数学分析教案-(华东师大版)第六章-微分中值定理及其应用
第六章微分中值定理及其应用(精)

第六章 微分中值定理及其应用教学基本要求1.熟练掌握微分中值定理的条件和结论,通过举缺少条件的反例来加深理解;2.熟练掌握三个定理之间的关系以及几何上的一致性;3.熟练掌握L`Hospital 法则并应用极限计算.4.熟练掌握用导数来研究函数单调性、极值、最大值和最小值的方法,尤其是函数的单调性、凸性等几何性状;5.熟练掌握Taylor 公式,并理解Taylor 公式作为Lagrange 定理的推广在多项式逼近中将起的作用;6.掌握中值定理和Taylor 公式的应用,提高应用能力。
7.会利用导数等分析手段准确描绘函数图象.§ 1 拉格朗日定理和函数的单调性教学目的:熟练掌握罗尔中值定理,拉格朗日中值定理及其应用,掌握导数极限定理及意义,应用,掌握函数单调的条件及应用.使学生掌握拉格朗日中值定理,领会其实质,为微分学的应用打好坚实的理论基础 教学内容拉格朗日中值定理及其分析意义与几何意义。
掌握它的证明方法,了解它在微分中值定理中的地位。
教学重点:函数为常函数的充要条件; 导数极限定理; 函数单调的条件.一 罗尔定理与拉格朗日定理数学分析研究的基本对象是定义在实数集上函数的性质,而研究函数性质的最重要工具之一就是微分中值定理,微分中值定理主要指拉格朗日中值定理。
极值概念:回忆极值的概念和可微极值点的必要条件: 定理 ( Fermat ) 设函数f 在点0x 的某 邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有 0)(0='x f1.罗尔中值定理:若函数f 满足如下 条件:(i )f 在闭区间[a ,b]上连续; (ii )f 在开区间(a ,b )内可导; (iii ))()(b f a f =,则在(a ,b )内至少存在一点ξ,使得f '(ξ)=0(分析)由条件(i )知f 在[a ,b]上有最大值和最小值,再由条件(ii )及(iii ),应用费马定理便可得到结论。
第6章-微分中值定理及其应用-6-2 柯西中值定理和不定式极限

(ii) 在点 x0 的某空心邻域 U ( x0 ) 内两者均可导,
且 g( x ) 0 ; f ( x ) (iii) lim A A 可以为实数,, . x x0 g( x ) 则 f ( x) f ( x ) lim lim A. x x0 g ( x ) x x0 g( x )
f (b ))
端点弦 AB 的斜率:
kAB
f (b) f (a) . g (b) g (a)
A ( g(a ) , f (a ))
O
u
数学分析 第六章 微分中值定理及其应用
高等教育出版社
§2 柯西中值定理和不定式极限
柯西中值定理
不定式极限
证 作辅助函数
f (b) f (a) F ( x ) f ( x ) f (a) ( g ( x ) g ( a )). g (b) g (a)
变形后即得所需的等式.
数学分析 第六章 微分中值定理及其应用
高等教育出版社
§2 柯西中值定理和不定式极限
柯西中值定理
不定式极限
x f ( x ) A 例2 设 f 在区间 (0, 1] 上可导, lim
则 f 在 (0, 1]上一致连续. x f ( x ) A, 1 (0 1 1) 证 设M | A | 1, 因为 lim 当 0 x 1 时,
定理6.6(柯西中值定理)
设函数 f ( x ), g ( x ) 在区间 [a , b] 上满足: (i) f (x) , g(x) 在闭区间 [a, b] 上连续;
(ii) f (x) , g(x) 在开区间 (a, b) 上可导;
(iii) f 2 ( x ) g 2 ( x ) 0 ; (iv) g (a ) g (b ) .
