NaITl)闪烁谱仪系列实验
NaI(Tl)闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量实验人:吴家燕学号:15346036一、实验目的1、加深对γ射线和物质相互作用的理解;2、掌握NaI(Tl) γ谱仪的原理及使用方法;3、学会测量分析γ能谱;4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线;5、测定未知放射源的能量和活度。
二、实验原理1、γ谱仪的组成NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。
图1 为NaI(Tl)闪烁谱仪装置的示意图。
2、射线与闪烁体的相互作用当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)康普顿散射;(3)电子对效应。
图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。
图3 是137Cs、22Na 和60Co 放射源的γ能谱。
图中标出的谱峰称为全能峰。
在γ射线能区,光电效应主要发生在K 壳层。
在击出K 层电子的同时,外层电子填补K 层空穴而发射X 光子。
在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光电子。
上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电子结合能)。
3、137Cs 能谱分析4、闪烁谱仪的性能能量分辨率探测器输出脉冲幅度的形成过程中存在着统计涨落。
即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。
通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。
半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。
因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。
一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即对于一台谱仪来说,近似地有对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。
NaI(TI)闪烁谱仪系列实验

NaI(TI)闪烁谱仪实验一、引言闪烁探测器是利用某些物质在射线作用下受激发光的特性来探测射线的仪器。
它们的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。
它在核物理研究和放射性同位素测量中得到广泛的应用。
本实验目的是了解NaI(TI)闪烁谱仪的原理、特性与结构,掌握NaI(TI)闪烁谱仪的使用方法和—射线能谱的刻度,学会NaI(TI)闪烁谱仪的应用。
二、实验原理1、γ射线与物质的相互作用γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生三种过程。
(1)光电效应:入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。
由于束缚电子的电离能1E 一般远小于入射γ射线能量E γ,所以光电子的动能近似等于入射γ射线的能量1=E E E E γγ-≈光电(2)康普顿散射:核外电子与入射γ射线发生康普顿散射示意如图。
设入射γ光子能量为h υ,散射光子能量为'h υ,则反冲康普顿电子的动能r E'r E h h υυ=-康普顿散射后散射光子能量与散射角θ的关系为()'11cos h h υυαθ=+- 2e h m cυα= α为入射γ射线能量与电子静止质量之比。
由上式可得,当0θ=时,'h h υυ=。
这时0e E =,即不发生散射;当180θ=︒时,散射光子能量最小,它等于12h υα+,这时康普顿电子的能量最大,为()max 212e E h αυα=⋅+ 所以康普顿电子能量在0至212h αυα⋅+之间变化。
(3)正、负电子对产生:当γ射线能量超过202(1.022)m c MeV 时,γ光子受原子核或电子的库伦场的作用可能转化成正、负电子对。
入射γ射线的能量越大,产生正、负电子对的几率也越大。
在物质中正电子的寿命是很短的,当它在物质中消耗尽自己的动能,便同物质原子中的轨道电子发生湮没反应而变成一对能量各位0.511MeV 的γ光子。
NaI(Tl)闪烁谱仪r能谱

NaI (Tl )闪烁谱仪测量γ能谱实验目的1. 掌握NaI(Tl) γ闪烁谱仪的结构、原理和工作过程2. 掌握NaI(Tl)γ闪烁谱仪的性能指标和测试方法。
3. 了解核电子学仪器的数据采集、记录方法和数据处理原理。
实验内容1. 学会NaI(Tl) 单晶γ闪烁谱仪装置的使用操作方法2. 掌握调整谱仪参数,选择最佳测量工作条件的方法3. 测量谱仪的能量分辨率、刻度能量线性。
4. 了解数据处理(包括对谱形进行光滑、寻峰,曲线拟合等)。
一.γ射线与物质的相互作用γ射线光子与物质原子相互作用的机制主要有以下三种方式,如图1所示。
图1 γ射线光子与物质原子相互作用(1)光电效应当能量为E γ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失。
发射出去的电子称为光电子,这种过程称为光电效应。
发射光电子的动能为i e B E E -=γB i 为束缚电子所在壳层的结合能。
原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。
这种X 射线在闪烁体内很容易再产生一次新的光电效应,将能量又转移给光电子,所以闪烁体得到的能量是两次光电效应产生的光电子能量之和。
