高中数学必修5基本不等式练习题

合集下载

新课标必修5数学基本不等式经典例题(含知识点和例题详细解析),强列推荐

新课标必修5数学基本不等式经典例题(含知识点和例题详细解析),强列推荐

2x
(8
Байду номын сангаас
2 x)
8 为定值,故只需将
y
x(8 2 x) 凑上一个系数即可。

,即 x = 2 时取等号
当 x = 2 时, y
x(8 2 x) 的最大值为 8 。
变式:设 0
x
3 2
,求函数 y
4 x( 3
2 x) 的最大值。
2
解:∵ 0
x
3 2
∴3
2x
0 ∴y
4 x( 3 2 x)
2 2 x( 3 2 x)
f ( x)
x
a x
的单
y
x
2 2
5 4
的值域。
x
解:令
x
2
4
t (t
2) ,则 y
1 t
x
2 2
5 4
x
2
4 x
1
2
t 4
1 t
(t
2)
x 因t
0, t t
1 t 1 t
1 ,但 t
在区间
解得 t
1 不在区间 2,
,故等号不成立,考虑单调性。
因为 y
1,
5 2
单调递增,所以在其子区间
2,
为单调递增函数, 故 y
y
4x 2
1 4x 5
5 4x
1 5 4x
3
2 3 1
4x
1 5 4x
,即 x
1 时,上式等号成立,故当
x
1 时, ymax
1。
技巧二:凑系数 例: 当 解析:由 时,求 y 知,
x(8 2 x) 的最大值。
,利用均值不等式求最值,必须和为定值或积为定值,

高中数学基本不等式 同步练习(一)新人教版必修5(A)

高中数学基本不等式 同步练习(一)新人教版必修5(A)

基本不等式 同步练习(一)选择题1、下列函数中,最小值为4的函数是( )A 、x x y 4+=B 、)0(sin 4sin π x xx y += C 、x x e e y -+=4 D 、81log log 3x x y +=2、已知正数y x ,满足194=+yx ,则xy 有( ) A 、最小值12 B 、最大值12 C 、最小值144 D 、最大值1443、设*N n z y x ∈, ,且zx n z y y x -≥-+-11恒成立,则n 的最大值是( )A 、2B 、3C 、4D 、54、一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地间铁路线长为400 km ,为了安全,两列货车间的间距不得小于220⎪⎭⎫ ⎝⎛v km ,那么这批货物全部运到B 市最快需要( )A 、6 hB 、8 hC 、10 hD 、12 h5、若)2lg()lg (lg 21lg lg 1b a R b a Q b a P b a +=+=⋅=,,, ,则( ) A 、Q P R B 、R Q P C 、R P Q D 、Q R P6、若a ,b 是任意实数,且a b >,则下列不等式一定成立的是( )A .22a b >B .1>ab C .1<ba D .0)(3>-ab 7、Rc b a ∈,,且b a >,则下列各式中恒成立的是( )A .c b c a ->+B .bc ac >C .02>-ba c D .0)(2≥-cb a 8、若b a >、dc >,那么( )A .d b c a ->-B .bd ac >C .c b d a ->-D .cd b a > 9、给定0>>b a ,R d ∈,下列各式中不正确的是( )A .2b ab >B .c b c a +>+C .b a >D .bc ac >解答题10.已知0,0,0>>>c b a ,求证:)(2222222c b a a c c b b a ++≥+++++.11.已知a ,b ,c 是不全相等的正数,求证:)()()()(2222222b a c a c b c b a c b a +++++>++.12.已知a ,b ,c 都是正数,且1=++c b a ,求证:abc c b a 8)1)(1)(1(≥---.答案:1、C2、C3、C4、B5、B6、D7、D8、C9、D10、证明略 11、证明略 12、证明略。

高中数学:基本不等式(含答案)

高中数学:基本不等式(含答案)

