分子生物学实验技术.

合集下载

分子生物学实验技术ppt课件

分子生物学实验技术ppt课件

质粒转化大肠杆菌的过程
感受态
非定向克隆 +

定向克隆
克隆的片段只能按
+ 特定方向连接基因组DNA的构建基因组DNA的类型
质粒(﹤10kb)噬菌体质经双向电泳之后,用蛋白质水解酶裂解成肽段,可 用于质谱分析。通过电离源将蛋白质分子转化为气相离子, 然后用质谱分析仪的电场、磁场将具有特定质量与电荷比 值(M/Z值)的蛋白离子分离开,经过离子检测器收集分离 的离子,确定离子的M/Z值,分析鉴定未知蛋白质。
两种离子发生方法: 基质辅助激光解吸附/离子化(MALDI)、电喷雾离子化 (ESI)
噬菌体展示技术
噬菌体展示技术是将编码目的蛋白的基 因与编码噬菌体表面蛋白的基因融合后, 以融合蛋白的形式表达在噬菌体表面的一 种技术。
将不同蛋白的cDNA插入噬菌体载体进 行表达,得到表达不同蛋白的一定规模的 噬菌体展示库 。
将“诱饵”蛋白固定化,基于“诱饵”蛋白与 “猎物”蛋白之间的相互作用,可将展示库 中与固定化的“诱饵”蛋白有相互作用的“猎 物”蛋白分离纯化出来,再对“猎物”蛋白进 行质谱鉴定。
四、蛋白组学研究
蛋白质分离 蛋白质分析 蛋白质相互作用的研究方法: 酵母双杂交技术,噬菌体展示技术,表
面等离子共振技术,荧光共振能量转移 技术,蛋白质微阵列芯片技术,免疫共 沉淀技术,pull-down技术
蛋白质分离
最常用的蛋白质分离技术是20世纪70年代发明的双 向电泳(2-DE),是根据蛋白质的等电点不同在pH 梯度介质中进行第一次分离,即等点聚焦(IEF),然 后根据蛋白质分子量的不同进行第二次分离,即 SDS-聚丙烯酰胺凝胶电泳。
重叠延伸PCR原理
重叠延伸PCR技术由于使用了具有互补末端的引物, 使PCR 产物形成了重叠链,从而在随后的扩增反应中通过 重叠链的延伸,将不同来源的扩增片段重叠拼接起来。可 简单迅速的将两个DNA片段连在一起,用于嵌合基因的构 建

分子生物学实验技术

分子生物学实验技术

分子生物学实验技术分子生物学实验技术是分子生物学研究领域中使用的一系列实验技术的总称,它们主要用于分析和操作生物体内分子水平的结构和功能。

这些技术的发展与进步,在分子生物学研究中具有重要意义,为科学家们提供了更加高效、准确和精细的实验方法和手段。

本文将着重介绍分子生物学实验技术的一些常用方法和原理。

一、聚合酶链式反应(PCR)PCR是一种通过DNA扩增技术在体外合成目标DNA的方法。

它通过引物与待扩增DNA片段的互补配对,在DNA复制酶(如Taq聚合酶)的催化下,经过一系列的温度循环(包括解链、退火和扩增)反复进行,从而使得目标DNA不断扩增,达到检测和分析的目的。

PCR技术广泛应用于基因检测、疾病诊断、犯罪分析等领域。

二、DNA测序技术DNA测序是指通过测定DNA的碱基序列,以获取基因信息的一种手段。

传统的DNA测序技术包括Sanger测序和Maxam-Gilbert测序。

随着高通量测序技术(NGS)的发展,如Illumina测序、Ion Torrent测序等,使得大规模、快速、低成本的DNA测序成为可能。

DNA测序技术在基因组学和遗传学研究中扮演着关键角色。

三、蛋白质分析技术蛋白质是生物体内功能最为重要的分子之一,研究蛋白质的组成、结构和功能对于理解生物体的生理过程具有重要的意义。

蛋白质分析技术主要包括SDS-PAGE凝胶电泳、Western Blotting、质谱分析等。

SDS-PAGE凝胶电泳可用于蛋白质的分子量测定和纯化,Western Blotting则可以用来检测特定蛋白质的存在及其相对量,质谱分析则可以用来确定蛋白质的氨基酸序列。

