
二、教学内容1. 随机数字的定义2. 随机数字的性质3. 随机数字的运用三、教学过程一、导入1. 引导学生回顾已学过的数学知识,如概率、统计等。
2. 提出问题:什么是随机数字?它有什么特点?二、新课讲授1. 随机数字的定义:随机数字是指在一定范围内,每个数字出现的概率相等的数字。
2. 随机数字的性质:a. 独立性:随机数字的出现不受其他数字的影响。
b. 无规律性:随机数字的出现没有固定的规律。
c. 均匀分布:随机数字在一定范围内,每个数字出现的概率相等。
3. 随机数字的运用:a. 抽样调查:利用随机数字抽取样本,提高调查结果的可靠性。
b. 线性规划:在决策过程中,运用随机数字模拟不确定因素,提高决策的科学性。
c. 概率计算:在解决实际问题时,利用随机数字计算概率,为决策提供依据。
三、课堂练习1. 给定一个随机数字序列,请学生找出其中的规律。
2. 利用随机数字设计一个简单的抽样调查方案。
四、课堂小结1. 总结随机数字的定义、性质和运用。
2. 强调随机数字在生活中的应用价值。
五、作业布置1. 阅读相关资料,了解随机数字在科学研究、工程技术等领域的应用。
2. 设计一个利用随机数字解决实际问题的方案,下节课分享。
六、教学反思1. 教师在教学过程中,要注重引导学生主动探究,培养学生的数学思维。
2. 教师要关注学生的个体差异,针对不同层次的学生进行分层教学。
3. 教师要注重培养学生的实践能力,将随机数字知识应用于实际生活。
高中数学第三章概率3.3随机数的含义与应用随机数的含义与应用教学案新人教B版必修20

学习资料专题3.3.1 & 3.3.2 几何概型随机数的含义与应用预习课本P109~114,思考并完成以下问题(1)什么是几何概型?(2)几何概型的概率计算公式是什么?(3)随机数的含义是什么?它的主要作用有哪些?[新知初探]1.几何概型(1)定义:事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.满足以上条件的试验称为几何概型.(2)计算公式:P(A)=μAμΩ,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.2.随机数(1)含义随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样.(2)产生①在函数型计算器上,每次按SHIFT Ran #键都会产生一个0~1之间的随机数.②Scilab中用rand( )函数来产生0~1的均匀随机数.如果要产生a~b之间的随机数,可以使用变换rand( )*(b-a)+a得到.[小试身手]1.用随机模拟方法得到的频率( )A .大于概率B .小于概率C .等于概率D .是概率的近似值答案:D2.已知集合M ={x |-2≤x ≤6},N ={x |0≤2-x ≤1},在集合M 中任取一个元素x ,则x ∈M ∩N 的概率是( )A.19B.18C.14D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.3.如图所示,半径为4的圆中有一个小狗图案,在圆中随机撒一粒豆子,它落在小狗图案内的概率是13,则小狗图案的面积是( )A.π3B.4π3C.8π3D.16π3解析:选D 设小狗图案的面积为S 1,圆的面积S =π×42=16π,由几何概型的计算公式得S 1S =13,得S 1=16π3.故选D.4.在区间[-1,1]上随机取一个数x ,则x ∈[0,1]的概率为________. 解析:根据几何概型的概率的计算公式,可得所求概率为1-01--=12. 答案:12[典例] (1). (2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.答案:23(2)解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.1.解几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)法一:P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35.法二:P =1-P (红灯亮)=1-25=35.与面积和体积有关的几何概型[典例] (1)(福建高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14 C.38D.12(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.(2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.[答案] (1)B (2)231.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]1.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π解析:选D 由题意可得正方体的体积为V 1=1.又球的直径是正方体的体对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.则此点落在正方体内的概率为P =V 1V 2=132π=233π. 2.