NaI单晶闪烁谱仪
最新NaI(T1)单晶γ能谱仪实验报告PPT课件

*另一性能指標: 二次函數
F(x)
=
1 2
xTAx+BTx+f = ax2+bxy+cy2+dx+ey+f
=
1 2
[x
y]
2a
b
[x b
2c
y]T+[d
▽F(x)=Ax+B, ▽2F(x)
then (2) ⇒ pTAp/|p|2=
hTCT (CCT )Ch hTCTCh
=
hTh hTh
=
ici2 ci2
=λmax
i.e. 在最大特徵值的特徵向量方向上, 存在最大的二階導數 (事實上, 在每個特徵向量方向的二階導數, 都等於相對應的特徵值; 在其他 方向上的二階導數, 等於特徵值的加權平均值)
✓ 利用积分功能,得到: 光电峰净面积=1037175 整个能谱净面积=2062107 ∴光电峰面积/总能谱面积 =1037175/2062107=50.3%
0.6616MeV |
➢实验结果与讨论
2. 对60Co能谱图进行分 析
✓ 利用软件中寻峰的功能, 记录两个光电峰的道址, 分别为800.0和907.2
➢实验结果与讨论
7. 计算散射截面σ
根据公式σ=μA/N0Z,Pb的原子质量数A=207,原子 序数Z=82,
∴σ=0.1067×207÷(6.023×1023×82) =4.47×10-25cm2
• 神經網路有幾種不同學習規則: 例如聯想式學習、競爭式學習;
• 性能學習之目的: 83g/cm2
➢实验结果与讨论
NaI(TI)闪烁谱仪系列实验

NaI(TI)闪烁谱仪实验一、引言闪烁探测器是利用某些物质在射线作用下受激发光的特性来探测射线的仪器。
它们的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。
它在核物理研究和放射性同位素测量中得到广泛的应用。
本实验目的是了解NaI(TI)闪烁谱仪的原理、特性与结构,掌握NaI(TI)闪烁谱仪的使用方法和—射线能谱的刻度,学会NaI(TI)闪烁谱仪的应用。
二、实验原理1、γ射线与物质的相互作用γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生三种过程。
(1)光电效应:入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。
由于束缚电子的电离能1E 一般远小于入射γ射线能量E γ,所以光电子的动能近似等于入射γ射线的能量1=E E E E γγ-≈光电(2)康普顿散射:核外电子与入射γ射线发生康普顿散射示意如图。
设入射γ光子能量为h υ,散射光子能量为'h υ,则反冲康普顿电子的动能r E'r E h h υυ=-康普顿散射后散射光子能量与散射角θ的关系为()'11cos h h υυαθ=+- 2e h m cυα= α为入射γ射线能量与电子静止质量之比。
由上式可得,当0θ=时,'h h υυ=。
这时0e E =,即不发生散射;当180θ=︒时,散射光子能量最小,它等于12h υα+,这时康普顿电子的能量最大,为()max 212e E h αυα=⋅+ 所以康普顿电子能量在0至212h αυα⋅+之间变化。
(3)正、负电子对产生:当γ射线能量超过202(1.022)m c MeV 时,γ光子受原子核或电子的库伦场的作用可能转化成正、负电子对。
入射γ射线的能量越大,产生正、负电子对的几率也越大。
在物质中正电子的寿命是很短的,当它在物质中消耗尽自己的动能,便同物质原子中的轨道电子发生湮没反应而变成一对能量各位0.511MeV 的γ光子。
实验三、用NaI(Tl)单晶γ闪烁谱仪辨识未知源

实验三 用NaI(Tl)单晶γ闪烁谱仪辨识未知源一. 实验目的1、了解闪烁谱仪的工作原理,学习调整闪烁谱仪的实验技术。
2、掌握测谱技术及分析简单γ能谱的方法。
3、掌握谱仪能量分辨率及能量线性的测量方法。
4、学习谱仪应用的实例——辨别未知源的方法。
二. 实验内容1、熟悉线性放大器与单道脉冲幅度分析器,以及计算机多道脉冲幅度分析器的使用,调整谱仪至正常工作状态。
2、选择合适实验条件,用单道测量137Cs 的γ能谱,确定单道系统的能量分辨率。
