人教A版必修一全套教案之1.1.1-1集合的含义及其表示
高中数学新课标人教A版必修一:1.1.1.1集合的含义与表示

典例精讲:题型一:集合的概念
例1:(1)下列对象能组成集合的是( C )
A.中央电视台著名节目主持人 “著名”无明确标准
B.我市跑得快的汽车
“快”的标准不确定
C.上海市所有的中学生
D.香港的高楼
“高”的标准不确定
(2)以方程x2−5x+6=0和方程x2−x−2=0的解为元素的集合共有 3 个元素.
简称
非负整数集 (或自然数集)
正整数集 整数集 有理数集 实数集
记法
N
N*或N+ Z Q R
探究点4 元素与集合的关系
元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A. (2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作aA.
典例精讲:题型二:元素与集合的关系问题
x2−5x+6=0⇒ x=2,3 x2−x−2=0 ⇒ x=2,−1
重复元素只可算1个
探究点3 集合的表示、常用数集
集合与元素的表示 通常用大写拉丁字母A,B,C,…表示集合, 用小写拉丁字母a,b,c,…表示集合中的元素.
探究点3 集合的表示、常用数集
常用数集
常用数集
全体非负整数的集合
所有正整数的集合 全体整数的集合 全体有理数的集合 全体实数的集合
第一Байду номын сангаас 集合与函数概念
§1.1.1 集合的含义与表示
第一课时 集合的含义
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
引入
“集合”是日常生活中的一个常用词,现代汉语解释为:许多 的人或物聚在一起.
1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案

1.1.1 集合的含义与表示方法教案教学目标:1,集合的概念,怎样判断一句自然语言所说的对象构不构成集合?关键是“元素的确定性”。
2,元素与集合的关系,属于与不属于(注意集合的元素本来就是集合的情况) 3,集合中元素的性质,确定性,互异性(出题较多),无序性。
4,常用数集的表示符号,课堂检验是否记住,练习元素与集合的属于与不属于关系。
5,集合的表示,(一)自然语言(二)列举法(三)描述法,其中描述法最难是初中到高中思维能力提升,需要高度的抽象概括能力。
(四)图像法(Venn 图)6,集合语言的运用与解读:教学难点:描述法:按代表元素分类教学过程(一)引入事实上我们已接触过“集合”这一概念。
比如:在对数分类时,就用到“正数的集合”,“负数的集合”;“奇数集”,“偶数集”。
此外,在解不等式时,可能会得到一些数,这些数放到一起就构成不等式的解的集合,称为不等式的解集。
在学习圆的时候,说圆是到定点距离等于定长的点的集合,到一条线段两个端点距离相等的点的集合(即这条线段的垂直平分线),直线可以看成点的集合。
我们一口气说了这么多集合,我们仔细来分析一下。
①所有正数②所有奇数③x-7<3的解④x-7=3的解⑤到定点o距离等于定长d的所有点⑥隆回一中高一班的所有学生集合的含义是什么呢?例①中,我们把每一个正数作为研究对象,称它为元素,这些元素的全体就是一个集合。
同样的例②中,我们把每一个奇数作为研究对象,也就是元素,所有的奇数构成一个集合。
谁来说下下面几个集合的例子中,它们的元素分别是什么?集合的定义:一般地,我们把研究对象称为元素,把一些元素组成的总体叫做集合。
(二)如何判断元素的全体是否构成集合呢?关键看什么?给定的集合,它的元素必须是确定的。
也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了。
这就是集合的确定性。
这是判断是不是集合最关键的第一步。
看几个例子:玩一个是不是的游戏,我说一句话,如果你觉得你是在我所说的研究对象内,你就举手①我们班所有的学生②我们班所有男生③我们班所有高个子男生④我们班所有身高超过1米6的超级爱好DOTA 游戏的男生。
人教A版数学必修一教案:§1.1.1集合的含义与表示

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
1[1].1.1-1集合的含义及其表示
![1[1].1.1-1集合的含义及其表示](https://img.taocdn.com/s3/m/2a9db2addd3383c4ba4cd206.png)
1.1.1 集合的含义及其表示方法(1)教案【教学目标】1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【教学重难点】教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.【教学过程】一、导入新课军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.二、提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A 分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.结论:1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A ,记作a∈A ,a不是集合A的元素,就说a不属于集合A,记作a A3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
高中数学 1.1.1 集合的含义与表示教案 新人教A版必修1最新修正版

1.1.1集合的含义与表示(第一课时)教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有x-<的解的集合,到一个定点的距离等于定长的点的集合,到一理数的集合,不等式73条线段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
人教A版数学必修一教案:§1.1.1集合的含义与表示

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教版高中数学必修1第1章1.1.1 集合的含义与表示(1)教案

