第二章随机变量及其分布
合集下载
概率论课件第二章

第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
第二章随机变量及其分布函数

28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
随机变量及其分布

• 定义1如果对于随机变量X及其分布函数F(x),存在非负可积函数 • f(x),使得对于任意实数x有
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
概率论与数理统计 第二章 随机变量及其分布

解:
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
概率统计 第二章 随机变量及其分布

引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
第二章 随机变量及其分布

来表示。
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其分布
§2.1 随机变量
随机变量的概念
例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述:
X = 0,1,2, …
例 检测一件产品可能出现的两个结果 , 也可以用一个变量来描述:
X(
)
1 , 0 ,
次品 正品
例 考虑“测试灯泡寿命”这一试验,以 X 记灯泡的寿命(以小时计)则:
P( X k ) Cnk pk ( 1 p )nk k =P(0Xk,1=k)0=,即1p,k20(-1,1-L分p)1布,-kn
❖ 概率特性 X 以一定的概率取某个 值或某些 值 。
引入随机变量的意义 有了随机变量,随机试验中的各种事件, 就可以通过随机变量的关系式表达出来。
如:单位时间内某电话交换台收到的呼 叫次数用 X 表示,它是一个随机变量。
{ 收到不少于1次呼叫 } { X 1 }
{ 没有收到呼叫} { X = 0 }
依题意, X 可取值 0,1,2,3。
P { X=0 } =P ( A1 ) = p =1 / 2 ,
路口3
路口2
路口1
P{
X
1}
P(
A1 A2
)
(1
p)p
1 4
路口3
路口2
路口1
P{
X
2}
P(
A1 A2 A3
)
(1
p )2
p
1 8
路口3
路口2
路口1
P{ X 3 }
P( A1 A2 A3 )
( 1 p )3 1 8
路口1 路口2
路口3
概率分布:
X0 1 2 3 p 1/2 1/4 1/8 1/8
二项分布
贝努里概型和二项分布 例 设生男孩的概率为p,生女孩的概率 为q=1-p,令X表示随机抽查出生的4个婴 儿中“男孩”的个数。
我们来求X的概率分布。
X表示随机抽查的4个婴儿中男孩的个 数,生男孩的概率为 p.
X = t, ( t≥0 )
定义
设 S 是随机试验E的样本空间, 若
S 按一定法则 实数 X( )
则称 S 上的单值实值函数 X ( )
为随机变量
随机变量一般用大写英文字母X, Y ,Z ,
随机变量 是 S R 上的映射, 此映射具有如下特点:
❖ 定义域 事件域 S ;
❖ 随机性 随机变量 X 的可能取值不 止一个, 试验前只能预知它的可能的取 值但不能预知取哪个值;
记: P( A ) p, P( A ) 1 p q ( 0 p 1 )
将 E 独立地重复 n 次,则称这一串重 复的独立试验为 n 重贝努利( Bernoulli )试 验,简称为贝努利( Bernoulli )试验
在n重贝努利试验中,事件A可能发生 0, 1,2, … n 次
当n=1时,
注 求分布律,首先弄清 X 的确切 含义及其所有可能取值。
几何分布
例3 上海的“天天彩”中奖率为p ,某人每
天买 1 张, 若不中奖第二天继续买 1张,
直至中奖为止。求该人购买次数 X 的分布
律。解:X= k 表示购买了 k 张, 前 k-1张都
未中奖, 第 k 张中了奖。
P( X k ) p( 1 p )k1 k 1, 2 ,
概率分布图 :
y
• 0.92
0.08
•
0