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析:选B 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4.[典例] 利用随机模拟法计算图中阴影部分(曲线y =2x与x 轴、x =±1围成的部分)的面积.[解] 设事件A =“随机向正方形内投点,所投的点落在阴影部分”. S1 用计数器n 记录做了多少次投点试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x(即点落在阴影部分).首先置n =0,m =0;S2 用变换rand()*2-1产生-1~1之间的均匀随机数x 表示所投的点的横坐标;用变换rand()*2产生0~2之间均匀随机数y 表示所投的点的纵坐标;S3 判断点是否落在阴影部分,即是否满足y <2x,如果是,则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;S4 表示随机试验次数的计数器n 的值加1,即n =n +1,如果还要继续试验,则返回步骤S2继续执行,否则,程序结束.程序结束后事件A 发生的频率m n作为事件A 的概率的近似值.设阴影部分的面积为S ,正方形的面积为4,由几何概型计算公式得P (A )=S 4.所以m n =S4.所以S =4mn.即为阴影部分面积的近似值.利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N; (3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1NS ′,则已知图形面积的近似值为N 1NS ′.[活学活用]取一根长度为3 cm 的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 cm 的概率有多大?解:设事件A =“剪得两段的长都不小于1 cm”.S1 用记数器n 记录做了多少次试验,用记数器m 记录其中有多少个数出现在1~2之间(即得两段的长都不小于1 cm),首先置n =0,m =0;S2 用变换rand( )*3,产生0~3之间的均匀随机数x ;S3 判断剪得两段是否长度都大于1 cm ,即是否满足1≤x ≤2,若是,则记数器m 的值增加1,即m =m +1,若不是,m 的值不变;S4 表示随机试验次数的记数器n 的值加1,即n =n +1;如果还需试验,则返回S2,继续执行,否则程序结束.程序结束后事件A 发生的频率m n作为事件A 的概率的近似值.[层级一 学业水平达标]1.如图,一颗豆子随机扔到桌面上,则它落在非阴影区域的概率为( )A.19 B.16 C.23D.13解析:选C 试验发生的范围是整个桌面,其中非阴影部分面积占整个桌面的69=23,而豆子落在任一点是等可能的,所以豆子落在非阴影区域的概率为23,故选C.2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712解析:选C S 矩形=ab ,S 梯形=12⎝ ⎛⎭⎪⎫13a +12a b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.3.已知函数f (x )=log 2x ,x ∈⎣⎢⎡⎦⎥⎤12,2,在区间⎣⎢⎡⎦⎥⎤12,2上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x ∈⎣⎢⎡⎦⎥⎤12,2,∴x 0∈[1,2],从而由几何概型概率公式知所求概率P =2-12-12=23.答案:234.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC <12V S ABC 的概率是________.解析:由V P ABC <12V S ABC 知,P 点在三棱锥S ABC 的中截面A 0B 0C 0的下方,P =1-VS A 0B 0C 0V S ABC=1-18=78. 答案:78[层级二 应试能力达标]1.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE 内部的概率为12.3.如图所示,一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )A.2πB.1πC.12D .1-2π解析:选D S 扇形=14×π×22=π,S 阴影=S 扇形-S △OAB =π-12×2×2=π-2,∴P =π-2π=1-2π.4.在区间[-1,1]上任取两数x 和y ,组成有序实数对(x ,y ),记事件A 为“x 2+y 2<1”,则P (A )为( )A.π4B.π2C .πD .2π解析:选 A 如图,集合S ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应,而事件A 所对应的事件(x ,y )与圆x 2+y 2=1内的点一一对应,所以P (A )=π4.5.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________. 解析:由于方程x 2+x +n =0(n ∈(0,1))有实根, ∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:146.