第六章.微分中值定理和应用

第六章 微分中值定理及其应用§1 Lagrange 定理和函数的单调性一 、Roll 中值定理与Lagrange 中值定理定理6.1 (Roll 定理) 若f 满足:(1)f [],C a b ∈ (2)f 在(),a b 可导 (3)()()f a f b =,则()(),,.,0a b s t f ξξ'∃∈=证明:[],,f C a b ∈故f 必在[],a b 有最大值M 和最小值m ,若M=m ,则f 为[],a b 上的常值函数,结论显然;若M ≠m,则M 与m 必有其一在(),a b 内部某点ξ取得,故ξ为必极值点,由Fermat Th 知 ()0f ξ'=.例1 f 在R 上可导,若()0f x '=无实根,则()f x =0至多只有一实根 定理6.2(Lagrange Th ) 若f 满足1)[],f C a b ∈,2)(),f a b 在可导,则()()()(),..f a f b s t f b aξξ-'∃∈=-a,b —— Lagrange 中值公式证明:作辅助函数()()()()()()f b f a F x f x f a x a b a-=----即可。
Lagrange 中值公式的基本形式()()()()()()()()()()()()(),,,01,01f b f a f b a a b f b f a f a b a b a f a h f a f a h h ξξθθθθ'-=-∈'-=+--<<'+-=+<< 例2 证明对一切h>-1,h ≠0成立不等式()ln 11hh h h<+<+ 证明:考虑函数()()ln 1f x x =+,x 在0与h 之间,显然在0到h 组成的闭区间上连续,开区间上得()()ln 1ln 1ln1.011hh h hθθ+=+-=<<+,当h>0时,11.h h θ+<+11h h h h hθ∴<<++ ①; 当-1<h<0时,1>1+θh>1+h>0 11h h h h h θ∴<<++ ②;由①②知,当h>-1时,且h ≠0时, ()ln 11hh h h<+<+推论1 若f 在区间I 上可导,且()'0.f x ≡ 则f 为I 上的一个常量函数. 证:1,2x x ∀∈I ,设12x x <,则f 在]12,x x ⎡⎣上满足Lagrange 中值定理的条件.)(12,x x ξ∴∃∈, s.t.()()()()2121'0f x f x f x x ξ-=-= ;()()12f x f x ∴= 这说明I 上任意两点处f 的值皆相等,故f 在I 上为常量函数.例 证明:在]1,1⎡-⎣上恒有 arcsin arccos 2x x π+=证明:设()f x =arcsin arccos x x + ]1,1x ⎡∈-⎣,则f(x)在[-1,1]上连续,在[-1,1]可导.且()'0f x ⎛⎫=≡ ⎝, ()f x c ∴≡ ]1,1x ⎡∈-⎣ 而()02f π=, ()arcsin arccos 2f x πθθ∴=+≡推论2 若f ,g 在I 上皆可导,且()()''f x g x =,则在I 上()f x 与()g x 至多只相差一个常数,即 ()()f x g x c =+(c 为常数)推论3 (导数极限定理) 设f 在0x 的某邻域()0U x 内连续,在()00U x 内可导,且()0lim 'x x f x →存在,则f 在0x 可导,且()()00'lim 'x x f x f x →=证明:按左右导数证之.()00x x +∀∈⋃,f 在[]0,x x 上满足Lagrange 定理 条件,)(0,x x ξ∴∃∈,s.t. ()()()00'f x f x f x x ξ--- 又0x x ξ<<,∴当0x x +→时,0x ξ+→, 对上式两边取极限.设()()()()()000000lim lim 'lim ''0x x x x x f x f x f f f x x x ξξξ+++→→→-===+-,同理可设 ()()00''0f x f x -=- ,又()0l i m 'x x f x →存在,记为K ,故 ()()00'0'0f x f x K +=-=()()()()0000'''lim 'x x f x f x K f x K f x +-→∴==∴==例3 求分段函数2sin 0()ln(1)0x x x f x x x ⎧+≤=⎨+>⎩的导数. 解:略定理 区间I 上处处可导的函数f 其导函数在I 上不可能有第一类间断点.二 、 单调函数定理6.3 设f 在I 上可导,则f 在I 上递增(减)的充要条件是()()'00f x ≥≤证明:若f 为增函数,0.x ∀∈I 当0x x ≠时,()()000f x f x x x -≥-,由不等式性知()()()0000lim'0x x f x f x f x x x →-=≥-,反之,若f 在I 上恒有()'0f x ≥,则对12,,x x ∀∈I 且1 2.x x <对f 在]12,x x ⎡⎣上用Lagrange 中值定理,当)(12,x x ξ∈,s.t.()()()()2121'0f x f x f x x ξ-=-≥()()21f x f x ∴≥ f ∴在I 上增。
微分中值定理及其应用

微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。
微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。
本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。
文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。