3、利用多道脉冲幅度分析器测量137Cs 源及60Co 源的全谱;刻度谱仪能量线性,确定能量分辨率、峰康比;对137Cs 的γ能谱进行谱形分析并与理论比较。
4、测量未知源的γ能谱,确定峰位的能量,进而辨别未知源。
5、 比较NaI 和BGO 两种不同闪烁体的性能。
三. 实验原理1、 NaI(T1)单晶γ谱仪简介NaI(T1)单晶闪烁谱仪由一块NaI(T1)闪烁体、光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)定标器等电子学设备组成,示意图见图3-1。
图3-1 Nal(T1)闪烁谱仪装置示意图光电 倍增管闪烁体射极 输出 器线性脉冲 放大器单道脉冲幅度分析器多道脉冲 幅度分析器自动 定标器高压电源示波器源γ射线入射闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。
这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电脉冲信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接受放大、分析和记录。
NaI(T1)单晶γ谱仪测量γ射线的过程由图3-2示说明。
图3-2 γ射线和闪烁体交互作用至光电倍增管阳极形成电流脉冲的示意图这种谱仪对γ射线的探测效率高、分辨时间短、价格相对便宜。
可用来测量射线的通量密度,也可用来对辐射进行能量分析,在核物理研究及核技术应用的各领域中广泛使用。
2、 单能γ谱的谱形分析方法谱仪测得的是脉冲数按幅度的分布,即脉冲幅度谱,简称脉冲谱,一般提到谱仪测得γ谱均系指此脉冲谱。
新开近代物理实验讲义之一 -----NaI(T1)单晶 γ 能谱测量实验

新开近代物理实验讲义之一γ能谱测量实验-----NaI(T1)单晶γ能谱仪的简要工作原理一NaI(T1)单晶1、总体概述BH1324型微机γ多道谱仪系列的基本系统由碘化钠能谱探头、高压电源(HV)/线性放大器(AMP)、4096道模数变换器(ADC)、电脑串行接口RS-232及计算机等组成。
线性放大器将对从探测器输出的电脉冲信号进行适当的放大,然后再送入模数变换器(ADC)。
ADC的主要任务是把模拟量(电压幅度)变换为脉冲数码并对模拟量进行选择,变换出的脉冲数码经电脑接口送入计算机的一个特定内存区。
高压电源供给探测器所需高压及低压。
2、线性放大器整个放大器由输入缓冲器、第一级成形电路、第一级放大器、第二级成形器、第二级放大器、同相/反相器及输出缓冲器等六个部分组成。
两个缓冲器均为互补式射极跟随器,利用这种电路输入阻抗高,输出阻抗低的特点,使放大器的输入端与探头,输出端与ADC很好匹配,成形电路主要是为提高信噪比。
两个放大级均采用快速运算放大器LM318,每一级提供2倍、4倍和8倍的增益。
同相/反相器也由LM318集成运算放大器组成。
因为放大器输出总是接ADC,ADC输入信号要正极性,所以不管放大器输入极性如何,通过极性选择开关使输出信号为正极性。
3、模数变换器(ADC)本模数变换器是线性放电型ADC。
在幅度分析(PHA)时,微机通过串口接口给出启动电平,ADC即可工作。
在没有输入信号时,线性门开着,输入信号轻缓冲器、零点调节器、并通过线性门送到峰展宽器,输入信号向展宽器的记忆电容(CM)充电,当记忆电容的电压充电到输入信号的峰值后,展宽器的充电二级管截止,电容上的电荷保持着 (这就是所谓展宽器的意思) 。
如果输入信号在上下阈之间,快地址不产生溢出,在充放标志(CFB)脉冲产生后,将启动定相电路并关闭线性门,定相触发器(A7)的输出去控制线性放电,当记忆电容上的电压放到基线值时,展宽器因充电二级管导通而复原,此时充放标志也随之复原,并关闭时钟门。
NaI(Tl)闪烁谱仪及伽马能谱测量

物理科学与技术学院 核工程与技术系
NaI(Tl)闪烁谱仪及g能谱测量
实验目的
1、了解闪烁探测器的结构、工作原理。 2、熟悉γ射线与物质相互作用的三种效应(光电效应、康 普顿效应和电子对效应)。 3、掌握闪烁谱仪的几个性能指标和测试方法,观测、分
析γ全能谱。
实验仪器
γ放射源60Co和137Cs;NaI(Tl)单晶γ闪烁谱仪;计 算机等。
X
.