1
x
两点分布 ( 0–1分布)
只取两个值的概率分布
分布律为:
X0
1
pk 1-p p
0<p<1
或 P( X k ) pk ( 1 p )1k , k 0 ,1
应用场合
凡试验只有两个可能结果,常用0 – 1分 布描述,如产品是否合格, 人口性别统计, 系统是否正常, 电力消耗是否超标等。
×× ×
…
×√
123
…
k-1 k
适用于试验首次成功的场合
例4 一汽车沿一街道行驶,需要通过三个均设 有红绿信号灯的路口,每个信号灯为红或绿与 其它信号灯为红或绿相互独立,且红绿两种信 号灯显示的时间相等. 以 X 表示该汽车首次遇 到红灯前已通过的路口的个数,求 X 的概率分 布。
解:设Ai = { 第 i 个路口遇红灯 } , i=1,2,3
或 X p
x1 x2 … xk … p1 p2 … pk …
• 概率分布的性质
1) pk 0, k 1,2,…
非负性
2)
pk 1
k1
正则性
概率分布的特征
例1 一批产品的次品率为8% ,从中抽取1件
进行检验,令X
1 0
, ,
次品 正品
写出 X 的分布律.
解:
X
X 的分布律为:
p
0
1
0.92 0.08
解: X 的可能取值为:
4000,400,40,4,0 。
X 0 4 40 400 4000
p .7933 .2 .006 .0006 .0001
定义 若随机变量 X 的可能取值是有限 个或可列个, 则称 X 为离散型随机变量。
描述X 的概率特性常用概率分布列或分布列
即 P( X xk ) pk , k 1,2,…
随机变量的取值随试验的结果而确定, 在试验之前,不能预知它取什么值,而试验 的各个结果出现有一定的概率,因而随机变 量的取值有一定的概率,这一点区别于一般 的函数。
以下就离散型随机变量、 连续型随机变
量两类随机变量逐一研究这两个问题。
1、随机变量取那些值或取值的范围???
2、随机变量取这些值或落在某一范围的概 率???
X=0 X =1 X =2 X =3 X =4
p0 ( 1 p )4
p4 ( 1 p )44
p1( 1 p )41
p3 ( 1 p )43
p2 ( 1 p )42
C
0 4
C
1 4
C
2 4
C
3 4
C
4 4
P( X k ) C4k pk ( 1 p )4k k 0,1,2, 3,4
设试验 E 只有两个结果:A和 A,
§2.2 离散型随机变量及其分布律
例 有奖储蓄,20万户为一开奖组,设特等 奖20名,奖金4000元;一等奖120名,奖 金400元;二等奖1200名,奖金40元;末 等奖4万名,奖金4元。考察得奖金额 X 。
例有奖储蓄,20万户为一开奖组,设特等奖 20名,奖金4000元;一等奖120名,奖金 400元;二等奖1200名,奖金40元;末等奖 4万名,奖金4元。考察得奖金额 X 。
例2 10件产品中,有3件次品,任取两 件,X是“抽得的次品数”,求分布律。
解: X 可能取值为 0,1,2。
P{ X 0 }
C72 C120
7 6 10 9
7 15
P{ X 1 }
C31C71 C120
21 7 45 15
1 P{ X 2 }
15
所以,X的分布律为:
X
0
1
2
p 7/15 7/15 1/15
§2.1 随机变量
随机变量的概念
例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述:
X = 0,1,2, …
例 检测一件产品可能出现的两个结果 , 也可以用一个变量来描述:
X(
)
1 , 0 ,
次品 正品
例 考虑“测试灯泡寿命”这一试验,以 X 记灯泡的寿命(以小时计)则:
P( X k ) Cnk pk ( 1 p )nk k =P(0Xk,1=k)0=,即1p,k20(-1,1-L分p)1布,-kn
❖ 概率特性 X 以一定的概率取某个 值或某些 值 。
引入随机变量的意义 有了随机变量,随机试验中的各种事件, 就可以通过随机变量的关系式表达出来。
如:单位时间内某电话交换台收到的呼 叫次数用 X 表示,它是一个随机变量。
{ 收到不少于1次呼叫 } { X 1 }
{ 没有收到呼叫} { X = 0 }