高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。

高中数学必修五:不等式

高中数学必修五:不等式
6
二.一元二次不等式:
1.已知不等式2kx2 kx 3 0 的解集为R,求k 的范围. 8
2.设函数f (x) x2 (a 4)x 4 2a.(1)对任意x [1,1], f (x) 0恒成立,求a 的范围;(2)若a [1,1],f (x) 0恒 成立,求x 的范围.
7
3.(2018浙江)已知函数f
则m 的取值范围为 ___ .
14
3.已知a b c, (a c)( 1 + 4 ) k 恒成立,则k 的 ab bc
范围是 ___ .
4.设正实数x, y, z ,求(x y z)( 1 1) 的最小值. xy z
15
重点类型四:对等取相等
1.已知正数x, y 满足(2a b)2 1 6ab,求 ab 的 2a b 1
11
3.若b,a R,ab 0,则 a4 b4 1的最小值为 ______ . ab
4.已知k
1,a
0,则k 2a2
(k
4 1)a2
的则xy
的最小
值为 ___ .
12
重点类型二:和与积的转化 1.若b 0,a 0,a b 2ab 4 0,则a b 最小值 为 ______ .
3
9
5.若关于x 的不等式(2x 1)2 ax2 的解集中的整数恰 有3个,求实数a 的取值范围.
10
三.基本不等式:
重点类型一:a 与 1 型最值 a
1.若b a,则 b a 1 b a 的最小值为 ______ . ba
2.已知x y 0,且xy 1,求函数 x2 y2 的 最小值为 ___ . x y
1
一.绝对值不等式的求解:
1.(2018全国1)已知函数f (x)= x 1 ax 1 .(1)当a 2 时, 求不等式f (x) 1 的解集;(2)当a 1 时,求f (x) 的最大值; (3)若x (0,1) 时,不等式f (x) x 成立,求a 的取值范围.

人教新课标版数学高一必修5练习 3.4.1基本不等式

人教新课标版数学高一必修5练习 3.4.1基本不等式

第三章 3.4 第1课时一、选择题1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1[答案] B[解析] 令t =x (t ≥0),则x =t 2, ∴f (x )=x x +1=tt 2+1.当t =0时,f (x )=0; 当t >0时,f (x )=1t 2+1t =1t +1t.∵t +1t ≥2,∴0<1t +1t ≤12.∴f (x )的最大值为12.2.若a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] ∵a ≥0,b ≥0,且a +b =2, ∴b =2-a (0≤a ≤2),∴ab =a (2-a )=-a 2+2a =-(a -1)2+1. ∵0≤a ≤2,∴0≤ab ≤1,故A 、B 错误; a 2+b 2=a 2+(2-a )2=2a 2-4a +4 =2(a -1)2+2.∵0≤a ≤2,∴2≤a 2+b 2≤4.故选C.3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( )A.12 B .a 2+b 2 C .2ab D .a[答案] B[解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又∵a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , ∵1=a +b >2ab , ∴ab <14,∴a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.故选B.解法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b ) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立. 6.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( ) A .0 B .1 C .2 D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题7.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14,等号在x =1-x ,即x =12时成立,∴所求最大值为14.8.已知t >0,则函数y =t 2-4t +1t 的最小值是________.[答案] -2[解析] ∵t >0,∴y =t 2-4t +14=t +1t -4≥2t ·1t -4=-2,当且仅当t =1t,即t =1时,等号成立.三、解答题 9.已知x >0,y >0.(1)若2x +5y =20,求u =lg x +lg y 的最大值; (2)若lg x +lg y =2,求5x +2y 的最小值.[解析] (1)∵x >0,y >0,由基本不等式,得2x +5y ≥22x ·5y =210·xy . 