中学数学研究(代数部分)考试试题A参考答案及评分标准
初中数学代数式经典测试题附答案

初中数学代数式经典测试题附答案一、选择题1.如果(x2+px+ q)(x2—5x+ 7)的展开式中不含x2与x3项,那么p与q的值是(A. p = 5, q= 18B. p=—5, q= 18C. p = — 5, q= — 18D. p=5, q = — 18【答案】A【解析】试题解析:丁( x2+px+q) (x2-5x+7) =x4 5+ (p-5) x3+ (7-5p+q) x2+ (7-5q) x+7q, 又•.•展开式中不含x2与x3项,p-5=0, 7-5p+q=0 ,解得p=5 ,q=18.故选A.2 .如果多项式4x44x2A 是一个完全平方式,那么A 不可能是( ).A.1 B.4 C.x6 D .8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】•-4x44x21= (2x+1) 2,•.A=1,不符合题意,•••4x44x24不是完全平方式,•• A=4,符合题意,4x44x2x6= (2x+x3) 2,•.A= x6,不符合题意,•■4x44x28x3= (2x2+2x) 2,• .A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.【详解】3 .下列运算正确的是( )A. 3a3+a3=4a6B. (a+b) 2= a2+b2C. 5a-3a= 2aD. (-a) 2?a3= - a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.A.3a3+a3=4a3,故A 错误;B. (a+b) 2 = a2+b2+2ab,故B 错误;C.5a- 3a = 2a,故C正确;D. (-a) 2?a3=a5,故D 错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.下列计算正确的是( )22 3 5 23 6 6 3 3 3 9A.x x x B.x gx x C.x x x D .x x【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A.X2与x3不能合并,故该选项错误;B.x2 gx3x5,故该选项错误;C.x6x3x3,计算正确,故该选项符合题意;32 6D.x3x6,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.5.下列运算错误的是( )32 3 6 10 9 3 5 8 4 3 7 A.m m B.a a a C.x x x D .a a a【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A、m m2) 3=m6,正确;B、a10+ 9=a,正确;C 、 x 3?x 5=x 8,正确;D 、 a 4+a 3=a 4+a 3,错误;故选: D . 【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知 识,正确掌握运算法则是解题关键.6 . 下列运算正确的是()2n 12n 1aa23 234 234 5.观察等式:2 2 22 ; 2 22 2 2 ;2 2 2 22 2已知按一定规律排列的一组数: 250、 251、 252、 、 299 、 2100 .若 250 a ,用含 a 的式子表 示这组数的和是( )A . 2a 2 2aB . 2a 2 2a 2C . 2a 2 aD . 2a 2a【答案】 C 【解析】 【分析】根据题意,一组数:250、251、252、、299、2100 的和为 250 + 251 + 252+-+ 299 + 2100= =a+(2+22+…+ 250)a,进而根据所给等式的规律,可以发现 2+22+…+ 250= 251 -2,7A . a 336aaB .C .D .【答案】【解分别求出每个式子的值,2a 35a ,39a 9再进行判断即可 .【详解】 解: A: a 3 a 3 2a 3,故选项 A错;B : a 6a 3a 3,故选项B 错;23 5C :a a a ,故本选项正确;3故答案为 C. 【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概 念,即求 n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清2na2na ,由此即可求得答案.【详解】250+ 251+ 252+…+ 299+2 100=a + 2a+ 22a +…+ 250a= a+(2+22+…+ 250)a,232 22232 ,2 2223242,23452 2 2 2 2 2,.•-2+22+ …+ 250= 251 -2 .・.250 + 251 + 252 + …+ 299 + 2100 = a+(2+22+…+ 250)a a+ (251- 2)a =a + (2 a —2)a= 2a2—a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8 .下列运算正确的是( )A.2a 3a 5a2B.(a 2b)2a24b2C.a2a3a623 36D .( ab ) a b【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 2a 3a 5a ,故A 选项错误;B.(a 2b)2 a2 4ab 4b2 ,故B选项错误;C.a2 a3a5,故C选项错误;D.( ab2)3a3b6,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.