实验原理
一、γ 射线与物质的作用
康普顿效应
Eg '
Eg Eg 1 1 cos 2 m0 c
Ee
Eg m0c 2 1 Eg 1 cos
NaI(Tl)闪烁谱仪及伽马能谱测量
思考题
1.如何从示波器上观察到的137 Cs或60Co脉冲波形图, 判断谱仪能量分辨率的好坏? 2.反散射峰是如何形成的?
3.若有一单能伽马源,能量为2 MeV,试预言其谱 形。
常用数据:
60
Co两条伽马射线能量1173.2 keV和1332.5 keV,137Cs伽马射线能量661.7 keV, 反散射 峰能量184 keV。 铝的密度2.7 g/cm3,铅的密度 11.34 g/cm3。 对661.7 keV能量伽马射线,铝的质量吸收系 数理论值0.194 cm-1,铅的质量吸收系数理论 值1.213 cm-1。
NaI(Tl)闪烁谱仪及伽马能谱测量
三、137Cs的γ射线的能谱
图2
137Cs的γ线的能谱
137Cs半衰期30.17年。95%通过贝塔衰变为137m1Ba(半衰期153秒、光子能量
是662 keV),5%直接衰变为稳定的137Ba 。 环境中存在着微量的137Cs,它们 几乎都是在1940年代至1960年代的核试爆及某些核事故中释放出来的。历史上 曾造成137Cs释放进入环境中的著名案例包括如切尔诺贝利核事故等。2011年3 月11日,日本的福岛第一核电站事故事件发生时,也曾发现它的存在。
NaI(TI)单晶闪烁谱仪与能谱的测量教案

http://202.207.213.2/physic/dzkjjqtwj01/jdwldzjan/NaI.htmNaI(TI)单晶闪烁谱仪与能谱的测量原子核的能级跃迁能产生射线,测量射线的能量分布,可确定原子核激发态的能级,研究核蜕变纲图,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。
射线强度按能量的分布即能谱,测量能谱常用的仪器是闪烁能谱仪。
该能谱仪的主要优点是:既能探测各种类型的带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;并且探测效率高,分辨时间短。
它在核物理研究和放射性同位素的测量中得到广泛的应用。
本实验的目的是了解NaI(TI)闪烁谱仪的原理、特性与结构,掌握NaI(TI)闪烁谱仪的使用方法,鉴定谱仪的能量分辨率和线性,并通过对射线能谱的测量,加深对射线与物质相互作用规律的理解。
一、闪烁谱仪的结构原理(一)结构框图及工作原理NaI(TI)闪烁探测器的结构如图1。
整个谱仪由探头(包括闪烁体,光电倍增管,射极跟随器),高压电源,线性放大器,多道脉冲幅度分析器等组成。
图 1 NaI(TI)闪烁探测器示意图首先介绍闪烁探测器的基本组成部分和工作过程。
1、基本组成部分闪烁探测器由闪烁体、光电倍增管和相应的电子放大器件三个主要部分组成。
(1)闪烁体: 闪烁体是用来把射线的能量转变成光能的。
本实验中采用含TI (铊)的NaI晶体作射线的探测器。
(2)光电倍增管: 光电倍增管的结构如图2。
它由光阴极K、收集电子的阳极A和在光阴极与阳极之间十个左右能发射二次电子的次阴极D(又称倍增极、打拿极或联极)构成。
在每个电极上加上正电压,相邻的两个电极之间的电位差一般在100V左右。
当闪烁体放出的光子打到光阴极上时,发生光电效应,打出的光电子被加速聚集到第一倍增极D1上,平均每个光电子在D1上打出3~6个次电子,增值后的电子又为D1和D2之间的电场加速,打到第二倍增极D2上,平均每个电子又打出3~6个次级电子,……这样经过n级倍增以后,在阳极上就收集到大量的电子,在负载上形成一个电压脉冲。
新开近代物理实验讲义之一 -----NaI(T1)单晶 γ 能谱测量实验