值得注意的是,由于必须满足动量守恒定律,自由电子(非束缚电子)不能吸收光子能量而成为光电子。
光电效应的发生除入射光子和光电子之外,还需有一个第三者参加,这第三者就是发射光电子之后剩余下来的整个原子。
它带走一些反冲能量,但该能量十分小。
由于它的参加,动量和能量守恒才能满足。
而且,电子在原子中被束缚得越紧(即越靠近原子核的电子),越容易使原子核参加上述过程。
所以在K 壳层上发生光电效应的概率最大。
(2)康普顿效应γ光子与自由静止的电子发生碰撞,将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射,改变了原来的能量和方向。
反冲电子的动能为()θγγcos 1120-+=E c m E E e (式中20c m 为电子静止能量,约为0.5MeV ;角度θ是散射光子的散射角。
实验三用NaI(Tl)单晶γ闪烁谱仪辨识未知源

实验三用NaI(Tl)单晶γ闪烁谱仪辨识未知源实验三用NaI(Tl)单晶γ闪烁谱仪辨识未知源一. 实验目的1、了解闪烁谱仪的工作原理,学习调整闪烁谱仪的实验技术。
2、掌握测谱技术及分析简单γ能谱的方法。
3、掌握谱仪能量分辨率及能量线性的测量方法。
4、学习谱仪应用的实例——辨别未知源的方法。
二. 实验内容1、熟悉线性放大器与单道脉冲幅度分析器,以及计算机多道脉冲幅度分析器的使用,调整谱仪至正常工作状态。
137Cs的γ2、选择合适实验条件,用单道测量能谱,确定单道系统的能量分辨率。
60137Co源的全谱;刻度谱仪能量线性,、利用多道脉冲幅度分析器测量Cs源及3137Cs的γ能谱进行谱形分析并与理论比较。
确定能量分辨率、峰康比;对4、测量未知源的γ能谱,确定峰位的能量,进而辨别未知源。
比较NaI和BGO两种不同闪烁体的性能。
5、三. 实验原理1、NaI(T1)单晶γ谱仪简介NaI(T1)单晶闪烁谱仪由一块NaI(T1)闪烁体、光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)定标器等电子学设备组成,示意图见图3-1。
源光电多道脉冲烁体输出高压电源示波器图3-1 Nal(T1)闪烁谱仪装置示意图实验三用NaI(Tl)单晶γ闪烁谱仪辨识未知源γ射线入射闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。
这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电脉冲信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接受放大、分析和记录。
NaI(T1)单晶γ谱仪测量γ射线的过程由图3-2示说明。
射线和闪烁体交互作用至光电倍增管阳极形成电流脉冲的示意图图3-2 γ射线的探测效率高、分辨时间短、价格相对便宜。
可用来测γ这种谱仪对在核物理研究及核技术应用也可用来对辐射进行能量分析,量射线的通量密度,的各领域中广泛使用。
γ谱的谱形分析方法2、单能谱仪测得的是脉冲数按幅度的分布,即脉冲幅度谱,简称脉冲谱,一般提到射线强度按能γγ谱均系指此脉冲谱。
辐射探测实验3-实验报告

用NaI(Tl)单晶γ闪烁谱仪辨识未知源实验报告班级: 姓名: 学号:一. 实验目的1、了解闪烁谱仪的工作原理,学习调整闪烁谱仪的实验技术。
2、掌握测谱技术及分析简单γ能谱的方法。
3、掌握谱仪能量分辨率及能量线性的测量方法。
4、学习谱仪应用的实例——辨别未知源的方法。
二. 实验内容1、熟悉线性放大器与单道脉冲幅度分析器,以及计算机多道脉冲幅度分析器的使用,调整谱仪至正常工作状态。
2、选择合适实验条件,用单道测量137Cs 的γ能谱,确定单道系统的能量分辨率。
3、利用多道脉冲幅度分析器测量137Cs 源及60Co 源的全谱;刻度谱仪能量线性,确定能量分辨率、峰康比;对137Cs 的γ能谱进行谱形分析并与理论比较。
4、测量未知源的γ能谱,确定峰位的能量,进而辨别未知源。
5、 比较NaI 和BGO 两种不同闪烁体的性能。
三. 实验原理1、NaI(T1)单晶γ谱仪简介NaI(T1)单晶闪烁谱仪由一块NaI(T1)闪烁体、光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)定标器等电子学设备组成,示意图见图3-1。
γ射线入射闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。
这些光图3-1 Nal(T1)闪烁谱仪装置示意源信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电脉冲信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接受放大、分析和记录。
NaI(T1)单晶γ谱仪测量γ射线的过程由图3-2示说明。
图3-2 γ射线和闪烁体交互作用至光电倍增管阳极形成电流脉冲的示意图这种谱仪对γ射线的探测效率高、分辨时间短、价格相对便宜。
可用来测量射线的通量密度,也可用来对辐射进行能量分析,在核物理研究及核技术应用的各领域中广泛使用。
2、单能γ谱的谱形分析方法谱仪测得的是脉冲数按幅度的分布,即脉冲幅度谱,简称脉冲谱,一般提到谱仪测得γ谱均系指此脉冲谱。
NaI(Tl)闪烁谱仪及伽马能谱测量

物理科学与技术学院 核工程与技术系
NaI(Tl)闪烁谱仪及g能谱测量
实验目的
1、了解闪烁探测器的结构、工作原理。 2、熟悉γ射线与物质相互作用的三种效应(光电效应、康 普顿效应和电子对效应)。 3、掌握闪烁谱仪的几个性能指标和测试方法,观测、分
析γ全能谱。
实验仪器
γ放射源60Co和137Cs;NaI(Tl)单晶γ闪烁谱仪;计 算机等。
X
.
