第2章 PVT关系和状态方程

合集下载

化工热力学习题集-周彩荣

化工热力学习题集-周彩荣

《化工热力学》习题集郑州大学化工学院周彩荣2008.12.第二章 流体的p-V-T 关系和状态方程一、问答题:2-1为什么要研究流体的pVT 关系?2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

2-3 要满足什么条件,气体才能液化?2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型?2-7简述三参数对应状态原理与两参数对应状态原理的区别。

2-8总结纯气体和纯液体pVT 计算的异同。

2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?2-10状态方程主要有哪些类型? 如何选择使用? 请给学过的状态方程之精度排个序。

二、计算题:(说明:凡是题目中没有特别注明使用什么状态方程的,你可以选择你认为最适宜的方程,并给出理由)2-1. 将van der Waals 方程化成维里方程式;并导出van der Waals 方程常数a 、b 表示的第二维里系数B 的函数表达式2-2. 维里方程可以表达成以下两种形式。

21(pV B C Z RT V V ==+++……1) 21''(2pV Z B p C p RT==+++……) 请证明:'B B RT = 2'2()C B C RT −= 2-3. 某反应器容积为,内装有温度为的乙醇45。

现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75)比较误差。

(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。

31.213m 0227C .40kg MPa 2-4. 容积1m 3的贮气罐,其安全工作压力为100atm ,内装甲烷100kg ,问:1)当夏天来临,如果当地最高温度为40℃时,贮气罐是否会爆炸?(本题用RK 方程计算)2)上问中若有危险,则罐内最高温度不得超过多少度?3)为了保障安全,夏天适宜装料量为多少kg ?4)如果希望甲烷以液体形式储存运输,问其压缩、运输的温度必须低于多少度?2-5. 液化气的充装量、操作压力和温度是液化气罐安全操作的重要依据。

化工热力学第二章 流体的p-V-T关系和状态方程

化工热力学第二章 流体的p-V-T关系和状态方程

第二章 内 容
§2.1 纯流体的p-V-T相图 §2.2 气体状态方程(EOS) §2.3 对应态原理和普遍化关联式 §2.4 液体的p-V-T性质 §2.5 真实气体混合物p-V-T关系
§2.6 状态方程的比较和选用
§2.1 纯流体的p-V-T相图
§2.1.1 T –V 图 §2.1.2 p-V 图 §2.1.3 p-T 图 §2.1.4 p-V-T 立体相图 §2.1.5 纯流体p-V-T关系的应用及思考
§2.1.4 P-V-T立体相图
P-V-T立体相图
§2.1.4 P-V-T立体相图
水的P-V-T立体相图
【例2-1】 将下列纯物质经历的过程表 示在p-V图上:
1)过热蒸汽等温冷凝为过冷液体; 2)过冷液体等压加热成过热蒸汽; 3)饱和液体恒容加热; 4)在临界点进行的恒温膨胀
P
C
1)过热蒸汽等温冷凝为过冷液体; 2)过冷液体等压加热成过热蒸汽; 3)饱和蒸汽可逆绝热膨胀; 4)饱和液体恒容加热; 5)在临界点进行的恒温膨胀
• 1)由于刚性容器体积保持不变, 因此加热过程在等容线上变化,到 达B1时,汽液共存相变为液相单相; 继续加热,当T>Tc,则最终单相为 超临界流体,即C1点。
• 2)当水慢慢加热后,则状态从位 于汽液共存区的A2,变为汽相单相 B2,继续加热,当T>Tc,则最终单 相为临界流体C2。
§2.1 纯流体的P-V-T相图
P-T图
液相区
8atm下变成液体
气相区
1atm下变成气体
液化气的p-T 图
-82.62 ℃
室温10~40℃
乙烯、丙烯、 丁烯能做液化 气吗?
96.59℃
TC = 196.46 Tb =36.05 ℃