新开近代物理实验讲义之一γ能谱测量实验-----NaI(T1)单晶γ能谱仪的简要工作原理一NaI(T1)单晶1、总体概述BH1324型微机γ多道谱仪系列的基本系统由碘化钠能谱探头、高压电源(HV)/线性放大器(AMP)、4096道模数变换器(ADC)、电脑串行接口RS-232及计算机等组成。
线性放大器将对从探测器输出的电脉冲信号进行适当的放大,然后再送入模数变换器(ADC)。
ADC的主要任务是把模拟量(电压幅度)变换为脉冲数码并对模拟量进行选择,变换出的脉冲数码经电脑接口送入计算机的一个特定内存区。
高压电源供给探测器所需高压及低压。
2、线性放大器整个放大器由输入缓冲器、第一级成形电路、第一级放大器、第二级成形器、第二级放大器、同相/反相器及输出缓冲器等六个部分组成。
两个缓冲器均为互补式射极跟随器,利用这种电路输入阻抗高,输出阻抗低的特点,使放大器的输入端与探头,输出端与ADC很好匹配,成形电路主要是为提高信噪比。
两个放大级均采用快速运算放大器LM318,每一级提供2倍、4倍和8倍的增益。
同相/反相器也由LM318集成运算放大器组成。
因为放大器输出总是接ADC,ADC输入信号要正极性,所以不管放大器输入极性如何,通过极性选择开关使输出信号为正极性。
3、模数变换器(ADC)本模数变换器是线性放电型ADC。
在幅度分析(PHA)时,微机通过串口接口给出启动电平,ADC即可工作。
在没有输入信号时,线性门开着,输入信号轻缓冲器、零点调节器、并通过线性门送到峰展宽器,输入信号向展宽器的记忆电容(CM)充电,当记忆电容的电压充电到输入信号的峰值后,展宽器的充电二级管截止,电容上的电荷保持着 (这就是所谓展宽器的意思) 。
如果输入信号在上下阈之间,快地址不产生溢出,在充放标志(CFB)脉冲产生后,将启动定相电路并关闭线性门,定相触发器(A7)的输出去控制线性放电,当记忆电容上的电压放到基线值时,展宽器因充电二级管导通而复原,此时充放标志也随之复原,并关闭时钟门。
NaIT1单晶γ能谱仪试验07300300096郭丽芳NaIT1单晶γ能谱仪

NaI(T1)单晶γ能谱仪实验0730******* 郭丽芳摘要:本实验的重点是NaI(T1)单晶γ能谱仪的调整方法及γ能谱仪的调整方法及测量γ射线的能谱。
首先分析γ射线的能谱,然后测量谱仪的性能和标定它的能量定标曲线,最后用卡全能峰的方法求Pb对射线的质量吸收系数以及散射截面。
关键词:γ能谱图能量定标能量分辨率质量吸收系数散射截面一原理1 γ射线与物质相互作用的一般特性γ射线与物质相互作用时,可能产生三种效应:光电效应、康普顿散射效应及电子对效应。
这三种效应都将产生次级电子,如图1所示:图1 γ射线与物质相互作用的示意图在光电效应中,次级电子的能量为:E e=Eγ-E i≈Eγ=hν在康普顿散射效应中,反冲电子的能量为E e =αEγ(1-cosθ)/[1+α(1-cosθ)]式中α= Eγ/m0c2当θ从0到180°变化时,反冲电子的能量也从0到2αEγ/(1+2α)连续变化。
当γ光子的能量大于2 m0c2(即1.022MeV)时,γ光子在原子核或电子的库伦场的作用下,可能转化为正、负电子对。
由于正电子的寿命很短,当动能耗尽时便与物质原子的轨道电子发生湮没,与此同时产生两个运动方向相反、能量均为0.511MeV的γ光子。