下列各计算中,正确的是( )2 3 326 8243、26A- a 2a 3aB- a a a C. a a a D. (a ) a【答案】D 【解析】 【分析】本题主要考查的就是同底数哥的计算法则 【详解】解:A 、不是同类项,无法进行合并计算;5B 、同底数哥乘法,底数不变,指数相加,原式 =a ; G 同底数塞的除法,底数不变,指数相减,原式 =a 6; D 、哥的乘方法则,底数不变,指数相乘,原式=a 6.【点睛】本题主要考查的就是同底数哥的计算法则.在运用同底数哥的计算的时候首先必须将各募的底数化成相同,然后再利用公式来进行计算得出答案.同底数哥相乘,底数不变,指数相加;同底数哥相除,底数不变,指数相减;哥的乘方法则,底数不变,指数相乘 .在进行逆运算的时候很多同学容易用错,例如:a m n a m a n 等等.10 .若3m5,3n 4,则32m n等于()A. 25B. 6C. 214【答案】A 【解析】 【分析】根据哥的运算法则转化式子,代入数值计算即可. 【详解】 解:: 3m 5, 3n 4,254 故选:A.本题考查了同底数哥的除法和哥的乘方的逆用,熟练掌握同底数哥的除法和哥的乘方的运 算法则是解题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和( a+b ) n 的展开式的各项系 数,此三角形称为 杨辉三角D. 20••• 32m n 32 m 3n (3m )2 3n 52 4他十占户............. ④........................ ①①后」妙工......... ①②①8-3户........ ①③③①市十以4................... ①®⑥©①(a-b) *皿① ⑤@ ⑩⑤①*«■♦■喉根据杨辉三角”请计算(a+b) 20的展开式中第三项的系数为( )A. 2017B. 2016C. 191D. 190【答案】D【解析】试题解析:找规律发现(a+b) 3的第三项系数为3=1+2;(a+b) 4的第三项系数为6=1+2+3;(a+b) 5的第三项系数为10=1+2+3+4;不难发现(a+b) n的第三项系数为1+2+3+•••+ (n-2) + (n-1),・•. (a+b) 20第三项系数为1+2+3+•••+20=190,故选D.考点:完全平方公式.12. 5.某企业今年3月份产值为亡万元,4月份比3月份减少了10%, 5月份比4月份增加了15%,则5月份的产值是()A. (注—10%)(门+15%)万元B. & (1—10%) ( 1+15%)万元C.(4―10%+15%)万元D. 4 (1 —10% + 15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1 — 10%) ( 1+15%),故选B.13.下列计算正确的是( )C. 3a+2a= 5a2D. (a2b) 3= a2?b3A. a?a2=a2B. (a2) 2= a4【答案】B【解析】本题考查嘉的运算.点拨:根据哥的运算法则.解答:a a2a1 2a3a2 23a 2a 5aA. ab【答案】B 【解析】B. 2abC. 3abD. 4ab2.361 3a b a b故选B.14.下列说法正确的是()C.若将分式一xy —中,x 、y 都扩大3倍,那么分式的值也扩大 3倍 x y D .若 3m5,3n 4 则 32mn -2【答案】C 【解析】 【分析】根据分式的定义、塞的乘方、同底数塞相除、分式的基本性质解答即可 【详解】A.若A 、B 表示两个不同的整式,如果B 中含有字母,那么称 公是分式.故此选项错误B, 2B. a a a a a ,故故此选项错误.C.若将分式一xy —中,x 、y 都扩大3倍,那么分式的值也扩大 3倍,故此选项正确 x y2…25D.若3m 5,3n 4则33m3n25 4,故此选项错误.4故选:C 【点睛】本题考查的是分式的定义、哥的乘方、同底数哥相除、分式的基本性质,熟练掌握各定 义、性质及运算法则是关键 .15 .如图,是一块直径为 2a+2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为()A. 若A 、B 表示两个不同的整式,则 A 、一.A一定是分式BB.a 42 a 4a 2【分析】利用圆的面积公式列出关系式,化简即剩下钢板的面积等于大圆的面积减去两个小圆的面积可.【详解】解:S剩下=S大圆-S小圆1-S小圆2/2a+2b、2 /a、2 2b?=(----- )-(一)-(一)2 2 2,2 2 , 2= a+b -a -b =2 ab,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.16.下列运算中正确的是()2 _ .2 2,2A. 2a 3a 5a2B. (2a b) 4a b2 2C. 2a23a36a6D. 2ab 2ab 4a b【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A、2a+3a=5a,故本选项错误;B、(2a+b)2=4a2+4ab+b2,故本选项错误;G 2a2?3a3=6a5,故本选项错误;D、(2a-b)(2a+b) =4a2-b2,故本选项正确.故选D.【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.17.如图,从边长为(a + 4)cm的正方形纸片中剪去一个边长为(a 1)cm的正方形(a 0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()2 2 2 2 2A. (2a 5a)cmB. (3a 15)cmC. (6a 9)cmD. (6a 15)cm【答案】D【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4) 2- (a+1) 2=(a 2+8a+16) - (a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D.