第2章_流体的pVT关系

第2章_流体的pVT关系
Zc=0.307,该值比RK方程的0.333有明显改进,但仍 偏离真实流体的数值 ; 计算常数需要Tc , Pc和ω,a是温度的函数; 同时适用于汽液两相,PR方程计算饱和蒸汽压、饱 和液体密度和气液平衡中的准确度均高于SRK方程 , 在工业中得到广泛应用。
18
2.2.1.5 Patel-Teja方程 方程形式:
代入式(2-12)
RT a 8.314×273.15 1.5588 p= − 0.5 = − −5 V −b T V(V +b) ( 4.636−2.6806) ×10 ( 273.15)0.5 ×4.636×(4.636+ 2.6806)×10−10 =8.8307×107(Pa)
8.8307 × 107 − 101.33 × 106 Δp = = −12.9% 6 101.33 × 10
⎪ ⎨ 2 ∂ P ∂V 2 ⎪ ⎩
图2-3 纯物质的p-V图
(
)
c
T =Tc 6
=0
2.2 流体的状态方程
定义:描述流体p-V-T关系的函数表达式 。
f ( p,V , T ) = 0
重要价值: ⑴精确地表达相当广泛范围内的pVT数据; ⑵推算不能直接测量的其它热力学性质。 状态方程的分类: 结合理论和经验:半经验半理论状态方程 从级数的角度出发:多参数状态方程
方程常数: R 2Tc 2 a (T ) = ac ⋅ α (Tr , ω ) = 0.457235 ⋅ α (Tr , ω )
pc
α
0.5
= 1 + F (1 − Tr )
0.5
RTc b = 0.077796 pc
2
17
F = 0.37464 + 1.54226ω − 0.26992ω

第二章 pVT关系和状态方程

第二章 pVT关系和状态方程
Vi =Vi+1=1.712m3/kmol
的摩尔体积
查表Tc、pc→a,b, V0=RT/p=2.01294m3/kmol V1 V2…..
饱和液体的摩尔体积
RT pV b Vi 1 b af Vi
RT pV b 1 2 b T Vi Vi b a
将a、b代入vdW方程,并用于临界点,得
RTc a 3 RTc pc 2 Vc b Vc 8 Vc
或 Z pcVc 3 0.375 c (2-8)
RTc
8
以Tc和pc表达的vdW常数为
27 R T a 2 64 pc
2
2 C
(2-9)
1 RTc b 8 pc
(2-10)
pc
2
(2-20)
RTc b 0.077796 pc
(2-21)
Zc=0.307,该值比RK方程的0.333有明显 改进,因此PR方程在体积性质计算方面明显 优于SRK方程,但仍偏离真实流体的数值; 计算常数需要Tc, pc和ω,a是温度的函数; 同时适用于汽液两相,PR方程计算饱和蒸汽 压、饱和液体密度和气液平衡中的准确度均 高于SRK方程 ,在工业中得到广泛应用。
常用的物质及临界点:
二氧化碳:31 ℃, 7.38 MPa 水:374 ℃, 22 MPa 甲醇:239℃, 8.1 MPa 乙醇:243℃, 6.38 MPa
p-T图
P-V图
亚稳态流体
过热液体—在一定温度下,当压力低于饱和 蒸汽压(或一定压力下,温度高于其沸点) ,仍能以液体形式存在 过冷蒸汽—压力高于同温度下的饱和蒸汽压 (或温度低于同压力的沸点),仍能以蒸汽 形式存在。

第二章流体的P-V-T关系与状态方程

第二章流体的P-V-T关系与状态方程

2.2.3 立方型状态方程
2.2.3.1 Van der Waals (vdW)范德华方程
RT a pVbV2
体积修正项, b为有效分子体 积,斥力参数
压力修正项, a为引力参数
vdW方程的优点:
1)1873年范德华在其著名的论文“关于气态和液态的连 续性”中提出,是第一个有实用意义的状态方程。1910年 曾获诺贝尔奖。
方程两边乘以 (V b ) P
得:
RT a(Vb)
VbPP1 T/2VVb
V k 1R P TbPa 1T /2 V V k k V b kb
初值取
1.875107
理想气体EOS只适合压力非常低的气体, 不适合真实气体。
2.2.2 气体的非理想性
真实气体分子有大小、分子间有相互作用力是造成气体非理 想性的原因。 真实气体对理想气体的偏离程度可以用压缩因子Z来表达:
Z PV V RT Vig
分子间吸引力促使Z<1; 分子间排斥力使Z>1; 吸引力和排斥力的平衡暗指Z=1。
方程在P →0 时,应变为:PV = RT
2. 低压下的气体(特别是难液化的N2,H2,CO,CH4,…), 在工程设计中,在几十个大气压(几个MPa)下,仍可按 理想气体状态方程计算P、V、T: 而对较易液化的气体,如NH3,CO2,C2H4(乙炔)等,在 较低压力下,也不能用理想气体状态方程计算。
对方程的引力项进行修正,以使计算的V减小, 提高计算的准确性,是真正实用的EOS。
R-K 方程中的常数a,b 的求取
•用同于vdW方程的方法得到常数a,b值, •即临界等温线在临界点的条件得到:
a 0 .42748
R
2T
2.5 c