这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。
接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。
本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。
通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。
文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。
《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。
通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。
二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。
这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。
微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。
罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。
拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。
柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。
这些定理在实际应用中具有广泛的价值。
微分中值定理及其应用

第六章 微分中值定理及其应用§1 Lagrange 定理和函数的单调性【教学目的与要求】:1、熟练掌握罗尔中值定理和拉格朗日中值定理。
2、能应用拉格朗日中值定理证明不等式。
3、了解拉格朗日中值定理的推论1和推论2。
4、掌握拉格朗日中值定理的推论3(导数的极限定理),并能利用它求分段函数的导数。
5、掌握函数在区间上单调的充要条件及严格单调的充要条件,并能运用它证明函数的单调区间。
【重点】:拉格朗日中值定理及函数单调(或严格单调)的充要条件。
【难点】:1、拉格朗日中值定理证明中辅助函数的引入。
2、利用导数证明不等式的技巧。
一 、Roll 中值定理与Lagrange 中值定理定理6.1 (Roll 定理) 若f 满足:(1)f [],C a b ∈(2)f 在(),a b 可导 (3)()()f a f b =,则()(),,.,0a b s t f ξξ'∃∈=证明:[],,f C a b ∈故f 必在[],a b 有最大值M 和最小值m ,若M=m ,则f 为[],a b 上的常值函数,结论显然;若M ≠m,则M 与m 必有其一在(),a b 内部某点ξ取得,故ξ为必极值点,由Fermat Th 知 ()0f ξ'=.注:1)三个条件缺一不可2)几何意义例1 f 在R 上可导,若()0f x '=无实根,则()f x =0至多只有一实根定理 6.2(Lagrange Th ) 若f 满足1)[],f C a b ∈,2)(),f a b 在可导,则()()()(),..f a f b s t f b a ξξ-'∃∈=-a,b —— Lagrange 中值公式说明:1、特解; 2、几何意义证明:作辅助函数()()()()()()f b f a F x f x f a x a b a -=----即可。
Lagrange 中值公式的基本形式()()()()()()()()()()()()(),,,01,01f b f a f b a a b f b f a f a b a b a f a h f a f a h h ξξθθθθ'-=-∈'-=+--<<'+-=+<<例2 证明对一切h>-1,h ≠0 成立不等式()ln 11hh hh <+<+证明:考虑函数()()ln 1f x x =+,x 在0与h 之间,显然在0到h 组成的闭区间上连续,开区间上得()()ln 1ln 1ln1.011h h h h θθ+=+-=<<+,当h>0时,11.h h θ+<+11h hhh h θ∴<<++①;当-1<h<0时,1>1+θh>1+h>0 11h h hh h θ∴<<++ ②;由①②知,当h>-1时,且h ≠0时, ()ln 11hh hh <+<+推论1 若f 在区间I 上可导,且()'0.f x ≡则f 为I 上的一个常量函数.证:1,2x x ∀∈I,设12x x <,则f 在]12,x x ⎡⎣上满足Lagrange 中值定理的条件.)(12,x x ξ∴∃∈, s.t.()()()()2121'0f x f x f x x ξ-=-=;()()12f x f x ∴=这说明I 上任意两点处f 的值皆相等,故f 在I 上为常量函数.例 证明:在]1,1⎡-⎣上恒有arcsin arccos 2x x π+=证明:设()f x =arcsin arccos x x + ]1,1x ⎡∈-⎣,则f(x)在[-1,1]上连续,在[-1,1]可导.且()'0f x ⎛⎫=+≡ ⎝, ()f x c ∴≡]1,1x ⎡∈-⎣ 而()02f π=, ()arcsin arccos 2f x πθθ∴=+≡推论2 若f ,g 在I 上皆可导,且()()''f x g x =,则在I 上()f x 与()g x 至多只相差一个常数,即 ()()f x g x c =+(c 为常数)推论 3 (导数极限定理) 设f 在0x 的某邻域()0U x 内连续,在()00U x 内可导,且()0lim 'x x f x →存在,则f 在0x 可导,且()()00'lim 'x x f x f x →=证明:按左右导数证之.