四、基因克隆技术基因克隆是指将DNA片段插入到载体DNA(如质粒)中,并利用细胞的自我复制机制,将其复制并表达出来的技术。

这个技术广泛应用于基因工程、药物研发、植物育种等领域。

基因克隆技术的核心是DNA片段的连接和转化。

连接可通过限制性内切酶切割DNA片段,并使用DNA连接酶进行连接;转化则是将重组质粒转入宿主细胞中,使其进行复制和表达。

分子生物学的实验技巧

分子生物学的实验技巧

分子生物学的实验技巧分子生物学作为生物科学的重要分支,主要研究生物分子的结构、功能及其相互作用关系。

合理的实验技巧对于分子生物学的研究至关重要。

下面将介绍几种常用的实验技巧及其操作方法。

一、PCR技术PCR(聚合酶链反应)是分子生物学研究中最常用的技术之一,它能够高效地扩增目标DNA序列。

PCR反应的关键步骤包括:DNA变性(Denaturation)、引物结合(Annealing)和DNA合成(Elongation)。

实验中,我们需要准备好所需的试剂和设备,确保实验台和试管清洁,以避免污染。

同时,掌握好反应温度、时间和引物浓度等重要参数的选择,能够确保PCR反应的成功。

二、凝胶电泳技术凝胶电泳是常用的DNA分子大小分析方法,能够通过电场作用将DNA样品分离出来。

在实验中,我们首先需要准备好凝胶,常用的有琼脂糖凝胶和聚丙烯酰胺凝胶。

然后,根据需要选择合适的电泳缓冲液,并将待测样品与DNA标记物一同加入凝胶槽中。

接下来,通过给电极施加电压,使DNA在凝胶中迁移。

最后,通过染色或荧光检测等方法,可可视化目标DNA条带。

当我们操作凝胶电泳时,要注意电流的选择、运行时间和电泳条件的控制,以确保分离结果的准确性。

三、蛋白质SDS-PAGE技术蛋白质的分离与鉴定也是分子生物学研究中的重要内容之一。

其中,SDS-PAGE(聚丙烯酰胺凝胶电泳)是最常用的方法之一。

在进行SDS-PAGE实验时,首先需要准备好聚丙烯酰胺凝胶,根据需要选择合适的凝胶浓度和电泳缓冲液。

接着,将蛋白样品与还原剂和SDS缓冲液混合,然后进行样品沸腾变性。

之后,将样品加载到凝胶孔中,施加电压进行电泳。

最后,可以通过染色或Western blot等方法对蛋白进行检测与分析。

四、基因克隆技术基因克隆技术是分子生物学研究中常用的技术之一,它可用于构建重组DNA分子。

在进行基因克隆实验时,需要首先将目标基因进行PCR扩增,然后进行限制性内切酶切割,得到目标基因的载体和酶切后的DNA片段。

分子生物学实验技术分类

分子生物学实验技术分类

分子生物学实验技术分类分子生物学实验技术是现代生物学研究中不可或缺的一部分,它涉及到对生物体内分子结构、功能和相互作用的研究。

这些实验技术在基础科学研究、医学诊断和药物研发等领域发挥着重要作用。

在分子生物学实验技术中,根据其应用和原理可以进行分类,主要包括以下几类:1. 基因克隆技术,基因克隆技术是分子生物学研究中常用的技术之一,它包括DNA片段的定向克隆、质粒构建、DNA序列分析等。

通过基因克隆技术,研究人员可以将感兴趣的基因或DNA片段放入适当的载体中,进行进一步的研究和应用。

2. 蛋白质分离和纯化技术,蛋白质是生物体内重要的功能分子,其结构和功能的研究对于理解生物学过程至关重要。

蛋白质分离和纯化技术包括凝胶电泳、亲和层析、离子交换层析等方法,可以将混合的蛋白质样品分离并得到纯净的蛋白质。

3. 核酸分离和检测技术,核酸是生物体内的遗传物质,包括DNA和RNA。

核酸分离和检测技术包括DNA/RNA提取、聚合酶链式反应(PCR)、原位杂交等方法,可以用于检测和分析生物体内的核酸序列。

4. 基因组学和转录组学技术,基因组学和转录组学技术是对生物体内所有基因组和转录组的研究,包括全基因组测序、RNA测序、ChIP-seq等方法,可以帮助研究人员全面了解生物体内基因的组成和表达模式。