化工热力学第二章-----流体的PVT关系 [兼容模式]

化工热力学第二章-----流体的PVT关系 [兼容模式]

24
MH方程
方程情况 ( 1 ) MH 方程是 1955 年 Martin 教授和我国学者候虞钧 教授提出的。首次发表在杂志AIChE J(美国化学工程 师会刊)上。有9个参数。 (2)为了提高该方程在高密度区的精确度,Martin于 1959年对该方程进一步改进。 (3)1981年候虞钧教授等又将该方程的适用范围扩展 到液相区,改进后的方程称为MH-81型方程。
0.5 r 2
k 0.3746 1.54226 0.26992 2
a( T )=a( T )=f (Tc,pc, Tr ,ω)
15
P-R方程
方程使用情况: (1)RK方程和SRK方程在计算临界压缩因子Zc和液 体密度时都会出现较大的偏差,PR方程弥补这 一明显的不足; (2)它在计算饱和蒸气压、饱和液体密度等方面有更 好的准确度; (3)是工程相平衡计算中最常用的方程之一。
8


van der Waals方程
1873年van der Waals(范德华) 首次提出了能表达从气态 到液态连续性的状态方程 :
•参数: (1)a/V2—分子引力修正项。 由于分子相互吸引力存在,分子撞击器壁的力减小,造成压力 减小。 (2)b —分子本身体积的校正项。 分子本身占有体积,分子自由活动空间减小,由V变成V-b。 分子自由活动空间的减小造成分子撞击器壁的力增大。b增大, 造成压力增大。
2
一、纯物质的P-T关系
1-2线 汽固平衡线(升华线)
P
A
Pc
C
超临 界流 体区
2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线) C点临界点,2点三相点 P<Pc, T<Tc的区域,属汽体 P<Pc, T>Tc的区域,属气体

第2章 流体的PVT关系-状态方程式(3版)

第二章
流体的压力、体积、温度关系: 状态方程式
流体的P-V-T关系

2.1
纯物质的P-V-T行为


2.2
2.3
流体的状态方程式
对应态原理的应用


2.4
2.5
液体的P-V-T关系
真实气体混合物
2.1 纯物质的P-V-T关系
固 固 液

临界点 气 汽
纯物质的P-V-T相图
P-V-T相图的投影图
偏心因子的物理意义为:其值的大小,是反
映物质分子形状与物质极性大小的量度。球形
分子(Ar、Kr、Xe等)ω=0;非球形分子ω>0。 根据以上结论,Pitzer提出了两个非常有用
的普遍化关系式。一种是以压缩因子的多项式
表示的普遍化关系式(简称普压法),一种是以
两项维里方程表示的普遍化第二维里系数关系
液体对比密度的定义:
Vc r L c V
L
液体的摩尔体积计算:
r1 V V r2
L 2 L 1
2.5
真实气体混合物
非理想性的两个原因。 用纯物质性质来预测或推算混合物性质 的函数式称为混合规则,纯气体的关系 式借助于混合规则变可推广到气体混合 物。 关键问题是求解混合物的虚拟特征参数。
2.2 流体的状态方程式
纯流体的状态方程(EoS) 是描述流体P-V-T性质 的关系式。 f( P, T, V ) = 0 混合物的状态方程中还包括混合物的组成(通常 是摩尔分数)。
理想气体方程式
pV RT pV Z 1 RT
p为气体压力;V为摩尔体积; T为绝对温度;R为通用气体常数。