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示(一)教学目标分析:知识目标:1、了解集合的含义,体会元素与集合的“属于”关系。
2、掌握集合中元素的特性。
3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
过程与方法:通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。
情感目标:在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。
重难点分析:重点:集合的含义与表示方法。
难点:集合表示方法的恰当选择及应用。
互动探究:一、课堂探究:1、情境引入军训前学校通知:8月13日上午8点,高一年级学生在学校操场集合前往军训基地;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
2、集合论是德国著名数学家康托尔于19世纪末创立的。
在学习集合之前,我们先来简单了解这位著名数学家的生平。
1845年3月3日,乔治••康托尔生于俄国的一个丹麦——犹太血统的家庭。
1856年康托尔和他的父母一起迁到德国的法兰克福。
像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。
他的父亲力促他学工,因而康托尔在1863年带着这个目的进入了柏林大学。
这时柏林大学正在形成一个数学教学与研究的中心。
康托尔很早就向往这所由外尔斯特拉斯占据着的世界数学中心之一。
所以在柏林大学,康托尔受了外尔斯特拉斯的影响而转到纯粹的数学。
他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。
1874年康托尔在克列勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 集合的含义及其表示方法(1)教案【教学目标】1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【教学重难点】教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.【教学过程】一、导入新课军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.二、提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M 和N 相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的. 结论:1、一般地,指定的某些对象的全体称为集合,标记:A ,B ,C ,D ,… 集合中的每个对象叫做这个集合的元素,标记:a ,b ,c ,d ,…2、元素与集合的关系a 是集合A 的元素,就说a 属于集合A , 记作 a ∈A , a 不是集合A 的元素,就说a 不属于集合A , 记作 a A 3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2.)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
比如:book 中的字母构成的集合(3).元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
3、阅读课本P 3中:数学中一些常用的数集及其记法.快速写出常见数集的记号. 活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N 、Z 、Q 、R 不能再表示其他的集合,这是专用集合表示符号,.以后,我们会经常用到这些常见的数集,要求熟练掌握.结论:常见数集的专用符号.N :非负整数集(或自然数集)(全体非负整数的集合); N *或N +:正整数集(非负整数集N 内排除0的集合); Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合); R:实数集(全体实数的集合). 三、 例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 分析:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A 、C 、D 中的元素符合集合的确定性;而选项B 中,难题没有标准,不符合集合元素的确定性,不能构成集合.变式训练11.下列条件能形成集合的是( D )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工 例题2.下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈Z C.若a ∈Q ,则|a |∈Q D.若a ∈R ,则R a ∈3分析:(1)元素与集合的关系及其符号表示;(2)特殊集合的表示方法; 答案:A变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×” (1)所有在N 中的元素都在N *中( × ) (2)所有在N 中的元素都在Z中( √ ) (3)所有不在N *中的数都不在Z 中( ×) (4)所有不在Q 中的实数都在R 中(√ )(5)由既在R 中又在N *中的数组成的集合中一定包含数0( ×) (6)不在N 中的数不能使方程4x =8成立( √ )四、课堂小结 1、集合的概念2、集合元素的三个特征,其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号. 【板书设计】 一、 集合概念 1. 定义 2. 三要素 二、常用集合 三、典型例题例1: 例2:【作业布置】预习下一节学案。
学校:临清实验高中 学科:数学 编写人:陈华 审稿人:国辉1.1.1 集合的含义及其表示方法(1)课前预习学案一、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法二、预习内容:阅读教材填空:1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。
构成集合的每个对象叫做这个集合的(或)。
2、集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。
3、元素与集合的关系:如果a是集合A的元素,就说,记作,读作。
如果a不是集合A的元素,就说,记作,读作。
4.常用的数集及其记号:(1)自然数集:,记作。
(2)正整数集:,记作。
(3)整数集:,记作。
(4)有理数集:,记作。
(5)实数集:,记作。
三、提出疑惑课内探究学案一、学习目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.学习重点:集合的基本概念与表示方法.学习难点:选择恰当的方法表示一些简单的集合. 二、学习过程1、 核对预习学案中的答案2、 思考下列问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?” ②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A 表示高一(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么a 、b 与集合A 分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合? ⑥世界上的高山能不能构成一个集合? ⑦问题⑥说明集合中的元素具有什么性质? ⑧由实数1、2、3、1组成的集合有几个元素? ⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?3、集合元素的三要素是 、 、 。
4、例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练11.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工 例题2.下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈Z C.若a ∈Q ,则|a |∈Q D.若a ∈R ,则R a ∈3变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×” (1)所有在N 中的元素都在N *中( ) (2)所有在N 中的元素都在Z中( ) (3)所有不在N *中的数都不在Z 中( ) (4)所有不在Q 中的实数都在R 中( )(5)由既在R 中又在N *中的数组成的集合中一定包含数0( ) (6)不在N 中的数不能使方程4x =8成立( )5、 课堂小结 三、当堂检测1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?2、填空:或用符号∉∈(1) -3 N ; (2)3.14 Q ; (3)31Q ; (4)0 Φ ;(5; (6)21- R ; (7)1 N +; (8)π R 。
课后练习与提高1.下列对象能否组成集合: (1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点; (3)满足3x-2>x+3的全体实数; (4)所有直角三角形;(5)美国NBA 的著名篮球明星; (6)所有绝对值等于6的数; (7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员; (9)参加2008年奥运会的中国代表团成员. 2.(口答)说出下面集合中的元素: (1){大于3小于11的偶数}; (2){平方等于1的数}; (3){15的正约数}. 3.用符号∈或∉填空:(1)1______N ,0______N ,-3______N ,0.5______N ,2______N ; (2)1______Z ,0______Z ,-3______Z ,0.5______Z ,2______Z ; (3)1______Q ,0______Q ,-3______Q ,0.5______Q ,2______Q ; (4)1______R ,0______R ,-3______R ,0.5______R ,2______R . 4.判断正误:(1)所有属于N 的元素都属于N *. ( ) (2)所有属于N 的元素都属于Z . ( ) (3)所有不属于N *的数都不属于Z . ( ) (4)所有不属于Q 的实数都属于R . ( ) (5)不属于N 的数不能使方程4x=8成立. ( )。