()00x x +∀∈⋃,f 在[]0,x x 上满足Lagrange 定理 条件,)(0,x x ξ∴∃∈, s.t. ()()()00'f x f x f x x ξ--- 又0x x ξ<<,∴当0x x +→时,0x ξ+→, 对上式两边取极限.设()()()()()000000lim lim 'lim ''0x x x x x f x f x f f f x x x ξξξ+++→→→-===+-,同理可设()()00''0f x f x -=- ,又()0lim 'x x f x →存在,记为K ,故 ()()00'0'0f x f x K +=-= ()()()()000'''lim 'x x f x f x K f x K f x +-→∴==∴==例3 求分段函数2sin 0()ln(1)0x x x f x x x ⎧+≤=⎨+>⎩的导数. 解:略定理 区间I 上处处可导的函数f 其导函数在I 上不可能有第一类间断点.二 、 单调函数定理6.3 设f 在I 上可导,则f 在I 上递增(减)的充要条件是()()'00f x ≥≤证明:若f 为增函数,0.x ∀∈I 当0x x ≠时,()()000f x f x x x -≥-,由不等式性知()()()0000lim'0x x f x f x f x x x →-=≥-,反之,若f 在I 上恒有()'0f x ≥,则对12,,x x ∀∈I 且1 2.x x <对f在]12,x x ⎡⎣上用Lagrange 中值定理,当)(12,x x ξ∈,s.t. ()()()()2121'0f x f x f x x ξ-=-≥()()21f x f x ∴≥ f ∴在I 上增。
06——微分中值定理及其应用

第六章 微分中值定理及其应用第一节 拉格朗日定理和函数的单调性【教学目的】Rolle 中值定理,Lagrange 中值定理,用导数讨论函数的单调性。
一、费马定理——可微极值点的必要条件定理5.3:设 ⅰ、()f x 定义在0()U x ,且在点0x 可导,ⅱ、0x 为()f x 的极值点,则必有'0()0f x =注:先回顾极值点的定义。
二、微分中值定理1、Rolle 中值定理定理6.1:设()f x 满足ⅰ、()[,]f x C a b ∈,ⅱ、()f x 在(,)a b 上可导,ⅲ、()()f a f b =,则至少存在一点'(,),..()0a b s t f ξξ∈=。
分析:几何意义:曲线存在一条水平切线。
证明思路:找一极值点(闭区间连续函数的性质),再由费马定理,从而得出结果。
2、Lagrange 中值定理定理6.2:若()f x 满足ⅰ、()[,]f x C a b ∈,ⅱ、()f x 在(,)a b 内可导, 则至少存在一点'()()(,),..()f b f a a b s t f b aξξ-∈=-。
分析: 几何意义:(,)a b 内有一点ξ的切线与端点的连线平行。
证明思路:构造辅助函数满足Rolle 中值定理的条件(ⅲ)。
注:Lagrange 中值定理的等价形式:①'()()()(),f b f a f b a a b ξξ-=-<<②'()()(())(),01f b f a f a b a b a θθ-=+--<<③'()()(),01f a h f a f a h h θθ+-=+<<3、若干推论推论1:设 ⅰ、()f x 在区间I 上可导,ⅱ、'()0,f x x I ≡∈,则(),f x Const x I ≡∈.推论2:设 ⅰ、(),()f x g x 在区间I 上可导,ⅱ、''()(),f x g x x I ≡∈,则()(),f x g x Const x I ≡+∈。
数学分析课件第6章微分中值定理及其应用2

柯西定理的证明
柯西定理
如果函数$f(x)$在开区间$(a, b)$上可导,且$(a, b)$内不包含任何导数为零的点,则对于任意实数$x_0 in (a, b)$,存在$delta > 0$,使得对于任意满足$|x - x_0| < delta$的实数$x$,有$frac{f(x) - f(x_0)}{x - x_0} = f'(c)$,其中$c in (x_0, x)$。
第2节习题及答案
答案3
题目4
答案4
首先,我们构造一个新的函数 f(x)=e^x-(x+1),并求出它的导数 f'(x)=e^x-1。然后,我们发现当x>0 时,f'(x)>0;当x<0时,f'(x)<0。因 此,函数f(x)在(0,∞)上是增函数。又 因为f(0)=0,所以当x>0时,f(x)>0 ,即e^x≥x+1。
感谢您的观看
THANKS
通过泰勒展开式,可以研究函数的极值、拐点等性质。
ห้องสมุดไป่ตู้
05
习题与解答
第1节习题及答案
题目1
答案1
题目2
答案2
证明在闭区间上连续的 函数在该区间上取得最 大值和最小值。
根据闭区间上连续函数 的性质,我们知道函数 在闭区间的两个端点处 取得最大值和最小值。 然后,我们可以通过证 明函数的导数在区间内 部改变符号来证明在区 间内存在极值点。
证明
由于$(a, b)$内不包含任何导数为零的点,故对于任意实数$x_0 in (a, b)$,存在$delta > 0$,使得对于任意满 足$|x - x_0| < delta$的实数$x$,有$frac{f(x) - f(x_0)}{x - x_0} = f'(c)$,其中$c in (x_0, x)$。
6-1——华东师范大学数学分析课件PPT

§1 拉格朗日定理和函数的单调 性
罗尔定理与拉格朗日定理
函数单调性的判别
例1 设 p(x) 是一个多项式, 且方程 p'(x) = 0 没有实
根, 则方程 p(x) = 0 至多有一个实根,且这个根的
重数为 1 .