Zc=0.307,更接近于实际情况,虽较真实

化工热力学流体的PVT关系

真实气体的行为→理想气体的行为 Ideal Gas(1)分子间作用力小
(2)分子本身体积小
由维里方程式,当P→0时, PV=a
由ideal gas EOS ,
PV=RT
由上述两个方程即可求出维里方程式中的a=RT PV=RT(1+B’P+C’P2+D’P3+……)
Z= pV/RT=1+B’P+C’P2+D’P3+…… 压力形式
(1901年,荷兰Leiden大学Onness) 由图2-3知,气相区,等温线近似
于双曲线,当P↑时,V↓ 1.方程的提出
Onness提出:
PV=a+bP+cP2+dP3+…….
令式中 b=aB’ c=aC’ d=aD’…… 上式:PV=a(1+B’P+C’P2+D’P3+….) 式中:a, B’, C’, D’……皆是T和物质的函数 当p → 0时,
f4 (T) (v - b)4
f5 (T) (v - b)5
其中k=5.475 M-H. Eq : 55型和81型
2. 55型 由上面的通式可见,M-H方程中的常数为:
A1(=0) A2
A3
A4
A5(=0)
B1(=R) B2
B3
B4(=0)
B5
C1(=0) C2
C3
C4(=0)
C5(=0)
有9个常数,但只需两组数据就可以得到,一组是临界值, 另一组是某一温度下的蒸汽压
立方型方程的特点:方程的形式比较简单,常数进行了普遍化的处 理,只需要输入临界温度、压力和偏心因子就可以计算了,数学上 也可以求解根,带来了很大的方便,但是缺点是很难在大的范围内 描述不同的热力学性质方面有好的效果。因此,常数更多的、高次 型的方程就出现了。

第二章 流体的压力、体积、温度关系:状态方程讲解

32
Virial方程不同形式的关系
PV B C Z 1 2 RT V V 1 B ' P C ' P 2

二种形式的Virial方程是等价的,其系数之间也有相 互关系。
C '
CB ( RT )
2
2
B B' RT
如何证明?
——试试看
33
实际中常用Virial截断式
只能计算气体,不能同时用于汽、液两相 Virial方程的价值已超出PVT的应用,能描述气体的粘度、声速和热容
例2-1 P14
34
2.2.3 立方型方程式 2.2.3.1 范德华方程
理想气体 PV=RT ∴P=RT/V
van der Waals(vdW) EOS ①
(2)分子间力的修正项 a为引力参数。
Peng-Robinson方程
多参数 高次型
Virial(维里)方程 BWR方程、马丁——侯方程等等
30
Virial方程的形式
2.2.2 Virial (维里)方程
PV B C Z 1 2 RT V V
2
1 B' P C ' P
P 0,V
dG SdT VdP dA SdT PdV
S V - P T T P
S P V T T V
Maxwell关系式特点是将难测的量用易测的量代 S V P S 替。如 P T 用 T P 代; 用 V T 代 T V ; 建立了S=S(T,P)。
5
2.1 纯物质的PVT行为

热力学目录[整理]