根据题意,每个选项进行计算,即可判断.【详解】 解:A 、当a= 3, b=2时,y=^^ = —=1,符合题意;a 2 3 2B 、当 a= - 3, b= - 1 时,y=b 2_3=1_3=_ 2,不符合题意;G 当 a=1, b = 3 时,y= b 2-3=9-3=6,不符合题意;1 1 1D 、当 a= 4, b = 2 时,y = = =一, 不付 口 题忌.a 2 4 2 2故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考 题型.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列A. a= 3, b= 2 【答案】AD. a = 4, b = 2 18.按如图所示的运算程序,能使输出 y 的值为1的是( )B. a=- 3, b=-1C. a=1, b = 3哪个计算公式()A. (a+b) (a-b) =a2-b2B. (a-b) 2=a2-2ab+b2C. (a+b) 2= a2+2ab+b2D. (a+b) 2= (a- b) 2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】•••图1中阴影部分的面积为:(a-b) 2;图2中阴影部分的面积为:a2-2ab+b2; ( a- b) 2= a2- 2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列运算正确的是 ()2 3 6 6 3 2A. a a aB. a6a3a22 2 23 6C. 2a 2a2D. a2a6【答案】D【解析】【分析】根据哥的乘方与积的乘方的运算法则和同底数哥的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】2 3 5A: a a a ,计算错误;B:a6a3a3,计算错误;2 2C:2a 4a2,计算错误;c 3D: a a ,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.。
初中数学代数式经典测试题及答案解析

初中数学代数式经典测试题及答案解析一、选择题1.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A. 30B. 20C. 60D. 40【答案】A【解析】【分析】设大正方形的边长为x,小正方形的边长为y,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x,小正方形的边长为y,则X? —)3 = 60,1 1= -(x-y)-x+-(x-y)-y乙1/,八:5(厂一厂)」x602=30.故选A.【点睛】此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.2 .下列计算正确的是()A. a2+a3=a5B. a2*a3=a6C. (a2)3=a6D. (ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a',故B错误;D.原式=a2b2,故D错误;故选C.考点:幕的乘方与积的乘方;合并同类项;同底数基的乘法.3.下列各式中,计算正确的是( )A. 8a — 3b = 5abB. (^2)3 = a5C. a3 -^-a4 = a2D. a2 -a = a5【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幕的乘法法则、察的乘方法则以及同底数幕除法法则解答即可.【详解】解:A、8a与劭不是同类项,故不能合并,故选项A不合题意;B、1/丫=。
6,故选项B不合题意;C、a3^a4=a\故选项C不符合题意;D、a2-a = a\故选项D符合题意.故选:D.【点睛】本题主要考查了幕的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.下列运算正确的是( )A.2m2+m2=3m4B. (mn2) 2=mn4C. 2m*4m2=8m2D. m54-m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项4,2"2+万2=3团2,故此选项错误:选项8,(mM)2=m2〃4,故此选项错误;选项C,2nr4m2 = 8m3,故此选项错误;选项D,m5+m3=n?2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.5.下列说法正确的是()AA.若A、B表示两个不同的整式,则一一定是分式BB.(1)、/ = /C.若将分式一2一中,x、y都扩大3倍,那么分式的值也扩大3倍x + yLD.若3"' = 5,3"=4则32"'-"=22【答案】C【解析】【分析】根据分式的定义、幕的乘方、同底数幕相除、分式的基本性质解答即可.【详解】AA.若A、B表示两个不同的整式,如果B中含有字母,那么称"是分式.故此选项错误.D8.(,)2 +/=/+/=/,故故此选项错误.xyC•若将分式一中,x、y都扩大3倍,那么分式的值也扩大3倍,故此选项正确. x+ yD.若3"' = 5,3〃 = 4 则3-" =(3")- + 3" = 25 + 4 = j ,故此选项错误.故选:C【点睛】本题考查的是分式的定义、累的乘方、同底数幕相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.9.己知:(2x + l)(x-3)= 2x?