5. 蛋白质-核酸相互作用技术,蛋白质和核酸之间的相互作用对于细胞内的生物学过程至关重要。

蛋白质-核酸相互作用技术包括免疫共沉淀、荧光共聚焦、电泳迁移变性等方法,可以帮助研究人员研究蛋白质和核酸之间的相互作用。

以上是分子生物学实验技术的一些分类,这些技术的不断发展和创新为生物学研究提供了强大的工具,也推动了生物医学领域的进步。

在未来,随着技术的不断进步,分子生物学实验技术将继续发挥重要作用,为人类健康和生命科学研究带来更多的突破和进展。

分子生物学实验技术3篇

分子生物学实验技术3篇

分子生物学实验技术
第一篇:PCR技术
PCR(聚合酶链反应)是一种基于体外体内 DNA 复制的技术。

PCR 技术广泛应用于分子生物学、生物医学研究、医学诊断、生物技术等领域。

在 PCR 中,核酸模板、引物、聚合酶和反应缓冲液是必不可少的组成部分。

PCR 引物是在特定位置的 DNA 片段,用于诱导聚合酶模板 DNA 的扩增。

聚合酶通过催化模板 DNA 在 DNA 引物的引导下合成相应的 DNA 片段,产生大量的重复 DNA 片段。

PCR 是一种快速、高效、灵敏的 DNA 分析技术,可以对非常小的样本进行扩增。

PCR 的操作流程如下:
1.取得合适的 DNA 样品。

2.准备 PCR 反应体系,包括 PCR 反应缓冲液、聚合酶、DNA 模板和引物。

3.用 PCR 机进行程序设定和反应。

4.检查 PCR 反应产物,包括 PCR 产物的带型和验证PCR 产物的特异性和纯度等。

PCR 的应用
1.DNA 序列鉴定以及 DNA 序列变异检测。

2.基因表达分析、基因定量、等位基因分析等基因功能研究操作。

3.分子诊断,可以根据染色体、基因、蛋白质等材料进行分析。

4.农业和畜牧业生物工程的研究。

优点:
PCR 反应时间逐渐缩短,灵敏度高,重现性好,稳定性强。

PCR 技术可以在非常小范围内进行 DNA 分析,并可以处理复杂的实验体系。

缺点:
PCR 技术还有一些局限性,比如需要合理设计引物,需要准确的温度控制,需要恰当的试剂,且对样品的纯度和净化度有严格的要求。

分子生物学实验技术

分子生物学实验技术

分子生物学实验技术分子生物学实验技术专注于研究生物分子的结构、功能和相互作用。

通过分析和操作不同的生物分子,分子生物学实验技术可以为生物学研究提供有力的工具和方法。

本文将介绍分子生物学实验技术的一些常见方法和应用。

第一部分:DNA和RNA的分析与操作方法(1000字)在分子生物学研究中,DNA和RNA是最常见的研究对象之一。

了解DNA和RNA的序列、结构和相互作用对于我们理解生物基因组、遗传变异和蛋白质合成等过程至关重要。

以下是一些常见的DNA和RNA的分析与操作方法:1. PCR(聚合酶链式反应):PCR是一种通过DNA的放大,使其达到可以检测的程度的技术。

它可以扩增DNA片段并产生大量的复制品。

PCR的优点是速度快、灵敏度高、操作简便。

这使得它在基因检测、基因组测序和遗传变异研究等领域得到广泛应用。

2. 基因克隆:基因克隆是指将感兴趣的DNA片段插入到载体DNA 中,形成重组DNA分子的过程。

通过克隆,可以研究和操纵特定的DNA 序列,以确定其功能、表达和调控。

常用的克隆方法包括限制性内切酶消化和连接技术,例如使用DNA连接酶将DNA片段连接到载体上。

3. DNA测序:DNA测序是指确定DNA序列的过程。

它是研究基因组、疾病突变和基因功能的重要工具。

常见的DNA测序方法包括链终止法和碱基测序法。

链终止法使用有标记的二进制探针和DNA聚合酶,通过测量信号强度来确定DNA序列。

碱基测序法则通过测量不同碱基释放的荧光信号来确定DNA序列。

4. RNA干扰(RNAi):RNA干扰是一种通过干扰RNA分子的转录和翻译过程来沉默特定基因表达的技术。

通过使用双链RNA或小分子RNA(siRNA)来介导干扰,可以选择性地抑制或沉默特定的基因,从而研究其功能和相互作用。

第二部分:蛋白质的分析与操作方法(1000字)蛋白质是生物体内最重要的功能分子之一。

了解蛋白质的结构、功能和相互作用对于研究生物学和疾病机制至关重要。

分子生物实验技术

分子生物实验技术
分子生物实验技术是一种应用于生物学领域的实验技术,利用现代分子生物学的基本
原理及技术手段,对生物体内的分子机制进行研究,其中包括基因表达调控、蛋白质结构
与功能等方面。