第二章流体的P-V-T关系2.1 纯物质的P-V-T关系一、P-T图二、P-V图2.2 流体的状态方程一、Virial方程二、立方形方程1、VDW方程2、R-K方程3、SRK方程4、PR方程三、多参数状态方程2.3 对应态原理及其应用一、对应态原理二、两参数普遍化状态方程三、三参数普遍化关系式1、偏心因子2、普遍化第二维里系数法3、普遍化压缩因子图法4、普维法与普压法的应用条件2.4 真实气体混合物的PVT关系第三章纯流体的热力学性质3.1热力学性质间的关系一、热力学基本方程二、点函数的数学关系式三、Maxwell关系式1、第一关系式2、第二关系3.2 热力学性质的计算一、以T、P为变量的焓变和熵变计算1、H的基本关系式2、S的基本关系式二、剩余性质法(一)计算原理1、剩余性质M R2、H*、S*的计算式3、H R、S R的计算式4、H、S的计算(二)H R、S R的计算方法1、图解积分2、EOS法3、普遍化关系式法第四章热力学第一定律及其应用4.1 能量平衡方程一、能量平衡方程二、轴功4.2 能量平衡方程的应用一、封闭体系二、稳定流动体系1、机械能平衡式2、绝热稳定流动过程3、与外界有大量热、轴功交换的稳流过程4.3 气体压缩过程一、压缩过程热力学分析二、单机压缩机可逆轴功的计算理想气体真实气体三、多级压缩及实际功耗第五章热力循环——热力学第二定律及其应用5.1 热力学第二定律一、热力学第二定律热流方向:Clausis说法循环过程:Kelvin说法熵增原理:5.2 熵一、熵1、熵函数(熵流)2、闭系热力学第二定律数学表达式3、熵产生4、熵变的计算二、熵平衡1、熵平衡方程2、熵平衡方程的特殊形式5.3 热力学性质及图表及其应用一、热力学性质图(一)T-S图1、T-S图形2、T-S图线组成的意义3、利用T-S图表示过程4、单组分两相区热力学函数的计算二、其他热力学性质图三、热力学性质图的共性四、热力学图表与普遍化热力学图表的区别5.4 水蒸气动力循环一、卡诺循环二、郎肯循环1、郎肯循环过程的热力学计算2、热效率和气耗率3、实际的郎肯循环三、提高郎肯循环的措施1、提高蒸汽的过热温度2、提高蒸汽压力3、再热循环5.5 制冷循环一、逆卡诺循环二、蒸汽压缩制冷循环1、制冷原理2、蒸汽压缩制冷循环热力学计算3、实际的蒸汽压缩制冷循环4、提高制冷系数的措施5、制冷剂的选择第六章化工过程热力学分析6.1 基础理论一、能量的级别二、理想功W id1、定义2、稳流过程理想功的计算式三、损失功W L四、热力学效率6.2 有效能6.3 化工单元过程的热力学分析一、流动过程二、传热过程三、分离过程第7章 溶液热力学基础7.1 溶液的热力学性质7.1.1 均组敞开系统的热力学关系式和化学位 7.1.2 偏摩尔性质1、定义式及物理意义2、 与溶液摩尔性质M 间的关系3、偏摩尔性质间的关系4、偏摩尔性质的计算7.2 Gibbs-Duhum Eq7.2.1 Gibbs-Duhum Eq 的一般形式 7.2.2 G-D Eq 的常用形式 7.2.3 Gibbs-Duhum Eq 的作用 7.3 逸度与逸度系数7.3.1 逸度的定义及物理意义 1、逸度的定义 2、逸度系数定义式 3、逸度的物理意义 7.3.2 物质逸度的计算 1、纯气体逸度的计算 (1)用普遍化关系式求 (2)用EOS 法求 2、凝聚态逸度的计算3、混合物中组分i 的逸度的计算 7.4 理想溶液和标准态 7.4.1 理想溶液 1、定义2、溶液的热力学性质 7.4.2 标准态 7.5 活度和活度系数 1、活度的定义及意义 2、活度系数3、注意点7.6 流体均相混合时的性质变化 7.6.1 混合过程性质变化 1、混合过程性质变化 2、混合偏摩尔性质变化 3、混合性质变化与组成的关系 7.6.2 过量(超额)热力学性质 1、过量热力学性质M E2、过量性质变化 7.7 活度系数模型7.7.1 过量自由焓与活度系数 7.7.2、非理想溶液模型 1、正规溶液模型i M2、无热溶液模型3、基团溶液模型7.7.3 活度系数的近似关联式1、Wohl型经验方程2、局部组成方程3、基团溶液模型)第八章相平衡8.1 平衡的判据与相律8.2 互溶体系VLE相图一、二元体系的P-T图二、互溶体系的P-x-y、T-x-y相图1、一般正负偏差体系2、最大正负偏差体系8.3 VLE的计算一、概述1、VLE计算的基本问题2、VLE计算的理论基础式EOS+γi法EOS法γi法二、低压下VLE的计算1、计算式2、汽液平衡比Ki和相对挥发度αij3、泡点、露点计算p, xi T,yi一、G-D方程二、热力学一致性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



0.5 1 Tr

ห้องสมุดไป่ตู้
化学工业出版社
PR方程的特点
Zc=0.307,更接近于实际情况,虽较真实情 况仍有差别,但PR方程计算液相体积的准 确度较SRK确有了明显的改善; 计算常数需要Tc,Pc和,a是温度的函数; 能同时适用于汽、液两相; 工业中得到广泛应用 在提供的计算软件Thermo-Pro中,用PR作 为状态方程模型,用于均相性质、纯物质 饱和性质、混合物汽液平衡计算等。
解方程组得方程常数
9 a RTcVc 8
RTc RTc a Pc 2 Vc b Vc V Vc c
可得到
Vc b 3
9RTcVc 3 8 3 RTc 2 8 Vc Vc
化学工业出版社
PcVc Zc 3 8 0.375 RTc