2 γ能谱仪γ能谱仪由γ能谱探头(由闪烁体与光电倍增管组成)和电子仪器(包括射级跟随器、线性放大器、多道分析器)两部分组成,如图2所示:图2 NaI(T1)闪烁探测器示意图能谱仪的具体工作过程可以总结为一下几个步骤:(a) 射线进入闪烁体,与之发生相互作用,闪烁体吸收射线产生的次级电子能量而使闪烁体原子、分子电离和激发;(b) 激原子、分子退激时发射荧光光子;(c) 利用反射物和光导将荧光光子尽可能多地收集到光电倍增管的光阴极上,由于光电效应,光子在光阴极上击出光电子;(d) 光电子在光电倍增管中倍增,数量由一个增加到104~109个,电子流在阳极负载上产生电信号,输出电压脉冲,荧光光强与γ光子在闪烁体内消耗的能量成正比,而荧光光强又与光电倍增管阳极上输出的电压脉冲的幅度成正比,可以根据脉冲幅度确定γ光子的能量;(e) 阳极输出电压脉冲经射级跟随器后,输出到线性放大器,再输入到多道脉冲分析器,就可以看到能谱图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验9-1 用NaI(Tl)单晶γ闪烁能谱仪测γ能谱材料物理06-2班姓名:高颖学号:06132201原子核的能级间的跃迁产生γ射线,γ射线强度按能量的分布即γ射线能谱,简称γ能谱。
研究γ能谱可确定原子核激发态的能级等,对放射性分析、同位素应用及鉴定核素等方面都有重要的意义。
测量γ能谱最常用的仪器是闪烁γ能谱仪,在核物理、高能粒子物理和空间辐射物理的探测中应用非常广泛。
【实验目的】1、了解闪烁探测器的结构、工作原理。
2、掌握NaI(Tl)单晶γ闪烁能谱仪的几个性能指标和测试方法.3、观测及分析γ全能谱。
4、了解核电子学仪器的数据采集、记录方法和数据处理原理。
【实验原理】一、闪烁能谱仪测量γ能谱的原理闪烁能谱仪是利用某些荧光物质在带电粒子作用下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱的。
这种荧光物质常称为闪烁体。
1、闪烁体的发光机制闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机闪烁体。
有机闪烁体包括有机晶体闪烁体、有机液体闪烁体和有机塑料闪烁体等。
最常用的无机晶体是铊激活的碘化钠单晶闪烁体,常记为NaI(Tl),属离子型晶体。
纯粹的碘化钠晶体,其能带结构是在价带和导带之间有比较宽的禁带,如有带电粒子进人到闪烁体中,将引起后者产生电离或激发过程,即可能有电子从价带激发到导带或激发到激带,然后这些电子再退激到价带。
退激的可能过程之一是发射光子,这种光子的能量还会使晶体中其它原子产生激发或电离,也就是光子可能被晶体吸收而不能被探测到,为此要在晶体中掺入少量的杂质原子(激活原子),如在碘化钠晶体中掺入铊原子,其关键作用是可以在低于导带和激带的禁带中形成一些杂质能级。
这些杂质原子会捕获一些自由电子或激子到达杂质能级上,然后以发光的形式退激到价带,这就形成了闪烁过程的发光,而这种光因能量小于禁带宽度而不再被晶体吸收,不再会产生激发或电离。
这说明只有加入少量激活杂质的晶体,才能成为实用的闪烁体。
对于NaI(Tl)单晶闪烁体而言,其发射光谱最强的波长是415 nm的蓝紫光,其强度反映了进人闪烁体内的带电粒子能量的大小,选择适当大小的闪烁体,可使这些光子一射出闪烁体就被探测到。
2、γ射线与物质的相互作用γ射线光子与物质原子相互作用的机制主要有以下三种方式,如图9-1-1所示。
图9-1-1 γ射线光子与物质原子相互作用(1)光电效应当能量为E γ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失。
发射出去的电子称为光电子,这种过程称为光电效应。
发射光电子的动能为i e B E E -=γ (9-1-1)B i 为束缚电子所在壳层的结合能。
原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。
这种X 射线在闪烁体内很容易再产生一次新的光电效应,将能量又转移给光电子,所以闪烁体得到的能量是两次光电效应产生的光电子能量之和。
(2)康普顿效应γ光子与自由静止的电子发生碰撞,将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射,改变了原来的能量和方向。