证 设 p( x) 有两个实根 x1, x2, x1 x2, 由于p( x)是
最小值定理, f (x) 在 [a, b] 上能取得最大值 M 和最
小值 m .下面分两种情形加以讨论.
数学分析 第六章 微分中值定理及其应用
高等教育出版社
§1 拉格朗日定理和函数的单调 性
罗尔定理与拉格朗日定理
函数单调性的判别
情形1 M = m. 此时 f (x) 恒为常数,它的导函数恒
等于零, 此时可在 (a, b) 内随意取一点 , 就有
(iii), 但条件 (i) 不满足,该函 O
x
数在 (0, 1) 上的导数恒为1. 结论不成立.
数学分析 第六章 微分中值定理及其应用
高等教育出版社
§1 拉格朗日定理和函数的单调 性
罗尔定理与拉格朗日定理
(b) f ( x) | x |, x [1, 1]
函数单调性的判别
y
满足条件 (i) 和 (iii), 但条件
数学分析 第六章 微分中值定理及其应用
§1 拉格朗日定理和
函数的单调性
中值定理是 与 ff 的桥梁.有了中值 定理, 就可以根据 f 在区间上的性质来 得到 f 在该区间上的 整体性质.
一、罗尔定理与拉格朗 日定理
二、函数单调性的判别
*点击以上标题可直接前往对应内容
§1 拉格朗日定理和函数的单调 性
那么在开区间 (a ,b)内 ( 至少 ) 存在一点 , 使得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章微分中值定理及其应用教学目的:1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础;2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限;3.掌握泰勒公式,并能应用它解决一些有关的问题;4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象;5.会求函数的最大值、最小值,了解牛顿切线法。
教学重点、难点:本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。
教学时数:14学时§ 1 中值定理(4学时)教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。
教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。
教学重点:中值定理。
教学难点:定理的证明。
教学难点:系统讲解法。
一、引入新课:通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。
在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。
因此,我们首先要磨锋利导数的刀刃。
我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题)二、讲授新课:(一)极值概念:1.极值:图解,定义 ( 区分一般极值和严格极值. )2.可微极值点的必要条件:Th ( Fermat ) ( 证 )函数的稳定点, 稳定点的求法.(二)微分中值定理:1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性.grange中值定理: 叙述为Th2. ( 证 ) 图解 .用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157.Lagrange中值定理的各种形式. 关于中值点的位置.推论1 函数在区间I上可导且为I上的常值函数. (证)推论2 函数和在区间I上可导且推论3 设函数在点的某右邻域上连续,在内可导.若存在,则右导数也存在,且有(证)但是, 不存在时, 却未必有不存在. 例如对函数虽然不存在,但却在点可导(可用定义求得).Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函数的连续点,要么是的第二类间断点.这就是说,当函数在区间I上点点可导时,导函数在区间I上不可能有第二类间断点.推论4 ( 导函数的介值性 ) 若函数在闭区间上可导, 且( 证 )Th ( Darboux ) 设函数在区间上可导且. 