2

0.5 1 Tr

这样就可以从纯物质的Tc,Pc和计算SRK常数
化学工业出版社
SRK方程的特点
在临界点同RK,Zc=1/3(偏大); 计算常数需要Tc,Pc和(比RK多),a是温 度的函数; 除了能计算气相体积之外,能用于表达 蒸汽压(汽液平衡),是一个适用于汽、 液两相的EOS,但计算液相体积误差较 大; 为了改善计算液相体积的准确性,PengRobinson提出了PR方程。
3状态方程 (EOS)
已经知道的EOS
理想气体方程 范德华(vdW)方程 RK方程 维里方程 对应态(原理)方程
将要介绍的新EOS
立方型方程(vdW型) 高次型方程 (virial型) 三参数CSP
化学工业出版社
状态方程(EOS)
EOS是特指P-V-T的解析函数关系; EOS不仅可以计算容积V性质,更重要的 是由经典热力学推算其它性质时所必需的 模型; EOS应反映物质的微观特征或宏观的P-VT特征; 建立EOS的方法:多以经验法为主;纯理 论法很少。 本课程仅介绍和应用EOS。
化学工业出版社
A- 1正常沸点、临界参数和偏心因子
物质 甲烷 乙烷 丙烷 正丁烷 异丁烷 丙烯 苯 甲苯 甲醇 乙醇 丙酮 Ar O2 N2 H2 CO2 H2 O NH3 R12(CCl2F2) R22(CHClF ) Tb / K* 111.63 184.55 231.05 272.65 261.30 225.46 353.24 383.78 337.70 351.44 329.35 87.3 90.18 77.35 20.39 185.10 373.15 239.82 243.40 232.40 Tc / K 190.58 305.33 369.85 425.40 408.10 364.80 562.16 591.79 512.64 516.25 508.10 150.8 154.58 126.15 33.19 304.19 647.30 405.45 385.00 369.20 Pc / MPa 4.604 4.870 4.249 3.797 3.648 4.610 4.898 4.104 8.092 6.379 4.700 4.235 5.043 3.394 1.297 7.381 22.064 11.318 4.124 4.975 Zc 0.228 0.284 0.280 0.274 0.283 0.275 0.271 0.264 0.224 0.240 0.232 0.291 0.289 0.287 0.305 0.274 0.230 0.242 0.280 0.267 ω 0.011 0.099 0.152 0.193 0.176 0.148 0.211 0.264 0.564 0.635 0.309 -0.004 0.019 0.045 -0.220 0.225 0.344 0.255 0.176 0.215
化学工业出版社
2 纯物质的P-V-T相图
纯物质的P-V-T立体相图
相:物理和化学性质相同的系统
纯物质的P-T图
三相点t (tri-phase) 临界点C(critical) 平衡曲线 vapor and gas 的区别:TC 液体→气体(汽体)无相变化
纯物质的P-V图
化学工业出版社
SRK方程常数
RT ac 0.42748 Pc
2
2 c
RTc b 0.08664 Pc
a(T)= ac(Tr,),其中是一个纯物质的特性常数, 称为偏心因子,可以查表得到。 Soave 通过拟合纯物质烃的蒸汽压数据,得到