实验原理
一、γ 射线与物质的作用
康普顿效应
Eg '
Eg Eg 1 1 cos 2 m0 c
Ee
Eg m0c 2 1 Eg 1 cos
NaI(Tl)闪烁谱仪及伽马能谱测量
思考题
1.如何从示波器上观察到的137 Cs或60Co脉冲波形图, 判断谱仪能量分辨率的好坏? 2.反散射峰是如何形成的?
3.若有一单能伽马源,能量为2 MeV,试预言其谱 形。
常用数据:
60
Co两条伽马射线能量1173.2 keV和1332.5 keV,137Cs伽马射线能量661.7 keV, 反散射 峰能量184 keV。 铝的密度2.7 g/cm3,铅的密度 11.34 g/cm3。 对661.7 keV能量伽马射线,铝的质量吸收系 数理论值0.194 cm-1,铅的质量吸收系数理论 值1.213 cm-1。
NaI(Tl)闪烁谱仪及伽马能谱测量
三、137Cs的γ射线的能谱
图2
137Cs的γ线的能谱
137Cs半衰期30.17年。95%通过贝塔衰变为137m1Ba(半衰期153秒、光子能量
是662 keV),5%直接衰变为稳定的137Ba 。 环境中存在着微量的137Cs,它们 几乎都是在1940年代至1960年代的核试爆及某些核事故中释放出来的。历史上 曾造成137Cs释放进入环境中的著名案例包括如切尔诺贝利核事故等。2011年3 月11日,日本的福岛第一核电站事故事件发生时,也曾发现它的存在。
NaI(Tl)单晶γ能谱仪实验探索-PPT精选文档

微机计数
1 实验原理 示波器
2019/5/2
近代物理实验 复旦大学物理实验中心
4
NaI(Tl) 单晶γ能谱仪实验
1. 能谱定性探究以及为能谱定标
2 实验内容
2019/5/2
6 s
近代物理实验 复旦大学物理实验中心
5
NaI(Tl) 单晶γ能谱仪实验
1. 利用Cs、Co为能谱仪定标
2 实验内容
2019/5/2
E 0 .0 0 1 4 7 R 0 .0 0 6 Me V
近代物理实验 复旦大学物理实验中心
6
NaI(Tl) 单晶γ能谱仪实验
3. 康普顿平台边缘的确定
能 量 从 0 到 E
在实验中,我们取下降起点A与谷底C的中 点B作为实验测量的康普顿平台端点。 E c 0 .0 0 1 4 7 3 2 8 0 .0 0 6 0 .4 7 6 M e VΔEEc c 0.4%
计数时间 原则上时间与测到的计数成正比关普顿平台边缘 在实验中总结发现实验与测量技巧,给出如何确定康普顿平台边缘。
2019/5/2
近代物理实验 复旦大学物理实验中心
11
感谢近代物理实验室各位老师的指导与帮助! 感谢实验伙伴的讨论与合作!
谢谢!