又∵2x +5y =20, ∴20≥210·xy , ∴xy ≤10,∴xy ≤10, 当且仅当2x =5y 时,等号成立.由⎩⎪⎨⎪⎧2x =5y 2x +5y =20, 解得⎩⎪⎨⎪⎧x =5y =2.∴当x =5,y =2时,xy 有最大值10. 这样u =lg x +lg y =lg(xy )≤lg10=1. ∴当x =5,y =2时,u max =1. (2)由已知,得x ·y =100, 5x +2y ≥210xy =2103=2010.∴当且仅当5x =2y =103,即当x =210, y =510时,等号成立. 所以5x +2y 的最小值为2010.10.求函数y =x 2+a +1x 2+a 的最小值,其中a >0.[解析] 当0<a ≤1时, y =x 2+a +1x 2+a≥2,当且仅当x =±1-a 时,y min =2. 当a >1时,令x 2+a =t (t ≥a ),则有y =f (t )=t +1t.设t 2>t 1≥a >1,则f (t 2)-f (t 1)=(t 2-t 1)(t 1t 2-1)t 1t 2>0,∴f (t )在[a ,+∞)上是增函数. ∴y min =f (a )=a +1a,此时x =0. 综上,当0<a ≤1,x =±1-a 时,y min =2;当a >1,x =0时,y min =a +1a.一、选择题1.设a 、b ∈R ,且ab >0.则下列不等式中,恒成立的是 ( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D .b a +a b≥2[答案] D[解析] a =b 时,A 不成立;a 、b <0时,B 、C 都不成立,故选D.2.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是 ( ) A .a 2+b 2 B .2ab C .2ab D .a +b [答案] D[解析] 解法一:∵0<a <1,0<b <1, ∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.3.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2[答案] B[解析] ∵这两年的平均增长率为x ∴A (1+x )2=A (1+a )(1+b ),∴(1+x )2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =(1+a )(1+b )≤(1+a )+(1+b )2=1+a +b 2,∴x ≤a +b 2,等号在1+a =1+b 即a =b 时成立.∴选B.4.(2013·山西忻州一中高二期中)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12C .1D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2.∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12,等号成立时2x =2-2x ,即x =12,y =1,∴xy的最大值为12.二、填空题5.已知2x +3y =2(x >0,y >0),则xy 的最小值是________.[答案] 6 [解析] 2x +3y≥26xy,∴26xy≤2,∴xy ≥6. 6.已知x <54,则函数y =4x -2+14x -5的最大值是________.[答案] 1[解析] ∵x <54,∴4x -5<0,y =4x -2+14x -5=4x -5+14x -5+3=3-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x≤3-2=1,等号在5-4x =15-4x,即x =1时成立. 三、解答题7.已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长. [解析] 设一条直角边长为x cm ,(0<x <10),则另一条直角边长为(10-x )cm , 面积s =12x (10-x )≤12[x +(10-x )2]2=252(cm 2)等号在x =10-x 即x =5时成立, ∴面积最大时斜边长L =x 2+(10-x )2=52+52=52(cm).8.某商场预计全年分批购入每台2 000元的电视机共3 600台.每批都购入x 台(x 是自然数)且每批均需付运费400元.贮存购入的电视机全年所需付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以支付这笔费用,请问,能否恰当安排每批进货数量,使资金够用?写出你的结论,并说明理由.[解析] 设总费用为y 元(y >0),且将题中正比例函数的比例系数设为k ,则y =3 600x ×400+k (2000x ),依条件,当x =400时,y =43 600,可得k =5%,故有y =1 440 000x +100x≥21 440 000x·100x =24 000(元). 当且仅当1 440 000x =100x ,即x =120时取等号.所以只需每批购入120台,可使资金够用.。