分子生物实验技术主要包括:DNA/RNA提取、PCR扩增、基因克隆、蛋白质质谱、基因编辑、分子标记等。

其中,DNA/RNA提取是分子生物学实验的基础手段,其过程是通过将细胞裂开,然后
利用一系列的化学方法来分离出DNA/RNA。

PCR扩增是一种在体外人工合成DNA的方法,它可以将DNA扩增至数千万倍,为后续基因克隆和鉴定提供了条件。

基因克隆是将所需的基
因拷贝到向量中,使其可以被转移至其他生物体中并发挥作用的过程。

蛋白质质谱是一种
用来解析蛋白质结构、鉴定蛋白质功能及定量测定蛋白质含量的技术手段。

基因编辑是一
种新近兴起的技术手段,利用这种技术可以直接对基因进行修饰、插入或删除,应用广泛。

分子标记则是将特定基因或序列标记出来,便于后续的研究工作。

分子生物实验技术在现代生物科技中具有重要作用,它们可以广泛应用于基因检测、
基因治疗、生物大数据、新药研发等领域,能够为人类健康和生命科学研究提供有力的支撑。

随着分子生物学不断发展,分子生物实验技术也将不断创新,为生物科学领域的发展
带来更多的科学进步。

分子生物学实验技术与方法

分子生物学实验技术与方法分子生物学是研究生物分子结构、功能与相互作用的学科,其实验技术与方法的发展为深入理解基因、蛋白质及其他生物分子在细胞和生物体中的功能提供了强有力的工具。