5. 质量吸收系数的确定
I e I0
lnIlnI0
得
0.093cm2 / g A 4.021025cm2
N0Z
2 实验内容
2019/5/2
近代物理实验 复旦大学物理实验中心
10
NaI(Tl) 单晶γ能谱仪实验
3 实验总结
提高实验质量所做的努力与改进
放射源 实验中采用多个放射源叠加的办法,使实验数据质量明显提高。
NaI(Tl)闪烁谱仪实验报告

实验5:NaI(Tl)闪烁谱仪实验目的1. 了解谱仪的工作原理及其使用。
2. 学习分析实验测得的137Cs γ谱之谱形。
3. 测定谱仪的能量分辨率及线性。
内容1. 调整谱仪参量,选择并固定最佳工作条件。
2. 测量137Cs 、65Zn 、60Co 等标准源之γ能谱,确定谱仪的能量分辨率、刻度能量线性并对137Cs γ谱进行谱形分析。
3. 测量未知γ源的能谱,并确定各条γ射线的能量。
原理)1(T NaI 闪烁谱仪由)1(T NaI 闪烁体、光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)、定标器等电子学设备组成。
图1为)1(T NaI 闪烁谱仪装置的示意图。
此种谱仪既能对辐射强度进行测量又可作辐射能量的分析,同时具有对γ射线探测效率高(比G-M 计数器高几十倍)和分辨时间短的优点,是目前广泛使用的一种辐射探测装置。
当γ射线入射至闪烁体时,发生三种基本相互作用过程,见表1第一行所示:(1)光电效应;(2)康普顿散射;(3)电子对效应。
前两种过程中产生电子,后一过程出现正、负电子对。
这些次级电子获得动能见表1第二行所示,次级电子将能量消耗在闪烁体中,使闪烁体中原子电离、激发而后产生荧光。
光电倍增管的光阴极将收集到的这些光子转换成光电子,光电子再在光电倍增管中倍增,最后经过倍增的电子在管子阳极上收集起来,并通过阳极负载电阻形成电压脉冲信号。
γ射线与物质的三种作用所产生的次级电子能量各不相同,因此对于一条单能量的γ射线,闪烁探测器输出的次级电子脉冲幅度仍有一个很宽的分布。
分布形状决定于三种相互作用的贡献。
表1 γ射线在NaI (Tl )闪烁体中相互作用的基本过程根据γ射线在)1(T NaI 闪烁体中总吸收系数随γ射线能量变化规律,γ射线能量MeV E 3.0<γ时,光电效应占优势,随着γ射线能量升高康普顿散射几率增加;在MeV E 02.1>γ以后,则有出现电子对效应的可能性,并随着γ射线能量继续增加而变得更加显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NaI(Tl)闪烁谱仪系列实验实验原理1. γ射线与物质的相互作用γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程。
(1)光电效应。
入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。
由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ(2)康普顿散射。
核外电子与入射γ射线发生康普顿散射的示意图见图1.2-1。
设入射γ光子能量为h,散射光子能量为h,则反冲康普顿电子的动能EeEe=h-h康普顿散射后散射光子能量与散射角θ的关系为(1.2-1)式中,即为入射γ射线能量与电子静止质量所对应的能量之比。
由式(1.2-1),当θ=0时h=h,这时E e=0,即不发生散射;当θ=180°时,散射光子能量最小,它等于h/(1+2α),这时康普顿电子的能量最大,为(1.2-2)所以康普顿电子能量在0至之间变化。
(3)正、负电子对产生。
当γ射线能量超过2m0c2(1.022MeV)时,γ光子受原子核或电子的库仓场的作用可能转化成正、负电子对。
入射γ射线的能量越大,产生正、负电子对的几率也越大。
在物质中正电子的寿命是很短的,当它在物质中消耗尽自己的动能,便同物质原子中的轨道电子发生湮没反应而变成一对能量各为0.511MeV的γ光子。
2. 闪烁谱仪结构与工作原理NaI(Tl)闪烁谱仪结构如图1.2-2。
整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。
射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。