高中数学必修五同步练习题库:基本不等式(选择题:较难)

高中数学必修五同步练习题库:基本不等式(选择题:较难)

基本不等式(选择题:较难)1、若正数满足,且的最小值为18,则的值为()A.1 B.2 C.4 D.92、,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.3、若函数在定义域上单调递增,则实数的取值范围为()A. B. C. D.4、若,,,则的最小值是A. B. C. D.5、如右图所示,已知点是的重心,过点作直线与两边分别交于两点,且,则的最小值为()A.2 B. C. D.6、若,,,则的最小值是A. B. C. D.7、已知实数满足,则的最大值为()A.1 B.2 C.3 D.48、如图,已知抛物线的焦点为,直线过且依次交抛物线及圆于点四点,则的最小值为()A. B. C. D.9、已知,则的最小值为()A. B. C. D.10、已知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.11、半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是()A.2 B.0 C. D.12、抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则的最大值为()A.1 B. C.2 D.13、抛物线的焦点为F,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是()A. B. C. D.14、已知,且满足,那么的最小值为()A.3﹣ B.3+2 C.3+ D.415、曲线()在点处的切线的斜率为2,则的最小值是()A.10 B.9 C.8 D.16、函数的值域为()A. B. C. D.17、,动直线过定点A,动直线过定点,若与交于点 (异于点),则的最大值为A. B. C. D.18、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.19、已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.20、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.21、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.22、设且,则的最小值是A. B. C. D.23、已知,则的最小值是A.6 B.5 C. D.24、设正实数满足.则当取得最大值时,的最大值为() A.0 B. C.1 D.325、已知函数,若,,使得,则实数的取值范围是()A.(-∞,1] B.[1,+∞) C.(-∞,2] D.[2,+∞)26、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.27、已知偶函数是定义在上的可导函数,其导函数为.当时,恒成立.设,记,,,则,,的大小关系为()A. B. C. D.28、已知函数,则不等式成立的概率是()A. B. C. D.29、在中,角所对的边分别为,若,则当角取得最大值时,的周长为()A. B. C. D.30、锐角三角形ABC的三边长成等差数列,且,则实数的取值范围是()A. B. C. D.(6,7]31、若,,,则的最小值为()A. B. C. D.32、在平面直角坐标系中,已知抛物线的焦点为是抛物线上位于第一象限内的任意一点,是线段上的点,且满足,则直线的斜率的最大值为()A. B. C. D.33、已知函数,若不等式对任意实数恒成立,则实数的取值范围是()A. B. C. D.34、正项等比数列{a n}中,存在两项a m,a n(m,n)使得a m a n=16a12,且a7=a6+2a5,则+的最小值为()A.5 B.6 C.7 D.835、已知圆的半径为1,为该圆上四个点,且,则的面积最大值为()A.2 B.1 C. D.36、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.37、若直线过点,则的最小值等于()A.6 B.3 C.7 D.438、若直线和直线相交于一点,将直线绕该点依逆时针旋转到与第一次重合时所转的角为,则角就叫做到的角,,其中分别是的斜率,已知双曲线:的右焦点为,是右顶点,是直线上的一点,是双曲线的离心率,,则的最大值为()A. B. C. D.39、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A. B. C. D.40、若正数满足则的最小值是()A. B. C. D.41、已知函数,对任意的,恒成立,则的最小值为()A.3 B.2 C.1 D.042、已知为双曲线上不同三点,且满足(为坐标原点),直线的斜率记为,则的最小值为()A.8 B.4 C.2 D.143、中,为的中点,点在线段(不含端点)上,且满足,则的最小值为()A. B. C.6 D.844、圆:和圆:有三条公切线,若,,且,则的最小值为()A.1 B.3 C.4 D.545、在中,角,,的对边分别为,,,且,则角的最大值为()A. B. C. D.46、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.47、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.48、设正实数,满足,,不等式恒成立,则的最大值为()A. B. C. D.49、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.50、已知函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为()A.3 B.C.4 D.851、若正实数满足,且不等式恒成立,则实数的取值范围是()A. B.C. D.52、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.53、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.54、设均为正实数,且,则的最小值为()A.4 B. C.9 D.1655、已知是内的一点,且,若的面积分别为,则的最小值为()A. B. C. D.56、已知直线ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则+的最小值为()A.4 B.2 C.5 D.857、设,则的最小值为()A.2 B.3 C.4 D.58、设,对于使成立的所有常数M中,我们把M的最小值1叫做的上确界.若,且,则的上确界为()A. B. C. D.59、已知x>0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=().A.2n B.3n C.n2 D.n n60、已知关于的不等式的解集是,且,则的最小值是()A. B.2 C. D.161、下列推理正确的是()A.如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a>0,b>0,则+≥D.若a>0,b<0,则62、对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1 B.2 C.3 D.463、已知,且,成等比数列,则xy( )A.有最大值e B.有最大值 C.有最小值e D.有最小值64、对于函数y=f(x)(x∈I),y=g(x)(x∈I),若对任意x∈I,存在x0使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则称f(x),g(x)为“兄弟函数”,已知f(x)=x2+px+q,g(x)=是定义在区间上的“兄弟函数”,那么函数f(x)在区间上的最大值为()A. B.2 C.4 D.65、已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为()A.5 B.7 C.8 D.966、设第一象限内的点满足约束条件,若目标函数的最大值为40,则的最小值为()A. B. C.1 D.467、定义域为的函数的图象的两个端点为,是图象上任意一点,其中,向量,若不等式恒成立,则称函数在上“阶线性近似”. 若函数上“阶线性近似”,则实数的取值范围为( ) A. B. C. D.68、不等式x2+2x<+对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是( )A.(-2,0) B.(-∞,-2)∪(0,+∞)C.(-4,2) D.(-∞,-4)∪(2,+∞)69、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数70、在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③ B.①④ C.①② D.①②④参考答案1、B2、B3、D4、B5、C6、B7、B8、B9、C10、B11、D12、D13、D14、B15、B16、C17、B18、D19、B20、B21、D22、A23、C24、C25、A26、B27、B28、B29、C30、C31、A32、D33、D34、B35、B36、B37、A38、C39、B40、D41、A42、B43、D44、A45、A46、D47、D48、C49、D50、D51、B52、D53、D54、D55、B56、A57、C58、D59、D.60、A61、D62、A63、C64、B65、B66、B67、C68、C69、B70、C【解析】1、由题意,应用基本不等式可得令则方程,所以是方程的根,所以选B.点睛:(1)应用基本不等式构造关于的不等式.(2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知是一元二次方程的根.2、由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.3、函数的定义域为,,由已知有,所以对于恒成立,恒成立,所以,而,当且仅当时等号成立,所以,选D.点睛:本题主要考查用导数研究函数的单调性,基本不等式等,属于中档题。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