本文将探讨常用的分子生物学实验技术与方法,包括基因克隆、聚合酶链式反应(PCR)、凝胶电泳、原位杂交等。

1. 基因克隆基因克隆是指将感兴趣的基因从一个生物体转移到另一个生物体或一种载体上的过程。

其步骤主要包括DNA片段的制备、连接、转化和筛选等。

DNA片段的制备可以通过限制性内切酶酶切、PCR扩增等方法得到。

连接步骤中,需使用DNA连接酶将目标基因和载体进行连接。

连接后的DNA可通过转化将其导入宿主细胞,再经过选择和筛选得到目标克隆。

2. 聚合酶链式反应(PCR)PCR是一种通过体外扩增DNA片段的技术,具有高度特异性和高灵敏度。

其基本步骤包括变性、退火和延伸。

变性步骤中,目标DNA双链结构被分离为两条单链DNA。

接着,在退火步骤中,引物与目标DNA序列相互结合。

最后,在延伸步骤中,DNA聚合酶在退火完成后的DNA链上进行延伸合成。

PCR技术广泛应用于基因分型、基因定量、基因突变检测等领域。

3. 凝胶电泳凝胶电泳是一种将DNA、RNA或蛋白质按照其分子大小和电荷进行分离的技术。

其中,琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳是最常用的两种凝胶电泳方法。

琼脂糖凝胶电泳适用于分离较大的DNA片段,而聚丙烯酰胺凝胶电泳适用于分离较小的DNA或蛋白质片段。

通过在电场中施加电压,DNA或蛋白质片段会在凝胶中向正极或负极迁移,形成带状分离图谱。

4. 原位杂交原位杂交是一种检测细胞或组织中特定DNA或RNA序列的方法。

其基本步骤包括制备探针、标记探针、固定样本以及杂交等。

制备探针时,需要选择适当的引物进行PCR扩增或使用放射性同位素进行标记。

标记后的探针能与特定的DNA或RNA序列互补杂交。

通过观察探针的信号强度和位置,可以确定目标序列在样本中的分布和表达水平。

分子生物学常用实验技术概述

分子生物学常用实验技术概述分子生物学是研究生物大分子(如DNA、RNA和蛋白质等)组成、结构和功能的科学领域。

在分子生物学的研究中,常用各种实验技术来解析生物大分子的结构和功能,为科学研究和应用提供依据。

下面将概述一些常用的分子生物学实验技术。

1.PCR(聚合酶链式反应):PCR是一种能在体外快速扩增DNA序列的技术,可以从一个DNA模板扩增出百万倍的DNA片段。

PCR包括三个步骤:变性、退火和延伸。

通过PCR,可以在短时间内扩增大量特定的DNA 片段,并常应用于基因分析、疾病诊断以及基因工程等领域。

2.转基因技术:转基因技术是将外源基因导入到目标生物体细胞中,使其表达外源蛋白或产生新的表型。

转基因技术通常包括四个步骤:基因分离、基因克隆、基因传递和基因表达。

转基因技术在农业、医学和生物科学研究中具有广泛的应用。

3.蛋白质电泳:蛋白质电泳是根据蛋白质的电荷和大小差异将其分离的一种方法。

常用的蛋白质电泳方法包括SDS-和二维电泳。

蛋白质电泳可用于纯化蛋白质、分析蛋白质组成以及检测蛋白质的修饰。

4.蛋白质质谱:蛋白质质谱是一种分析蛋白质的结构和功能的方法。

常用的蛋白质质谱技术包括MALDI-TOF质谱和液相色谱-串联质谱(LC-MS/MS)。

蛋白质质谱可用于鉴定未知蛋白质、确定蛋白质的氨基酸序列以及检测蛋白质的修饰等。

5.分子克隆:分子克隆是将外源DNA或RNA序列插入到载体DNA中,并通过细胞转染等方法将其导入到目标细胞中进行表达的过程。

分子克隆常用的方法包括限制性内切酶切割、连接反应、质粒构建和转染等步骤。

分子克隆技术可用于分析、表达和研究目标基因。

6. Northern blotting:Northern blotting是一种检测RNA的方法,常用于检测特定的mRNA分子。

在Northern blotting中,通过RNA的电泳分离、转移、固定以及杂交等步骤,可以检测目标RNA的存在和表达水平。

分子生物学的实验技术

分子生物学的实验技术【分子生物学的实验技术】分子生物学作为现代生物科学领域的重要组成部分,以其独特的实验技术为研究人员提供了许多强有力的工具。

本文将对分子生物学中常见的实验技术进行介绍,包括DNA提取、PCR扩增、凝胶电泳、克隆和测序等。

一、DNA提取DNA提取是分子生物学研究的第一步,也是最基本的实验技术之一。

DNA提取的目的是从生物样本中分离出DNA,并纯化得到高质量的DNA溶液,以便后续实验使用。

常用的DNA提取方法有酚/氯仿法、离心柱法和磁珠法等。

酚/氯仿法是一种传统的DNA提取方法,它利用酚和氯仿的不同密度分离DNA。

首先,将生物样本与裂解缓冲液混合并加入酚/氯仿混合液,通过离心分离出DNA在上层的细胞碎片,然后进行酚/氯仿再萃取和乙醇沉淀,最后得到纯化的DNA。

离心柱法是一种高效的DNA提取方法,它利用离心柱上的纤维素膜或硅胶膜对DNA进行捕获和纯化。

在这种方法中,生物样本与裂解缓冲液混合后,加入离心柱进行离心,DNA能够通过纤维素膜或硅胶膜的作用被固定,而其他杂质则被洗脱掉,最后用纯化缓冲液洗脱得到高质量的DNA。

磁珠法是一种快速、高通量的DNA提取方法,它利用表面修饰的磁珠对DNA进行特异性捕获。

在这种方法中,生物样本与裂解缓冲液混合后,加入磁珠混悬液,并利用磁力使磁珠与DNA结合,然后用磁力将磁珠与DNA一起沉淀到管壁上,洗脱杂质后得到纯化的DNA。

二、PCR扩增PCR(聚合酶链式反应)是一种用于体外扩增DNA的技术,通过反复的循环性温度变化,可以扩增特定的DNA片段。

PCR由于其高度敏感和高效性,被广泛应用于基因分型、基因定量、基因突变分析等领域。

PCR反应的基本组成包括DNA模板、引物、聚合酶、四种脱氧核苷酸和缓冲液。

首先,将DNA模板与引物、脱氧核苷酸和缓冲液混合,并添加聚合酶,然后进行多次温度循环,包括变性、退火和延伸等步骤,从而使DNA模板经过反复扩增,最后得到目标DNA片段的数量大幅增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pUC18载体的双酶切及阳性克隆检测(崔嘉20162140284河北农业大学动物科技学院071000)摘要:为了探究Xbc基因的分子结构特征,本实验选择大肠杆菌质粒做为载体,通过PCR 技术获得目的基因,再将其与质粒进行双酶切后体外连接,再将连接重组后的重组体转入大肠杆菌感受体细胞中进行扩增,最后,通过对重组克隆基因双酶切结果进行筛选,成功获得目的基因。