带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。
闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。
光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。
每产生一个电压脉冲就表示有一个粒子进入探测器。
由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。
利用脉冲幅度分析器可以测定入射射线的能谱。
3. 谱仪组件性能一般介绍(1)闪烁体。
闪烁体是用来把射线能量转变为光能的。
闪烁体分无机闪烁体和有机闪烁体两大类。
实际运用中依据不同的探测对象和要求选择不同的闪烁体。
本实验中采用含铊(Tl)的NaI晶体作γ射线的探测器。
(2)光电倍增管。
光电倍增管的结构如图1.2-3。
它由光阴极K、收集电子的阳极A与在阳极与光阴极之间十个左右能发射二次电子的次阴极(又称倍增极、打拿极或联极)构成,相邻的两个电极之间的电位差一般在100V左右。
当闪烁体发出的光子打到光阴极时,它打出的光电子被加速聚焦到第一倍增极D1上,平均每个光电子在D1上打出3~6个次级电子,增殖的电子又为D1和D2之间的电场加速,打到第二个倍增极D2上,平均每个电子又打出3~6个次级电子,……这样经过n级倍增后,在阳极上就收集到大量的电子,在负载上形成一个电压脉冲。
(3)能量分辨率。
由于形成阳极电流脉冲之前的各种过程的统计性质,对应于某一定能量的粒子,光电倍增管的输出脉冲的幅度的大小仍有起伏(图1.2-4)。
通常把脉冲计数率随脉冲幅度分布的半宽度与计数率最大值对应的脉冲幅度U0之比定义为能量分辨ε。
由于粒子能量与脉冲幅度成正比,所以能量分辨率(1.2-3)影响能量分辨率的主要因素有:①同一能量的粒子在闪烁体中产生的光子数目不同。
这是由于:a.闪烁体发光过程的统计涨落;b.闪烁体的非均性使不同点的发光效率不同;c.入射粒子穿过晶体的角度、位置不同所带来的在晶体内损失能量的不同。
②粒子的入射位置不同,闪烁体所发出的光能到达光阴极的收集效率也不同。
③光阴极表面的不均匀性,阴极的不同位置发射光电子的效率不同。
④光阴极发射光电子数和光电倍增管的倍增系数的统计涨落。
⑤光电倍增管的本底脉冲噪声将叠加在入射粒子的脉冲信号上使之发生涨落。
NaI(Tl)晶体对137Cs的0.662MeV的γ射线能量分辨率约为6%~8%。
4. 闪烁谱仪对137Cs单能γ射线的响应由于137Cs只放出单一能量的γ射线(Eγ=0.662MeV)。
而此γ射线能量小于正、负电子对的产生阈1.02MeV。
所以Cs的γ射线与NaI(Tl)晶体的相互作用只有光电效应和康普顿散射两个过程。
图1.2-5给出了用NaI(Tl)晶体γ谱仪所测得的137Cs的γ能谱,其中1号峰相应于光电峰,1号峰左面的平台相应于康普顿电子的贡献。
如果康普顿散射产生的散射光子h未逸出晶体,仍然为NaI(Tl)晶体所吸收,也即通过光电效应把散射光子的能量h转换成光电子能量,而这个光电子也将对输出脉冲做贡献。
由于上述整个过程是在很短时间内完成的,这个时间比探测器形成一个脉冲所需的时间短得多,所以先产生的康普顿电子和后产生的光电子,二者对输出脉冲的贡献是叠加在一起形成一个脉冲。
这个脉冲幅度所对应的能量,是这两个电子的能量之和,即Ee+h=h,即等于入射γ射线的能量。
所以这一过程所形成的脉冲将叠加在光电峰1之上使之增高。
为了确切起见,1号峰又称为全能峰。
图 1.2-5的康普顿电子平台上还出现一个2号峰,它是由于入射γ射线穿过NaI晶体,打到光电倍增管上发生180°的康普顿散射,反散射的光子返回晶体,与晶体发生光电效应所形成的。
返回散射光子能量hν′=Eγ-Ec(max)=0.184MeV,所以2号峰称为反散射峰。
当然γ射线在源衬底、源容器材料上的反散射也会对反散射峰有贡献。
图1.2-5中能量最小的那个峰是因为137Cs的β衰变子体137Ba在退激时,可能不发生γ射线,而是通过内转过程,把Ba的K电子打出。
这一过程将导致发生Ba的K系X射线,所以这个峰对应于Ba的K系射线的能量(32keV左右)。
137Cs的γ谱是比较典型的,常用137Cs作为标准源,一方面用来检验γ谱仪的能量分辨率,另一方面作为γ射线能量测量的相对标准。