0.5
1 0.48 1.574 0.176
4. 立方型状态方程
可以表示成为V的三次方; 一般的形式是
P=Prep+Patt Prep>0; Patt<0 Prep=RT/(V-b) (很多情况下如此) Patt= -a(T)/f(V) a(T)是T的函数, f(V)是V的二次函数
b称体积参数,a称能量参数;a,b通称方程常数 立方型方程在确定方程常数时,一般使用临界 等温线在临界点的特性。
化学工业出版社
4-1van der Waals(vdW) 方程
RT a P 2 V b V
●第一个同时计算汽,液两相,表达临界点 的方程 ●其它立方型方程的基础 ●形式简单,a,b是常数,准确度低,实际 应用少 ●计算常数采用了临界等温线在临界点的条 件
化学工业出版社
化学工业出版社
4-2 Redlich-Kwong(RK)方程
RT a T P V b V V b
改变了方程的引力项Patt,以使得计算的V 减小(或者说,使方程的Zc值减小),试 图改进方程计算P-V-T的准确性; 用同于vdW方程的方法得到常数a,b;和Zc 值
化学工业出版社
纯物质的P-T图
P-T图的特征、相关概念
单相区 两相平衡线(饱和曲线)
汽化曲线---t到c 熔化曲线--升华曲线---趋向0K
三相点(Tt,Pt)---纯物质和混合物 临界点(Tc,Pc,Vc) ---可以无相变化 等容线
临界等容线V=Vc、V>Vc、V<Vc
化学工业出版社
1引言
流体P-V-T是重要的热力学数据,广泛应 用于工程中,并有广泛的积累; P、V、T数据容易实验测量;是认识P-VT关系的基础;是建立EOS的基础; EOS是P-V-T关系的解析形式,由此可以 推算实验数据之外信息; EOS是反映体系特征的模型,对推算其 它物性有重要的意义; EOS+CPig——>理论上可计算所有的热力 学性质。
二相区
化学工业出版社
纯物质的P-V-T相图
化学工业出版社
P-V-T相图特征、相关概念
单相区(V,G,L,S) 两相共存区(V/L,L/S,G/S) 饱和线 过热蒸汽 过冷液体 三相线(V/L/S) 临界点 超临界流体(T>Tc和P>Pc)
第2章 P-V-T关系和状态方程
Chapter 2 P-V-T Relations
and Equation of State(EOS)
化学工业出版社
本章要点
1引言 2纯物质的P-V-T相图 3状态方程(EOS)
立方型 高次型
4对应态原理 5流体的饱和热力学性质 6混合物的状态方程——混合法则 7理想气体的性质 8状态方程体积根的求解
化学工业出版社
4-3 Soave RK(SRK)方程
RT a P V b V V b
沿用了Prep,将RK方程的 a/T0.5 改成为 a(T)= ac(Tr,); SRK规定(Tr=1,)=1,所以在临界点时,RK与 SRK完全一样,所以,SRK的Zc=1/3; 若用临界点条件确定常数,SRK与RK常数关系 ac=aRK/Tc0.5 b=bRK
化学工业出版社
5多常数(高次型)状态方程
立方型方程形式简单,常数可以从Tc、Pc 和ω计算;数学上有解析的体积根;但计 算准确性不高。 方程常数更多的高次型状态方程,适用 的范围更大,准确性更高,但 复杂性 和 计算量增大,随着电算技术的发展,多 常数方程的应用受到重视, 多 常 数 方 程 包含了更多的流体的信息,具有更好的 预测流体性质的能力; 多常数方程的基础是维里virial方程
化学工业出版社
状态方程
分类
立方型 vdW型 高次型 virial型 理论方程 从分子理论和统计力学推导
状态方程的准确度和方程形式的简单性 是一对矛盾 状态方程的形式主要有两种
P=P(T,V) V=V(T,P) 应用中以P=P(T,V)为主
化学工业出版社
化学工业出版社
4-4 Peng-Robinson(PR)
RT a P V b V V b bV b
RTc b 0.077796 Pc
a ac Tr ,

0.5
ac
RTc 0.457235
Pc
2
2
1 0.37646 1.54226 0.26992
化学工业出版社
纯物质的P-V图
化学工业出版社
P-V图的特征、相关概念
单相区---气相平缓,液相陡峭 两相区 饱和线,饱和蒸汽压 ps 泡点、露点,泡点线(饱和液相线)、露点线 (饱和汽相线) 等温线(T=Tc、T>Tc、T<Tc) 临界等温线的数学特征
方程常数多用pc、Tc表示
(VC不如pc、Tc可靠)
27 a 64
2 R Tc 2 Pc
2
1 RTc b 8 Pc
化学工业出版社
关于状态方程的Zc值
vdW给出了一个固定的Zc ,即Zc=0.375。多数Zc 在0.23~0.29之间,明显低于vdW方程的Zc。可 见vdW方程计算准确性不会好。 二参数立方型方程,若根据临界点条件确定常数, 只能给出一个固定的Zc,这是两参数立方型方 程的不足之处; 方程形式不同,给出的Zc值不同(主要与f(V)有 关)。 Zc值是状态方程优劣的标志之一(改进的方向, 但不唯一)。
相关文档
最新文档