若为介于与之间的任一实数, 则设对辅助函数, 应用系4的结果. ( 证 )3.Cauchy中值定理:Th 3 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点使.证分析引出辅助函数. 验证在上满足Rolle定理的条件,必有, 因为否则就有.这与条件“和在内不同时为零”矛盾.Cauchy中值定理的几何意义.(三)中值定理的简单应用:1. 证明中值点的存在性例1 设函数在区间上连续, 在内可导, 则, 使得.证在Cauchy中值定理中取.例2设函数在区间上连续,在内可导,且有.试证明: .2.证明恒等式:原理.例3证明: 对, 有.例4设函数和可导且又则.证明.例5设对, 有, 其中是正常数. 则函数是常值函数. (证明 ).3.证明不等式:例6证明不等式: 时, .例7证明不等式: 对,有.4. 证明方程根的存在性:证明方程在内有实根.例8证明方程在内有实根.§ 2 柯西中值定理和不定式的极限(2学时)教学目的:1. 掌握讨论函数单调性方法;2. 掌握L’Hospital法则,或正确运用后求某些不定式的极限。
教学要求:1. 熟练掌握L’Hospital法则,并能正确运用后迅速正确地求某些不定式的极限;2. 深刻理解函数在一区间上单调以及严格单调的意义和条件;熟练掌握运用导数判断函数单调性与单调区间的方法;能利用函数的单调性证明某些不等式。
教学重点:利用函数的单调性,L’Hospital法则教学难点:L’Hospital法则的使用技巧;用辅助函数解决问题的方法;。
教学方法:问题教学法,结合练习。
一. 型:Th 1 (Hospital法则 ) ( 证 ) 应用技巧.例1例2 .例3 . ( 作代换或利用等价无穷小代换直接计算. ) 例4 . ( Hospital法则失效的例 )二.型:Th 2 (Hospital法则 ) ( 证略 )例5.例6.註: 关于当时的阶.例7. ( Hospital法则失效的例 )三. 其他待定型: .前四个是幂指型的. 例8例9.例10 .例11 .例12 .例13 .例14 设且求解.§ 3 Taylor公式(2学时)教学目的:掌握Taylor公式,并能应用它解决一些有关的问题。
教学要求:1. 深刻理解Taylor定理,掌握Taylor公式,熟悉两种不同余项的Taylor公式及其之间的差异;2. 掌握并熟记一些常用初等函数和Taylor展开公式,并能加以应用。
3. 会用带Taylor型余项的Taylor公式进行近似计算并估计误差;会用代Peanlo余项的Taylor公式求某些函数的极限。
教学重点:Taylor公式教学难点:Taylor定理的证明及应用。
教学方法:系统讲授法。
一. 问题和任务:用多项式逼近函数的可能性;对已知的函数,希望找一个多项式逼近到要求的精度.二. Taylor( 1685—1731 )多项式:分析前述任务,引出用来逼近的多项式应具有的形式定义Taylor多项式及Maclaurin多项式例1求函数在点的Taylor多项式.[1]P174.( 留作阅读 )三. Taylor公式和误差估计:称为余项.称给出的定量或定性描述的式为函数的Taylor公式.1. 误差的定量刻画( 整体性质 ) ——Taylor中值定理:Th 1 设函数满足条件:ⅰ> 在闭区间上有直到阶连续导数;ⅱ> 在开区间内有阶导数.则对使.证 [1]P175—176.称这种形式的余项为Lagrange型余项. 并称带有这种形式余项的Taylor公式为具Lagrange型余项的Taylor公式. Lagrange型余项还可写为.时, 称上述Taylor公式为Maclaurin公式, 此时余项常写为.2.误差的定性描述( 局部性质 ) ——Peano型余项:Th 2 若函数在点的某邻域内具有阶导数,且存在,则,.证设, . 应用Hospital法则次,并注意到存在, 就有=.称为Taylor公式的Peano型余项, 相应的Maclaurin 公式的Peano型余项为. 并称带有这种形式余项的Taylor公式为具Peano型余项的Taylor公式( 或Maclaurin公式).四. 函数的Taylor公式( 或Maclaurin公式 )展开:1. 直接展开:例2求的Maclaurin公式.解.例3求的Maclaurin公式.解,.例4求函数的具Peano型余项的Maclaurin公式 .解..例5把函数展开成含项的具Peano型余项的Maclaurin 公式 . ( [1]P179 E5, 留为阅读. )2.间接展开:利用已知的展开式,施行代数运算或变量代换,求新的展开式.