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.答案:0.0057.在棱长为a 的正方体ABCD A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:点P 到点A 的距离小于等于a 可以看做是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD A 1B 1C 1D 1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P =18×43πa 3a 3=16π. 答案:16π8.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心时,事件B 发生,于是事件B 发生的概率为P (B )=14×π×12.2214×π×1222=0.01.即“射中黄心”的概率是0.01.9.已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离;(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解:(1)由点到直线l 的距离公式可得d =2542+32=5.(2)由(1)可知圆心到直线l 的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为60°.故所求概率为P =60°360°=16.。
高中数学 第三章 概率 3.3 随机数的含义与应用教案 新

3.3 随机数的含义与应用课堂探究1.古典概型与几何概型的异同剖析:古典概型与几何概型都是概率类型的一种,它们的区别在于:古典概型的基本事件数为有限个,而几何概型的基本事件数为无限个;共同点在于:两个概型都必须具备等可能性,即每个结果发生的可能性都相等.判断一次试验是否是古典概型,有两个标准来衡量:一是试验结果的有限性,二是试验结果的等可能性,如果这两个标准都符合,则这次试验是古典概型,否则不是古典概型;判断一次试验是否是几何概型有三个标准:一是试验结果的无限性,二是试验结果的等可能性,三是可以转化为求某个几何图形测度的问题.如果一次试验符合这三个标准,则这次试验是几何概型.这两种概率模型的本质区别是试验结果的种数是否有限.2.基本事件的选取对概率的影响剖析:先比较以下两道题:(1)在等腰Rt△ABC 中,在斜边AB 上任取一点M ,求AM <AC 的概率.(2)在等腰Rt△ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.这两道题虽然都是在等腰Rt△ABC 中求AM <AC 的概率,但题干明显不同,题目(1)是“在斜边AB 上任取一点M”,而题目(2)是“在∠AC B 内部任作一条射线CM”,其解答分别如下:(1)在AB 上截取AC′=AC ,于是P (AM <AC)=P (AM <AC′)=AC′AB =AC AB =22. (2)在∠ACB 内的射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的.在AB 上取AC′=AC ,则△ACC′是等腰三角形,且∠ACC′=180°-45°2=67.5°,故满足条件的概率为67.5°90°=0.75.由此可见,背景相似的问题,当基本事件的选取不同,其概率是不一样的.题型一 与“长度”有关的几何概型【例1】 某公共汽车站每隔15 min 有1辆汽车到达,乘客到达车站的时刻是任意的,求1个乘客到达车站后候车时间大于10 min 的概率.分析:把时刻抽象为点,时间就抽象为线段,故可用几何概型求解.解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T=5,T 2T=10.如图所示.记候车时间大于10 min 为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上时,事件A 发生,设区域D 的测度为15,则区域d的测度为5.所以的测度51()==的测度133d P A D =.答:候车时间大于10 min 的概率是13. 反思 在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d .在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.题型二 与“面积”有关的几何概型【例2】 甲、乙两人约定上午7:00到8:00之间到某个汽车站乘车,在这段时间内有3班公共汽车,开车的时刻分别为7:20,7:40,8:00,如果他们约定,见车就乘,则甲、乙两人乘同一班车的概率为( )A.12B.14C.13D.16解析:设甲到达汽车站的时刻为x ,乙到达汽车站的时刻为y ,则7≤x ≤8,7≤y ≤8,即甲、乙两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中是大正方形(如图所示).