+px + q,则p, q 的值分别为()A. 5, 3B. 5, -3C. -5, 3D. -5, -3【答案】D【解析】【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到P、q的值.【详解】由于(2x + l)(x —3)=2X?-6X+X-3=2 X2-5X-3=2X2 +px + q ,则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10图为〃L〃型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是(A. ab - c 2B. ac + (b — c)cC. be + (a - c)c D, ac + be — c?【答案】A 【解析】 【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决. 【详解】 解:由图可得,“L”型钢材的截面的面积为:ac+ (b-c) c=ac +bc-c 2,故选项材D 正确,或“L 〃型钢材的截面的面积为:bc + (a-c) c=bc +ac-c 2,故选项C 正确,选项A 错误, 故选:A. 【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结 合的思想解答.8 .下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第〃个根据前4个图形中五角星的个数得到规律,即可列式得到答案. 【详解】 观察图形可知:第1个图形中一共是4个五角星,即4 = 3xl+l, 第2个图形中一共是7个五角星,即7 = 3x2 + l, 第3个图形中一共是10个五角星,即10 = 3x3 + 1,第4个图形中一共是13个五角星,即13 = 3x4+1, …,按此规律排列下去, 第n 个图形中一共有五角星的个数为3〃 + 1, 故选:c. 【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.9 .计算3x2-x2的结果是( )A. 2B. 2x 2C. 2xD. 4x 2图形中五角星的个数为()★ ★ ★ ★ ★★ ★★ ★ ★★ 阳I用2A. 3/? -1【答案】C 【解析】【分析】★★ ★★ ★★★* ★ ★图3B. 3〃 ★★★★★★★★机C. 3〃 + 1D. 3〃 + 2【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2 - x2=(3-1) x2二2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.下列运算中正确的是()A. 2a + 3a = 5a2B. (2a+ b)2 = 4a2 +b2C. 2a2 - 3a5 = 6a6D.(2a-Z?)(2a + 6) = 4/-Z??【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A、2a+3a=5a,故本选项错误;(2a+b)2=4a2+4ab+b2,故本选项错误;C、2a2*3a3=6a5,故本选项错误;D、(2a-b)(2a+b) =4a2-b2,故本选项正确.故选D.【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有.同类项的合并同类项.11.我国占代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)。
(专题精选)初中数学代数式经典测试题及答案解析

(专题精选)初中数学代数式经典测试题及答案解析一、选择题1.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.2.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.3.计算 2017201817(5)()736-⨯ 的结果是( )36367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.4.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )332【答案】C【解析】 试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .6.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.13.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】 本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.15.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.16.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若(x +4)(x ﹣1)=x 2+px +q ,则( ) A .p =﹣3,q =﹣4 B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3 【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅==()22224a a a ⨯==325a a a +=()3263a b a b =故选B .。
0772西南大学 中学代数研究 A卷

5、实数大小的比较:任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数的绝对值大的反而小.