关键字:Xbc基因大肠杆菌质粒PCR目的基因The recombination and selection of the Cystatin gene in e.coliAbstract:To explore the molecular structure of the Xbc gene characteristics,This study choose escherichia coli plasmid as carrier.Getting the purpose gene by PCR technique.With the plasmid in vitro after double enzyme connection,we will connect restructuring of recombinant into amplification of competent escherichia coli cells.By the result of the recombinant gene cloning double enzyme screening,we will get successful gene.Keyword:Xbc gene,escherichia coli,plasmid,PCR,target genePCR,引言:聚合酶链式反应是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。

由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。

到如今2013年,PCR已发展到第三代技术。

1973年,台籍科学家钱嘉韵,发现了稳定的Taq DNA聚合酶,为PCR技术发展也做出了基础性贡献。

PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。

基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。

1950年以来在纸上和在聚丙烯酰胺或琼脂糖凝胶上区带电泳的应用,1960年以后,圆盘和顶替电泳(等速电泳)以及等电点聚焦又提供了许多提高分辨率的方法[1]。

DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。

DNA分子在高于等电点的pH溶液中带负电荷在电场中向正极移动。

由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA 几乎具有等量的净电荷,因此他们能以相同的速度向正极方向移动。

在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。

具有不同的相对分子质量的DNA片段泳动速度不一样,可进行分离。

DNA分子的迁移速度与相对分子质量对数值成反比关系。

凝胶电泳不仅可以分离不同相对分子质量的DNA,也可以分离相对分子质量相同,但构型不同的DNA分子。

如质粒有3种构型:超螺旋的共价闭合环状质粒DNA(covalently closed circμLar DNA,简称CCCDNA);开环质粒DNA,即共价闭合环状质粒DNA1条链断裂,(open circμLar DNA,简称OCDNA);线状质粒DNA,即共价闭合环状质粒DNA2条链发生断裂,(linear DNA,简称L DNA)。

这3种构型的质粒DNA分子在凝胶电泳中的迁移率不同。

因此电泳后呈3条带,超螺旋质粒DNA泳动最快,其次为线状DNA和开环质粒DNA。

根据在电泳室中使用的电解质系统,可以把电泳作如下分类:①自由界面电泳②自由溶液中的区带电泳③在不同支持物上的区带电泳④在有机溶剂中的凝胶电泳⑤亲和电泳⑥等速电泳⑦等点聚焦⑧免疫电泳。

也可按照不用支持体和用支持体来区别电泳技术,分为自由电泳(无支持体)及区带电泳(有支持体)两大类。

毛细管电泳是上世纪80年代后期分析化学,特别是生物分析化学的重大研究进展,也是90年代最有影响的分离手段之一[2]。

载体是携带靶DNA片段进入宿主细胞进行扩增和表达的媒介,没有载体,目的基因无法进入受体,即使进入受体细胞也无法表达[3]。

从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞:分离和纯化质粒DNA。

采用溶菌酶可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和Triton X-100可使细胞膜裂解。

经溶菌酶和SDS 或Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。

碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。

在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互缠绕,仍会紧密地结合在一起。

当加入pH4.8的乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那木迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去。

质粒DNA小量提取法对于从大量转化子中制备少量部分纯化的质粒DNA十分有用。

这些方法共同特点是简便、快速,能同时处理大量试样,所得DNA有一定纯度,可满足限制酶切割、电泳分析的需要。

限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。

绝大多数限制酶识别长度为4至6个核苷酸的回文对称特异核苷酸序列。

限制性内切酶的酶解反应最适条件各不相同,各种酶有其相应的酶切缓冲液和最适反应温度(大多数为37℃)。

对质粒DNA酶切反应而言,限制性内切酶用量可按标准体系1μg DNA加1单位酶,消化1-2小时。

但要完全酶解则必须增加酶的用量,一般增加2-3倍,甚至更多,反应时间也要适当延长。

酶活力通常用酶单位(U)表示,酶单位的定义是:在最适反应条件下,1小时完全降解1mg λDNA的酶量为一个单位,但是许多实验制备的DNA不象λDNA那样易于降解,需适当增加酶的使用量。