5. 闪烁谱仪的能量线性关系利用闪烁谱仪作γ射线能量测定时,最基本的要求是在入射γ射线的能量和它产生的脉冲幅度(指全能峰的位置)之间有确定的关系;对于理想的闪烁谱仪,脉冲幅度与能量之间应呈线性关系;对于实际NaI(Tl)闪烁谱仪在较宽的能量范围内(100keV到1300keV)是近似线性的。
这是利用该谱仪进行射线能量分析与判断未知放射性核素的重要依据。
通常,在实验上利用系列γ标准源,测量相应全能量峰处的脉冲幅度,建立γ射线能量及其对应峰位的关系曲线,这条曲线即能量刻度曲线。
典型的能量刻度曲线为不通过原点的一条直线,即(1.2-4)式中x p为全能峰峰位;E0为直线截距;G为增益(即单位脉冲幅度对应的能量)。
能量刻度曲线可以选用标准源137Cs(0.662MeV)和60Co(1.17、1.33MeV)来作,如图1.2-6所示。
实验中欲得到较理想的线性,还要注意放大器和单道分析器甄别阈的线性,进行必要的检验与调整。
此外,实验条件变化时应重新进行刻度。
(一)核衰变的统计规律实验目的1.了解NaI(TI)计数管的几个基本性能。
2.学会正确使用NaI(TI)闪烁谱仪的方法。
3.了解并验证原子核衰变及放射性计数的统计性质。
实验内容1.熟悉谱仪各组件正确使用方法,并把各组件正确无误地连接起来。
2.按各部件操作规程,启动各部件(高压电源最后启动),检查各部件工作是否正常。
3.调节光电倍增管工作电压及放大器放大倍数,使放大器输出脉冲的脉冲幅度小于6V。
4.测137Cs和60Co的能谱。
再调节线性放大器的放大倍数,使137Cs和60Co的全能谱合理分布在适当的区间内,依次或同时测量这两个γ源的能谱。
用最小二乘法拟合直线方程计算增益G和截距E0。
5.从测量的计数脉冲幅度曲线,计算闪烁谱仪的能量分辨率δ。
6.验证核衰变规律。
原子核衰变服从统计规律,因此多次测量同一时间间隔内的计数,应服从统计分布,如高斯分布或泊松分布。
实验数据与处理1、放大器电压590V能谱2、放大器电压600V能谱3、放大器电压610V能谱4、闪烁谱仪的能量线性关系(定标)峰道址峰1道址峰2道址经过线性拟合可以得到590V时,G0=0.00335,E0=3.0334E-4经过线性拟合可以得到600V时,G1=0.0029,E0=0.01253经过线性拟合可以得到610V时,G2=0.00254,E0=0.01939(三)快速电子的动量和动能之间的相对论关系实验目的1.验证快速电子的动量和动能之间的相对论关系2.掌握用β磁谱仪获得单一动量电子的方法和同时测量相应动能的方法。
3.学会测量射线能谱实验内容1.标定NaI(Tl)闪烁谱仪的能量刻度曲线(参看实验1.2内容)。
2.在已抽真空的β磁谱仪上测定电子动量为Pi对应的电子能量Eki,获得一组数据(P i,Eki),(i=1,2,…,n);探测器与β-源的距离Δx应取9cm—24cm范围,这样可以获得动能在0.4-1.8MeV范围的电子。
3.数据处理和计算,计算中需考虑对β-粒子动能的二项修正:(1)在A1膜中能量损失修正;(2)在有机塑料薄膜中能量损失修正。
实验原理(1.6-1)式中E0=m0c2为静止能量,E=mc2为相对论定义的能量,P为相对论定义的动量。
(1.6-2)式中β=v/c,c为光速。
(1.6-3)当β<<1时,式(1.)可展开为(1.6-4)即是经典力学中的动量—能量关系,对于电子有。
本实验就是验证狭义相对论的动量与动能的关系式(1.6-3)。
图(1.6-1)显示了经典力学中和狭义相对论中的Ek-PC关系曲线。
2.为了获得单一动量的电子,可以选用半圆聚焦β磁谱仪。
放射源出射的β-粒子经准直后垂直射入一均匀磁场中,β-粒子将受到洛仑兹力作用而作圆周运动,该电子具有恒定动量值而仅仅是方向不断变化。
电子的圆周运动方程为式中e为电子电荷,V为电子速度,B为磁场强度。
由式(1.6-2)可知P=mv,对某一确定的动量值P,其运动速率为一常数,所以质量m是不变的,故有并且有所以得到P=eBR (1.6-5)式中R为电子的运动轨道半径,为源与探测器间距的一半。
从图(1.6-2)和式(1.6-5)可以看出能量探测器放在不同R值处就可获得不同动量的单一动量电子,该动量电子的动能可用实验1.2中的NaI(Tl)闪烁谱仪经137Cs和60Co放射源标定过的能量刻度曲线获得,对应能量的电子束强度通过峰面积也能测定。