6、实数的运算:
实数的运算和在有里数范围内一样,值得一提的是,实数既可以加、减、乘、除、乘方运算,又可以进行开方运算.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.在教学实数中,要用好1.转化思想:
定义(戴德金分割)把全体有理数集合分成两个集合A和A',满足下列三个条件:
(1)集合A和 都是非空的(不空)
(2)每一个有理数在而且只在A和 两个集合的一个之中(不漏)
(3)集合A中的每一个数a都小于集合 中的每一个数 (不乱)
则称上述分法为戴德金分割,把集合A叫做分割的下集,集合 叫上集,记为 。
4.通过创设问题情景,让学生能初步运用所学知识和技能解决问题;通过与同伴进行交流、讨论,让学生在合作学习的过程中,探索有理数运算的不同方法和解决间题的不同途径。
5.通过有理数的学习,学会用数表达和交流信息;学会用数学的眼光观察、分析、处理生活中的实际问题。
6、在进行有理数的有关概念的教学时,应尽量从实际问题引入,除教科书提供的实例外,教师还可根据学生已有的知识选择一些学生身边的数学问题、生活问题帮助学生理解有理数的有关概念。借助数轴,通过数形结合,帮助学生建立相反数、绝对值的概念,比较有理数大小。在有理数的教学中,数轴的引人,为有理数、相反数、绝对值、有理数大小的比较、有理数的运算法则的教学提供了直观的工具。
二定义实数的另一个方法戴德金分割定义实数的方法不只一种以上我们用区间套原理理解了康托尔的实数基本序列定义法如果把区间套定义实数看作为通过在数轴采用以区间的形式从外围步步紧逼缩小包围圈的方法那么是否可以采用中间开花的方法定义实数呢
中学数学研究在线测试答案

中学数学研究在线测试答案第一题、单项选择题(每题1分,5道题共5分)第二题、多项选择题(每题2分,5道题共10分)1、用0,1,2,3,4五个数字组数,则下列结论正确的有:A、可以组成120个没有重复数字的五位数;B、可以组成96个没有重复数字的五位数;C、可以组成60个没有重复数字的四位偶数;D、可以组成60个没有重复数字的四位奇数;E、可以组成36个没有重复数字的四位偶数;2、a,b,c,d,e五人排成一排,则下列结论正确的有:A、a不在两端的排法有96种;B、a不在两端的排法有72种;C、a,b相邻的排法有48种;D、a,b不相邻的排法有72种;E、a,b不在两端的排法有36种。
3、a,b,c三位先生和d,e,f三位女士围着圆桌就坐,则下列结论正确的有:A、六人围着圆桌就坐共有120种不同的就坐方式;B、六人围着圆桌就坐共有720种不同的就坐方式;C、若a,b相邻共有48种不同就坐方式;D、若男、女相间就坐共有6种不同就坐方式;E、如男、女相间就坐共有9种不同就坐方式。
4、从1,2,3,4,5,6,7,8,9,10中任取两个不同的数,则下列结论正确的有:A、乘积能被2整除的数对有45对;B、和能被2整除的有20对;C、和能被2整除的有40对;D、和能被3整除的有10对;E、积能被3整除的有27对;5、把4人分别按下列条件分组,则正确的结论有:A、第一组3人,第二组1人的分法数为4种;B、一个组3人,一个组1人的分法数为4种;C、平均分成两组,每组2人的分法数为3种;D、第一组2人。
第二组2人的分法数为3种;E、第一组2人。
第二组2人的分法数为6种.第三题、判断题(每题1分,5道题共5分)1、由数码1,2,3,4可以组成228个大于1234的四位数。
正确错误2、五元不定方程x+y+z+w+u=8共有495组非负整数解组。
正确错误3、a,b,c,d,e五人围着一张圆桌而坐,若限定a,b不相邻,则不同的坐法数是12种。
2020-2021初中数学代数式真题汇编附答案(1)

2020-2021初中数学代数式真题汇编附答案(1)一、选择题1.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.2.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.7.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.8.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac ,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.9.