例6把函数展开成含项的具Peano型余项的Maclaurin 公式 .解,.例7把函数展开成含项的具Peano型余项的Maclaurin公式 .解,注意,.例8先把函数展开成具Peano型余项的Maclaurin公式 . 利用得到的展开式, 把函数在点展开成具Peano型余项的Taylor公式.解.=+例9把函数展开成具Peano型余项的Maclaurin公式,并与的相应展开式进行比较.解;.而.五.Taylor公式应用举例:1. 证明是无理数:例10 证明是无理数.证把展开成具Lagrange型余项的Maclaurin公式, 有.反设是有理数, 即和为整数), 就有整数 + . 对也是整数. 于是, 整数 = 整数―整数 = 整数.但由因而当时,不可能是整数. 矛盾.2.计算函数的近似值:例11 求精确到的近似值.解.注意到有. 为使, 只要取. 现取, 即得数的精确到的近似值为.3.利用Taylor公式求极限: 原理:例12求极限.解,;.4.证明不等式:原理.例13证明: 时, 有不等式. [3]P130 E33.§4 函数的极值与最大(小)值(2学时)教学目的:会求函数的极值和最值。
教学要求:1. 会求函数的极值与最值;2. 弄清函数极值的概念,取得极值必要条件以及第一、第二充分条件;掌握求函数极值的一般方法和步骤;能灵活运用第一、第二充分条件判定函数的极值与最值;会利用函数的极值确定函数的最值,对于取得极值的第三充分条件,也应用基本的了解。
教学重点:利用导数求极值的方法教学难点:极值的判定教学方法:讲授法+演示例题一.可微函数单调性判别法:1.单调性判法:Th 1 设函数在区间内可导. 则在内↗(或↘) 在内 ( 或).证)) 证.Th 2 设函数在区间内可导.则在内↗↗( 或↘↘)ⅰ> 对有( 或;ⅱ> 在内任子区间上2.单调区间的分离:的升、降区间分别对应的非负、非正值区间.例1分离函数的单调区间.更一般的例可参阅[4]P147—148 E13,14.二.可微极值点判别法:极值问题:极值点,极大值还是极小值,极值是多少.1.可微极值点的必要条件: Fermat定理( 表述为Th3 ).函数的驻点和(连续但)不可导点统称为可疑点, 可疑点的求法.2.极值点的充分条件:对每个可疑点,用以下充分条件进一步鉴别是否为极值点.Th 4 (充分条件Ⅰ) 设函数在点连续, 在邻域和内可导. 则ⅰ> 在内在内时, 为的一个极小值点;ⅱ> 在内在内时,为的一个极大值点;ⅲ>若在上述两个区间内同号, 则不是极值点.Th 5 (充分条件Ⅱ——“雨水法则”)设点为函数的驻点且存在.则ⅰ>当时, 为的一个极大值点;ⅱ> 当时, 为的一个极小值点.证法一当时, 在点的某空心邻域内与异号,……证法二用Taylor公式展开到二阶, 带Peano型余项.Th 6 (充分条件Ⅲ ) 设,而.则ⅰ>为奇数时, 不是极值点;ⅱ>为偶数时,是极值点.且对应极小;对应极大.例2求函数的极值. [1]P190 E3例3求函数的极值. [1]P190 E43.函数的最值:设函数在闭区间上连续且仅有有限个可疑点. 则=;.函数最值的几个特例:ⅰ> 单调函数的最值:ⅱ>如果函数在区间上可导且仅有一个驻点, 则当为极大值点时, 亦为最大值点; 当为极小值点时, 亦为最小值点.ⅲ>若函数在内可导且仅有一个极大(或小)值点, 则该点亦为最大(或小)值点.ⅳ> 对具有实际意义的函数,常用实际判断原则确定最大(或小)值点.三.最值应用问题:例4、两村距输电线(直线)分别为和(如图),长. 现两村合用一台变压器供电. 问变压器设在何处,输电线总长最小.解设如图,并设输电线总长为.则有,,解得和 ( 捨去 ). 答:……四.利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor公式证明不等式的一些方法. 其实, 利用导数证明不等式的方法至少可以提出七种 ( 参阅[3]P112—142 ). 本段仅介绍利用单调性或极值证明不等式的简单原理.1.利用单调性证明不等式:原理: 若↗, 则对, 有不等式.例5证明: 对任意实数和, 成立不等式证取在内↗↗. 于是, 由, 就有, 即.2.不等式原理: [4]P169—171.不等式原理: 设函数在区间上连续,在区间内可导,且; 又则时, (不等式原理的其他形式.)例6证明: 时, .例7证明: 时, .2.利用极值证明不等式:例8证明: 时, .§ 5 函数的凸性与拐点(2学时)教学目的:掌握讨论函数的凹凸性和方法。