反冲电子的动能为()θγγcos 1120-+=E c m E E e (9-1-2)式中20c m 为电子静止能量,约为0.5MeV ;角度θ是散射光子的散射角。
当0180=θ时(即光子向后散射,又称为反散射),反冲电子的动能有最大值,此时γγE cm E E 2120max +=(9-1-3)这说明康普顿效应产生的反冲电子的能量有一上限最大值,称为康普顿边界。
(3)电子对效应当γ光子能量大于220c m 时,γ光子从原子核旁经过并受到核的库仑场作用,可能转化为一个正电子和一个负电子,称为电子对效应。
此时光子能量可表示为两个电子的动能与静止能量之和202c m E E E e e ++=-+γ (9-1-4) 综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应、康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子、反冲电子或正负电子对。
次级带电粒子的能量与入射γ光子的能量直接相关,因此,可通过测量次级带电粒子的能量求得γ光子的能量。
闪烁γ能谱仪正是利用γ光子与闪烁体相互作用时产生次级带电粒子,进而由次级带电粒子引起闪烁体发射荧光光子,通过这些荧光光子的数目来推出次级带电粒子的能量,再推出γ光子的能量,以达到测量γ射线能谱的目的。
二、NaI(Tl)单晶γ闪烁能谱仪的结构与性能图9-1-2是NaI(Tl)单晶γ闪烁能谱仪结构示意图。
1、NaI(Tl)闪烁探测器闪烁探测器由闪烁体、光电倍增管和相应的电子仪器三个主要部分组成。
探测器最前端是NaI(Tl)闪烁体,当射线(如γ和β)进入闪烁体时,在某一地点产生次级电子,它使闪烁体分子电离和激发,退激时发出大量光子。
在闪烁体周围包以反射物质,使光子集中向光电倍增管(具体内容参阅附录3-2-1)方向射出去。
经过光电倍增管产生输出信号,通常为电流脉冲或电压脉冲,然后通过起阻抗匹配作用的射极跟随器,由电缆将信号传输到电子检测仪器中去。
图9-1-2 NaI(Tl)单晶γ闪烁能谱仪结构示意图实用时常将闪烁体、光电倍增管、分压器及射极跟随器安装在一个暗盒中,统称探头。
探头中有时在光电倍增管周围包以起磁屏蔽作用的屏蔽筒(如本实验装置),以减弱环境中磁场的影响。
电子检测仪器的组成单元则根据闪烁探测器的用途而异,常用的有高、低压电源、线性放大器、单道或多道脉冲幅度分析器等。
2、单道与多道脉冲幅度分析器闪烁探测器可将入射粒子的能量转换为电压脉冲信号,而信号幅度大小与入射粒子能量成正比,因此,只要测到不同幅度的脉冲数目,也就得到了不同能量的粒子数目。
由于γ射线与物质相互作用机制的差异,从探测器出来的脉冲幅度有大有小,单道脉冲幅度分析器就起从中“数出”某一幅度脉冲数目的作用。
单道脉冲幅度分析器里有两个甄别电压V1(此电压可以连续调节)和V2,如图9-1-4所示。
V1 和V2也称下、上甄别域,差值⊿V称为窗宽。
为保证足够的分辨率,以及减小统计涨落的影响,窗宽的选择不能过大,也不能太小。
图9-1-4 单道脉冲幅度分析原理这样,V 1 和V 2就像一扇窗子,低于V 1或高于V 2的电压信号都被挡住,只有在V 1 和V 2之间的信号才能通过,形成输出脉冲。
进行测量时,按⊿V 连续改变V 1值,就可获得全部能谱。
显然,使用单道脉冲幅度分析器进行测量,既不方便也费时,因此,现在多使用多道脉冲幅度分析器。
多道脉冲幅度分析器的作用相当于几百个单道脉冲幅度分析器,一次测量可获得整个能谱,非常方便,在本实验中就采用这种方式。
3、NaI (Tl )单晶γ闪烁能谱仪的主要指标(1)能量分辨率由于单能带电粒子在闪烁体内激发的荧光光子数有统计涨落,一定数量的荧光光子打在光电倍增管光阴极上产生的光电子数目有统计涨落,这就使同一能量的粒子产生的脉冲幅度不是同一大小,而近似为高斯(正态)分布。