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.13.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( )A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】 试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.16.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.17.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.。
浙教版数学七年级上单元测评A卷 第4章 代数式 A卷(含答案)

第4章代数式 单元测评A 卷姓名:班级:得分:一、选择题(每小题3分,共30分) 1.下面的说法正确的是( )。
A.-2不是整式B.-a 表示负数C.43ac的系数是3D.x+1是代数式 2.a ,b ,c 都是有理数那么2a -3b+c 的相反数是( )。
A. 3b -2a -c B 3b+2a -c C.-3b -2a+cD. 3b -2a+c3.下列各式计算正确的是( )。
A 6a+a=6a 2B. -2a+56=3abC. 4m 2n -2mn 2=2mnD. 3ab 2-5b 2a=-2ab 24.当x=-221,y==4时,代数式x 2-2xy+y 2的值是( )。
A.-241 B.241 C.4241 D.-4241 5.梯形的面积为S ,上底为a ,下底为b ,那么高h 等于( )。
A.21S(a+b) B. ba 2S+ C. 2S(a+b)D.()Sb a 2+ 6.已知-6a 9b 4和5a 4m b 4是同类项,则代数式12m -10的值是( )。
A.17B.37C.-17D.987.如果2m-3n=7,那么8-2m+3n等于( )。
A.15B.1C.7D.88.一个多项式与2a2+5ab的差是a2-3ab,则这个多项式是( )。
A. a2+8abB. 3a2+2abC. -a-8abD.3a2-2ab9.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,把两头捏合在一起,再拉伸,反复几次,就把这根很粗的面条拉成许多细面条,如图,捏合到第n次可拉出面条的根数是( )。
A.2n+1B.2nC.2n-1D.4n10.要使多项式2x2-2(7+3x-2x2)+mx2化简后不含x的二次项则m等于( )。
A.2B.0C.-2D.-6二、填空题(每小题4分,共24分)11.设n为自然数,则偶数可表示为,奇数可表示为.12.一年期的存款的年利率为p%,利息个人所得税的税率为20%,某人存人的本金为a元,则到期支出时实得本利和为元.13已知多项式ax5+bx2+cx+9,当x=-1时,多项式的值为17则该多项式当x=1时的值是.14.已知甲、乙两种糖果的单价分别是x元/kg和12元/kg,为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售的收人保持不变,则由20kg甲种糖果和ykg乙种糖果混合而成的什锦糖的单价应是元/kg.15.如右图:(1)阴影部分的周长是;(2)当x=5.5,y=4时,阴影部分的周长.16.如图所示的运算程序中,若开始输人的x值为-5,我们发现第一次输出的数为-2,再将-2输入,第2次输出数为-1,…,如此循环,则第2017次输出的结果为.三、解答题(17至23题分别为6,8,8,10,10,12,12分,共66分)17.化简并求值:(1) 2(2x-3y)-(3x+2y+1),其中x=2,y=-0.5.(2)-(3a2-4ab)+[a2-2(2a+2ab)],其中a=-2.18.同一时刻的北京时间、巴黎时间、东京时间如图所示:(1)设北京时间为a(7<a≤23),分别用代数式表示同一时刻的巴黎时间和东京时间;(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权,问这一时刻巴黎时间、东京时间分别为几时?19.如图是一个数值转换机的示意图,请按要求填写下表:20.一个两位数把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.21.