将三班车到站的时刻在图形中画出,则甲、乙两人要想乘同一辆车,必须满足7≤x ≤713,7≤y ≤713;713≤x ≤723,713≤y ≤723;723≤x ≤8,723≤y ≤8,即(x ,y )必须落在图形中的三个带阴影的小正方形内,所以由几何概型的概率计算公式得P =⎝ ⎛⎭⎪⎫132×312=13.答案:C反思 本题的关键首先要理解好题意,将其归结为面积型几何概型,而不是长度型几何概型.另外一定要认真审题,根据题意画出图形.本题中将甲、乙两人到达车站的时刻作为坐标,在坐标系中将汽车的到站时刻,甲、乙两人的到站时刻分别表示出来,就可以直观地发现它们之间的关系,找出两人乘同一辆车的区域,然后计算面积,代入公式求得结果.题型三 与“体积”有关的几何概型【例3】 已知正三棱锥SABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h 2的概率. 分析:首先作出到底面距离等于h 2的截面,然后再求这个截面的面积,进而求出有关体积.解:如图所示,在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于面ABC 和面A 1B 1C 1之间时,点M 到底面的距离小于2h . 设△ABC 的面积为S ,由△ABC∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为4S .由题意,区域D 的体积为13Sh 区域d 的体积为-⋅⋅=⋅1117334238S h Sh Sh . ∴P =78. ∴点M 到底面的距离小于2h 的概率为78. 反思 解与体积有关的几何概型时要注意:(1)寻求区域d 在区域D 中的分界面,但要明确是否含分界面不影响概率大小.(2)每个基本事件的发生是“等可能的”.(3)概率的计算公式为:P (A)=构成事件A 的区域体积试验的全部结果所构成的区域体积. 题型四 与“角度”有关的几何概型【例4】 已知半圆O 的直径为AB =2R.(1)过A 作弦AM ,求使弦AM <R 的概率;(2)过A 作弦AM ,求使弦AM >R 的概率;(3)作平行于AB 的弦MN ,求使弦MN <R 的概率;(4)作平行于AB 的弦MN ,求使弦MN≥R 的概率.分析:过A 作弦应理解为过A 作射线AM 交半圆于M ,作AB 的平行弦MN ,可以理解为过垂直于AB 的半径上的点作平行于AB 的弦.解:(1)如图①所示,过点A 作⊙O 的切线AE ,作弦'AM =R.由平面几何知识,∠M′AB=60°,∠M′AE=30°,∴P (AM <R)=P (AM <AM′)=P (∠EAM<∠EAM′)=∠EAM′的大小∠EAB的大小=30°90°=13. (2)类似于(1)可求P (AM >R)=60°90°=23.(3)如图②所示,过点O 作半径OE⊥AB,作弦M′N′∥AB,交OE 于点E′,且'N'M =R.连接OM′,则OE′=32R ,EE′=R -32R =2-32R. ∴P (MN <R)=P (MN <M ′N′)=EE′OE =2-32. (4)类似于(3)可求P (MN≥R)=OE′OE =32. 反思 (1)如果试验的结果所构成的区域的几何度量可用角度表示,则其概率计算公式为P (A)=事件A 构成区域的角度试验的全部结果构成区域的角度. (2)解决此类问题的关键是事件A 在区域内是均匀的,进而判定事件的发生是等可能的. 题型五 利用随机模拟实验估计图形的面积【例5】 利用随机模拟的方法近似计算图中阴影部分(y =2-2x -x 2与x 轴围成的图形)的面积.分析:解答本题可先计算与之相应的规则多边形的面积,而后由几何概率进行面积估计. 解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1,b 1.(2)经过平移和伸缩变换,a =4a 1-3,b =3b 1,得到一组[-3,1],一组[0,3]上的均匀随机数.(3)统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )数).(4)计算频率N 1N就是点落在阴影部分的概率的近似值. (5)设阴影部分面积为S ,由几何概型概率公式得点落在阴影部分的概率为S 12, ∴S 12≈N 1N. ∴S≈12N 1N即为阴影部分面积的近似值. 反思 在解答本题的过程中,易出现将点(a ,b )满足的条件误写为b >2-2a -a 2,导致该种错误的原因是没有验证阴影部分的点(a ,b )应满足的条件.题型六 易错辨析【例6】 在0~1之间随机选择两个数,这两个数对应的点把长度为1的线段分成三条,试求这三条线段能构成三角形的概率. 错解:因为1,21,x y x y ⎧+>⎪⎨⎪+<⎩,,x +y <1,所以12<x +y <1.所以P =⎝ ⎛⎭⎪⎫12,1(0,1)=121=12.错因分析:错解误把长度作为几何度量当成本题的模型.正解:设三条线段的长度分别为x ,y ,1-x -y ,则⎩⎪⎨⎪⎧ 0<x <1,0<y <1,0<1-x -y <1,即⎩⎪⎨⎪⎧ 0<x <1,0<y <-x +1.在平面上建立如图所示的直角坐标系,围成三角形区域G ,每对(x ,y )对应着G 内的点(x ,y ),由题意知,每一个试验结果出现的可能性相等,因此,试验属于几何概型.记事件A={三条线段能构成三角形},则事件A 发生当且仅当111x y x y x x y y ⎧⎪⎨⎪⎩+>--,->,->,即1>-+,21,21.2y x x y ⎧⎪⎪⎨<<⎪⎪⎪⎪⎩因此图中的阴影区域g 就表示“三条线段能构成三角形”,即事件A 发生当且仅当1,1,1,x y x y x x y y +>--⎧⎪->⎨⎪->⎩即1,21,21,2y x x y ⎧>-+⎪⎪⎪<⎨⎪⎪<⎪⎩因此图中的阴影区域g 就表示“三角线段能构成三角形",即事件A 发生,容易求得g 的面积为18,G 的面积为12,则P (A)=g 的面积G 的面积=14.。