能量分辨率的定义是:%100⨯∆=EEη (9-1-5) 由于脉冲幅度与能量有线性关系,并且脉冲幅度与多道道数成正比,故又可以写为 %100⨯∆=CH CHη (9-1-6)ΔCH 为记数率极大值一半处的宽度(或称半宽度),记作FWHM (Full Width at Half Maximum )。
CH 为记数率极大处所在道数。
显然,能量分辨率的数值越小,仪器分辨不同能量的本领就越高,而且可以证明能量 分辨率和入射粒子能量有关:%1001⨯=E η (9-1-7)通常NaI (Tl )单晶γ闪烁能谱仪的能量分辨率以137Cs 的0.662 MeV 单能γ射线为标准,它的值一般是10%左右,最好可达6~7%。
(2)线性度与能量刻度能量的线性就是指输出的脉冲幅度与带电粒子的能量是否有线性关系,以及线性范围的大小。
NaI (Tl )单晶的荧光输出在150KeV <E γ<6MeV 的范围内和射线能量是成正比的。
但是NaI (Tl )单晶γ闪烁能谱仪的线性好坏还取决于闪烁能谱仪的工作状况。
例如当射线能量较高时,由于光电倍增管后几个联极的空间电荷的影响,会使线性变坏。
另外,脉冲放大器线性程度也将影响谱仪的线性。
为了检查谱仪的线性,必须用一组已知能量的γ射线,在相同的实验条件下,分别测量出它们的光电峰位,做出能量——幅度曲线,称为能量刻度曲线(或能量校正曲线)。
如图9-1-3所示。
用最小二乘法进行线性拟合,线性度一般在0.99以上。
对未知能量的放图9-1-3 能量刻度曲线射源,由谱仪测出脉冲幅度后,利用这种曲线就可以求出射线的能量。
(3)坪曲线与本底计数率坪曲线是入射粒子强度不变时,NaI(Tl)单晶γ闪烁能谱仪的源(或全谱)计数率随工作电压变化的曲线。
本底计数率是指不加放射源时NaI(Tl)单晶γ闪烁能谱仪的全谱计数率,主要由光电倍增管的暗电流、电子学噪声、宇宙射线及环境辐射产生,其也随工作电压的变化而变化。
在使用NaI(Tl)单晶γ闪烁能谱仪时,应首先测量坪曲线和本底计数率,然后选择源(或全谱)计数率随电压变化较小、本底计数率相对较低的工作电压。
(4)稳定性NaI(Tl)单晶γ闪烁能谱仪的能量分辨率、线性度都与稳定性有关,因此在测量过程中,要求其各组成部分,如高压电源、放大器、多道脉冲幅度分析器等,都要具有较高的稳定性,并始终能正常工作。
三、γ射线的能谱图9-1-5所示为137Cs的γ能谱,纵轴代表单位时间内的脉冲数目,即射线强度,横轴道数代表脉冲幅度,即反映粒子的能量。
谱线包括三个峰和一个平台。
峰A是光电峰,也称为全能峰,这一脉冲幅度直接反映γ射线的能量,即0.662MeV。
闪烁探测器对0.662MeV 的γ射线能量分辨率为7.5%。
图9-1-5 137Cs的γ能谱平台状曲线B是康普顿效应的贡献,其待征是散射光子逃逸后留下一个能量从0到E的连续的电子谱。
max峰C是反散射峰。
由γ射线透过闪烁体射在光电倍增管的光阴极上发生反散射,或γ射线在源及周围物质上发生反散射,而反散射光子进入闪烁体通过光电效应而被记录所致。
反散射峰对应的γ射线的能量为0.184MeV。
峰D是X射线峰,它是由137Ba的K层特征X射线贡献的。
137Cs的β衰变体137Ba的0.662MeV 激发态,在放出内转换电子后,造成K 空位,外层电子跃迁后产生此X 光子。
【实验仪器与材料】γ放射源60Co 和137Cs ;NaI (Tl )单晶γ闪烁能谱仪;计算机等。
【实验内容】1、详细阅读说明书,熟悉仪器及软件的使用方法。
2、采用定时(200s )计数的方法,在600V~850V 之间,测绘坪曲线(用137Cs 源),以及本底计数率随电压变化的关系曲线,确定合适的工作电压。