四人做传数游戏,甲任报一个数给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所听到的数减1报出答案.(1)请把游戏过程用代数式描述出来;(2)若甲报的数为19,则丁的答案是多少?(2)若丁报出的答案是35,则甲传给乙的数是多少?22化简关于x的代数式(2x2+x)-[kx2-(3x2-x+2)].当k为何值时,代数式的值是常数?23.某餐饮集团公司将A市一个下属分公司对外招商承包,其间符合条件的有甲、乙两家企业,这两家企业分别拟定了上缴利润方案如下:甲:每年结算一次上缴利润第一年上缴利润5万元,以后每年比前一年增加5万元;乙:每半年结算一次上缴利润,每一个半年上缴利润1.5万元,以后每半年比前一半年增加1.5万元.(1)如果企业乙承包一年,则需上缴的总利润为万元;(2)如果承包4年,你认为应该承包给哪家企业,集团总公司获利多?为什么?(3)如果承包n年,请你用含n的代数式分别表示这两家企业上缴利润的总金额(单位:万元).参考答案1.D2.A3.D4.B5.B6.A7.B8.B9.B10.D11.±2n ;±(2n+1) 12.a+125ap 13.1 14.yyx ++20122015.(1)6y+4x ;(2)46 16.117.(1)x -8y -1;5;(2)-2a 2-4a ;018.(1)巴黎:a -7东京:a+1;(2)巴黎:15:08东京:23:08 19.五个空从左至右依次为6,41,8,3241,2(x 2-y 3) 20.设原数为(10a+b),则新数为10b+a),(10a+b)-(10b+n)=9a -9b=9(a -b), 所以能被9整除21.(1)设甲报给乙的数为a ,则乙传给丙的数为a+1,丙传给丁的数为(a+1)2,丁报出的答案为(a+1)2-1;(2)399;(3)a=5或a=-722.将(2x 2+x)-[kx 2-(3x 2-x+1)]去括号,得2x 2+x -kx 2+(3x 2-x+2)=2x 2+x -kx 2+3x 2-x+2,合并同类顶,得2x 3+x -kx 2+3x 2-x+2=(5-k)x 2+2.若代数式的值是常数,则5-k=0,解得k=5故当k=5时,代数式的值是常数. 23.(1)1.5+(1.5+1.5)=4.5(万元),故答案为:4.5(万元).(2)由题意,甲企业承包4年上缴的利润为:5+10+15+20=50(万元),乙企业承包4年上缴的利润为:.5+3+4.5+6+7.5+9+10.5+12=54(万元),∵54-50=4(万元),∴乙企业比甲企业上缴利润多4万元,∴应该承包给乙企业,集围总公司获利较多.(3)根据题意得:甲企业承包n年上缴的利润总金额为:5+10+15+20+…+5n=5×(1+2+3+…+n)=2)1(5nn(万元);乙企业承包n年上缴的利润总金额为:1.5+1.5×2+1.5×3+…+1.5×2n=1.5×(1+2+3+…+2n)=1.5n(2n+1)(万元).。
中学代数研究与教学(部分习题答案)

第一章 数与式
第一节 数系的扩展
1.举例说明数集扩充的原则和方法? 以 四元数{1.i.j.k} 为例 方法:添加元素的方法(二元 →四元)有两种:
(1).把新的元素加入到已经建立的数系中而得到。(添加元素法) (2).用近代数学观点,在原有数系的基础上理论性的构造一个集
合,再对此集合通过定义关系 运算 划分等价类来建立新数系, 然后证明新数系的一真子集与原数系同构。(构造法) 原则: (1).二元 ⊂ 四元 (2).四元数满足加法交换律 还有乘法减法等性质,而不破坏二元 数的元素间的关系及运算。 (3).二元数满足代数封闭性,故其 n 次方程有 n 个根。而在四元 数中,n 次方程有无穷多个根,故不满足代数封闭性。 (4).四元数是二元数的所有具有上述三个性质的扩展的唯一最小 扩展。因为数集到数集的扩充是有一定条件的。如:四元数是 由二元数舍去乘法交换律扩充得到的。而目前尚未找到通过破 坏二元数的其它性质得到新的数集,故四元数是二元数的最小 扩充。
≠空集,求实数 a 的范围。
解:∵A∩B≠空集,则对立面 A∩B=空集
⎧y = x2 + ax + 2
联立方程组
⎨ ⎩
y
=
x
+
1(0
<
x
≤
2)
整理得:x+1=x²+ax+2,要让此方程无解则△≥0 若以为 x 主元方程可化为:x²+(a-1)x+1=0 既△=(a-1)²-4≤0 ∴a<3 ∴ A∩B≠空集时实数 a 的范围为 a≥3.