高中数学人教新课标B版必修3--《3.3.2 随机数的含义与应用》教学设计(表格式) (1)

人教版高一年级第三章第三节《随机数的含义与应用》教学设计二、教学分析三、教学设计例1.随机模拟投硬币的试验,估计掷得正面的概率。
因为课堂时间有限,已留为作业,各小组的展示在刚才课前引入已经提及。
例 2 利用随机数和几何概型求π的近似值。
要区间是不一样的,我们要是根据问题而定。
问如何理解机会一样?老师总结机会是自然语言它的数学语言叫概率,即发生的概率一样。
教师展开模拟实验,用计算器产生一个0~1之间的随机数,如果这个数在0~0.5之间,则认为硬币正面向上,如果这个随机数在0.5~1之间,则认为硬币正面向下。
并用超链接展示实验的全部过程产生数据,整理数据,分析数据,画统计图的全部过程。
整个过程用时一分半,这比同学们课前经过小组合作完成的实验结果缩短了很多时间,充分体现了计算机模拟法的优势。
需要建立数学模型求,什么样的模型和π有关?教师总结,圆的面积和π有关,建立数学模型,设计一个算法用计算机模拟这个撒豆的试验,程序结束后可以求π的近似值。
超链接一个撒豆试验计算机演示图,连接一个微课具体说明此题建立一个概率模型,它与我们感兴趣的量有关。
然后设计适当的试验,并通过这个试验结果来确定学生回答学生讨论完成,引导学生说出边长为2的正方形中随机撒一大把豆子,计算落在正方形的内切圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率π的值.如果我们把“在正方形中撒豆子”看成试验,把“豆子落在圆中”看成随机事件A.则落在圆中的豆子数与落在正方形中的豆子数的比值就是引导学生体会频率的随机性与相对稳定性,一般地,试验的次数越多,估计值的精确度就越高。
让学生经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势。
245分9分D n m 22.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B.π4C.π6 D.π83.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为( )的整个过程中,教师做好课堂巡视,加强对个别学生的指导学生回答进行评价助于保持学生学习的热情和信心,这3道题都是高考题,让学生体会这节课在考试中的题型课堂小结2.1利用几何概型的概率公 式,结合随机模拟试验, 可以解决求概率、面积、 参数值等一系列问题,体 现了数学知识的应用价值学生归纳总结学生自主回顾本节内容,在自我反思的基础上,学会梳理知识,培养归纳总结能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机数的含义与应用》教案
教学目标:
1、了解均匀随机数的概念.
2、掌握利用计算器(计算机)产生均匀随机数的方法.
3、会利用均匀随机数解决具体的有关概率的问题,利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
教学重难点:
重点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
难点:会利用均匀随机数解决具体的有关概率的问题.
教学过程:
一:复习回顾
1.几何概型的含义是什么?它有哪两个基本特点?
含义:每个事件发生的概率只与构成该事件区域的长度(面积与体积)成比例的概率模型.
特点:(1)可能出现的结果有无限多个;(2)每个结果发生的可能性相等.
2.在几何概型中,事件A发生的概率计算公式是什么?
3.我们可以利用计算器或计算机产生整数值随机数,还可以通过随机模拟方法求古典概
型的概率近似值,对于几何概型,我们也可以进行上述工作.
二、教学设想:
例1.利用计算器产生10个1~100之间的取整数值的随机数.解:具体操作如下:键入反复操作10次即可得之,利用计算器产生随机数,可以做随机模拟试验,在日常生活中,有着广泛的应用.
例2.某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数.
我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556.
这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为205=25%.
课堂小结:
随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中
自我评价与课堂练习:
(1)利用计算器生产10个1到20之间的取整数值的随机数.
(2)用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验.。