苏教版必修5高一数学第2章基本不等式测试题及解析

苏教版必修5高一数学第2章基本不等式测试题及解析

基本不等式测试题A 组一.填空题(本大题共8小题,每小题5分,共40分)1.若xy>0,则x y y x+的最小值是 。

1.2.提示:x y y x+≥2. 已知a ,b 都是正数,则 a +b 2、a 2+b 22的大小关系是 。

2.a +b 2≤a 2+b 22。

提示:平方作差,利用a 2+b 2≥2ab 可得。

3.若x +y =4,x >0,y >0,则lg x +lg y 的最大值是 。

3.lg4.提示:lg x +lg y =lg x y ≤lg(2x y +)2=lg4. 4.已知121(0,0),m n m n+=>>则mn 的最小值是4. 121mn m n =+≥≥5.已知:226x y +=, 则 2x y +的最大值是___5.9.提示: 6 = 22x y +≥2, ∴22x y ≤9 。

故2x y +的最大值是9,此时x=y=2log 3。

6 某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处 6.8.提示 由已知y 1=x20;y 2=0 8x (x 为仓库与车站距离), 费用之和y =y 1+y 2=0 8x + x 20≥2x x 208.0⋅=8,当且仅当0 8x =x 20即x =5时“=”成立。

7.已知正数x y 、满足3xy x y =++,则xy 的范围是 。

7.[9,)+∞。

提示:由0,0x y >>,则3xy x y =++3xy x y ⇒-=+≥,即230-+≥解得13≤-≥(舍),当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。

8. 给出下列命题:①a,b 都为正数时,不等式a+b ≥②y=x+1x的最小值为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题
1.若,,a b c R ∈,且a b >,则下列不等式中一定成立的是( )
A.a b b c +≥-
B.ac bc ≥
C.2
0c a b
>- D 2()0a b c -≥ 2.对于任意实数,,,a b c d ,命题①若,0,a b c ><则ac bc >;②若a b >,则22ac bc >;③若22ac bc <,则a b <;④若a b >,则 11a b
<;⑤若0,0a b c d >>>>,则ac bd >。

其中正确的个数是( ) A.1 B.2 C.3 D.4
3.已知22π
π
αβ-≤<≤,则2αβ
-的取值范围是( ) A.,22ππ⎛⎫- ⎪⎝⎭
B.[,0]2π-
C.[,0)2π-
D.[0,]2π 4.已知,a b R +∈,且5a b +=,则22a b
+的最小值是( )
A.32
B.
C.
D. 10 5.下列命题中,其正确的命题个数为①1x
x +的最小值是2;2的最小值是2;③2log log 2x x +的最小值2;④ 0,2x π
<<tan cot x x +的最小值是2;⑤33x x -+的最小值是2.
A.1
B.2
C.3
D.4
6.若,a b R +
∈,下列不等式中正确的是( ) A.22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭ B.22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭ C. 22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭ D.22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭
7.已知,x y 是正数,且191x y
+=,则x y +的最小值是( ) A.6 B.12 C.16 D.24
8.设0,0,4x y xy >>=,则s
=+取最小值时x 的值为( )
A.1
B.2
C.
D.422
9.甲乙两人同时从A 地出发B 地,甲在前一半路程用速度1v ,在后一半路程用速度2v (12v v ≠),乙在前一半时间用速度1v ,在后一般时间用速度2v ,则两人中谁先到达( )
A.甲
B.乙
C.两人同时
D.无法确定
10.若,x y R ∈,且224x y +=,则22
xy x y +-的最小值为( )
A.2-
B.1+
C.-2
D.13-
二.填空题
11.若14,24a b <<-<<,则2a b -的取值范围是
12.若x R ∈,则2x 与1x -的大小关系是
13.函数2
y =的最小值是
14.已知4,x >函数14y x x
=-+
-,当x = 时,函数有最 值是 三.解答题 15.已知正数,x y 满足21x y +=,求
11x y +的最小值。

16.已知0,a >且321,log (1),log (1)a a a x a y a ≠=+=+,试比较,x y 的大小。

相关文档
最新文档