反应液中加入过量的酶是不合适的,除考虑成本外,酶液中的微量杂质可能干扰随后的反应。

DNA重组技术是用内切酶分别将载体和外源DNA切开,经分离纯化后,用连接酶将其连接,构成新的DNA分子。

转化(Transformation)是将外源DNA分子引入受体细胞,使之获得新的遗传性状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术。

转化过程所用的受体细胞一般是限制修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变体(Rˉ,Mˉ),它可以容忍外源DNA分子进入体内并稳定地遗传给后代。

受体细胞经过一些特殊方法(如电击法,CaCl2,RbCl(KCl)等化学试剂法的处理后,细胞膜的通透性发生了暂时性的改变,成为能允许外源DNA分子进入的感受态细胞(Compenent cells)。

进入受体细胞的DNA分子通过复制,表达实现遗传信息的转移,使受体细胞出现新的遗传性状。

将经过转化后的细胞在筛选培养基中培养,即可筛选出转化子(Transformant,即带有异源DNA分子的受体细胞)。

CaCl2法简便易行,且其转化效率完全可以满足一般实验的要求,制备出的感受态细胞暂时不用时,可加入占总体积15%的无菌甘油于-70℃保存(半年),因此CaCl2法使用更广泛。

本实验以E.coli TOP10菌株为受体细胞,并用CaCl2处理,使其处于感受态,然后与pUC 质粒共保温,实现转化。

由于pUC质粒带有氨苄青霉素抗性基因(Amp r),可通过Amp抗性来筛选转化子。

如受体细胞没有转入pUC,则在含Amp的培养基上不能生长。

能在Amp 培养基上生长的受体细胞(转化子)已导入了pUC。

蓝白斑筛选是重组子筛选的一种方法,根据载体的遗传特征筛选重组子,它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。

因此,宿主和质粒编码的片段虽都没有酶活性,但它们同时存在时,可形成具有酶学活性的蛋白质。

这样,lacZ基因在缺少近操纵基因区段的宿主细胞与带有完整近操纵基因区段的质粒之间实现了互补,称为α-互补。

由α-互补而产生的LacZ+细菌在诱导剂IPTG的作用下,在生色底物X-Gal存在时产生蓝色菌落,因而易于识别。

然而,当外源DNA插入到质粒的多克隆位点后,几乎不可避免地导致无α-互补能力的氨基端片段,使得带有重组质粒的细菌形成白色菌落。

这种重组子的筛选,又称为蓝白斑筛选[4]。

由于pUC质粒带有氨苄青霉素抗性基因(Amp r),可通过Amp抗性来筛选转化子。

受体细胞没有转入pUC,则在含Amp的培养基上不能生长。

能在Amp培养基上生长的受体细胞(转化子)肯定已导入了pUC。

转化子扩增后,可将转化的质粒提取出,进行酶·步鉴定。

1.实验材料1.1主要仪器及试剂1.1.1仪器超净工作台、高压灭菌锅、微波炉、微量移液器、摇床、离心机、电泳仪、胶槽、梳子、凝胶分析仪、紫外仪、PCR仪、恒温培养箱、冰箱等。

1.1.2试剂以及主要溶液配制DNA marker(DL5000)、PCR mix、E.coli(TOP10)、EcoRI、HindIII、T4ligase各2管、IPTG、X-gal石蜡油、SDS、氨苄青霉素、卡那霉素、95%乙醇、无水乙醇、冰乙酸、胰蛋白胨、酵母提取粉、NaCl、CaCl2、琼脂粉、葡萄糖、三羟甲基氨基甲烷(Tris)、乙二胺四乙酸二钠盐(EDTA.Na2)、乙酸钾、NaOH(上述试剂各一瓶)电泳缓冲液(50×TBE Buffer)称量Tris242g,Na2EDTA.2H2O37.2g于1L烧杯中;向烧杯中加入约800mL去离子水,充分搅拌均匀;加入57.1mL的硼酸,充分溶解;用NaOH调pH至8.3,加去离子水定容至1L后,室温保存。

相关文档
最新文档