∴ 3 +x-1=0 或 3 x+x²+x+1=0
x ∴ 1 =1- 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5分
二、(13分)
⑴(6分)为什么说初等数学中三角函数的定义是用几何方法建立起来的?请按中学数学教材体系给出正弦、余弦在初中和高中的定义。
⑵(5分)数学分析教程中,可将三角函数展开成幂级数,请给出解析正弦和解析余弦的定义。为什么通过证明又说三角式的概念并不依赖于几何解释?
⑶(2分)上述问题的探析对你有何启示?
证法2
若 ,且 表示为既约分数 。将 分解为素因数之积,由于 ,则 的素因子必定成对出现,而数 。因为 ,故 可整除 ,但 ,故 ,所以 ,由此得 ,由于1和4之间没有完全平方项,矛盾。
上述证法,每做对一种,给4分。但总分不超过8分
⑵略
4分
①当 时, ,所以 ,与 矛盾;
②当 时,此时 无最小值;
③当 时,此时 也无最小值;
④当 时, 。由均值不等式 ,当且仅当 时等号成立。
由 ,及 得,
所以 的取值范围是 。
7分
四、(13分)
⑴(6分)什么是算法?请对数值算法和非数值算法各举出一个实例。
⑵(2分)为什么2003年颁布的《普通高中数学课程标准》要将算法列入必修课?
5分
⑶略
三、(12分)已知函数 ,将 的图像向右平移两个单位,得到函数 ,而函数 与函数 的图像关于直线 对称。
⑴(5分)求函数 的解析式;
⑵(7分)设 ,又已知 的最小值是 ,且 ,求实数 的取值范围。
解:
⑴设
2分
设 是 图像上的任意一点,则点 关于 的对称点 在 上。
故 ,所以
5分
⑵
2分
由于 ,故分为以下四种情况讨论 的取值范围:
⑶(5分)如果执行下面的程序框图,那么输出的S的值是多少?
解:
⑴算法是解决一个问题而采取的方法和步骤。它可定义为若干组含义明确的有穷规则,它是对特定问题求解步骤的一种描述。
2分
数值算法实例(略)
4分
非数值算法实例(略)
6分
⑵算法列入中学数学课程的意义(略)
2分
⑶当 时, ;当 时, ;当 时, ;以此类推,可知S即为一个首相为2,公差为2的等差数列的前50项的和,由等差数列求和公式可得。
贵州师范大学2007—2008学年度第一学期
《中学数学研究》课程期终考试试卷
(A卷;闭卷)
(代数部分)参考答案及评分标准
一、(12分)
⑴(8分)请给出两种不同的方法证明 不是有理数?
⑵(4分)数学发展历史上是如何发现无理数的?这一发现在数系扩展中有何价值?
解:
⑴证法1(奇偶数判别,导致矛盾)
设 是一个有理数 ,即 ,且 可表示为既约分数 ,于是 ,即 ,因此 是偶数,由于奇数的平方不能等于偶数,故 是偶数。所以设 ,则 ,故 ,从而 也是偶数,这与 矛盾,这说明 不是有理数。
解:
⑴初中通过直角三角形给出三角函数定义。其依据是欧氏几何的相似性理论,通过三角形中边角关系(即边长的比值)定义锐角三角函数(图略);
3分
高中则借助于直角坐标系和单位圆定义三角函数(图略),因而正、余弦既可以看作一个比值,也可用有向线段表示。
6分
⑵
分别称为解析余弦和解析正弦。
2分
可以证明
即根据解析正弦和解析余弦所具备的某些性质便可推导出 和 所具备的一切性质和运算关系,而不必依赖于几何性质的讨论。