依题意, X 可取值 0,1,2,3。
P { X=0 } =P ( A1 ) = p =1 / 2 ,
路口3
路口2
路口1
P{
X
1}
P(
A1 A2
)
(1
p)p
1 4
路口3
路口2
路口1
P{
X
2}
P(
A1 A2 A3
)
(1
p )2
p
1 8
路口3
路口2
路口1
P{ X 3 }
P( A1 A2 A3 )
( 1 p )3 1 8
路口1 路口2
路口3
概率分布:
X0 1 2 3 p 1/2 1/4 1/8 1/8
二项分布
贝努里概型和二项分布 例 设生男孩的概率为p,生女孩的概率 为q=1-p,令X表示随机抽查出生的4个婴 儿中“男孩”的个数。
我们来求X的概率分布。
X表示随机抽查的4个婴儿中男孩的个 数,生男孩的概率为 p.
X = t, ( t≥0 )
定义
设 S 是随机试验E的样本空间, 若
S 按一定法则 实数 X( )
则称 S 上的单值实值函数 X ( )
为随机变量
随机变量一般用大写英文字母X, Y ,Z ,
随机变量 是 S R 上的映射, 此映射具有如下特点:
❖ 定义域 事件域 S ;
❖ 随机性 随机变量 X 的可能取值不 止一个, 试验前只能预知它的可能的取 值但不能预知取哪个值;
记: P( A ) p, P( A ) 1 p q ( 0 p 1 )
将 E 独立地重复 n 次,则称这一串重 复的独立试验为 n 重贝努利( Bernoulli )试 验,简称为贝努利( Bernoulli )试验
在n重贝努利试验中,事件A可能发生 0, 1,2, … n 次
当n=1时,
注 求分布律,首先弄清 X 的确切 含义及其所有可能取值。
几何分布
例3 上海的“天天彩”中奖率为p ,某人每
天买 1 张, 若不中奖第二天继续买 1张,
直至中奖为止。求该人购买次数 X 的分布
律。解:X= k 表示购买了 k 张, 前 k-1张都
未中奖, 第 k 张中了奖。
P( X k ) p( 1 p )k1 k 1, 2 ,
概率分布图 :
y
• 0.92
0.08
•
0
1
x
两点分布 ( 0–1分布)
只取两个值的概率分布
分布律为:
X0
1
pk 1-p p
0<p<1
或 P( X k ) pk ( 1 p )1k , k 0 ,1
应用场合
凡试验只有两个可能结果,常用0 – 1分 布描述,如产品是否合格, 人口性别统计, 系统是否正常, 电力消耗是否超标等。
×× ×
…
×√
123
…
k-1 k
适用于试验首次成功的场合
例4 一汽车沿一街道行驶,需要通过三个均设 有红绿信号灯的路口,每个信号灯为红或绿与 其它信号灯为红或绿相互独立,且红绿两种信 号灯显示的时间相等. 以 X 表示该汽车首次遇 到红灯前已通过的路口的个数,求 X 的概率分 布。
解:设Ai = { 第 i 个路口遇红灯 } , i=1,2,3
或 X p
x1 x2 … xk … p1 p2 … pk …
• 概率分布的性质
1) pk 0, k 1,2,…
非负性
2)
pk 1
k1
正则性
概率分布的特征
例1 一批产品的次品率为8% ,从中抽取1件
进行检验,令X
1 0
, ,
次品 正品
写出 X 的分布律.
解:
X
X 的分布律为:
p
0
1
0.92 0.08
解: X 的可能取值为:
4000,400,40,4,0 。
X 0 4 40 400 4000
p .7933 .2 .006 .0006 .0001
定义 若随机变量 X 的可能取值是有限 个或可列个, 则称 X 为离散型随机变量。
描述X 的概率特性常用概率分布列或分布列
即 P( X xk ) pk , k 1,2,…
随机变量的取值随试验的结果而确定, 在试验之前,不能预知它取什么值,而试验 的各个结果出现有一定的概率,因而随机变 量的取值有一定的概率,这一点区别于一般 的函数。
以下就离散型随机变量、 连续型随机变
量两类随机变量逐一研究这两个问题。
1、随机变量取那些值或取值的范围???
2、随机变量取这些值或落在某一范围的概 率???
X=0 X =1 X =2 X =3 X =4
p0 ( 1 p )4
p4 ( 1 p )44
p1( 1 p )41
p3 ( 1 p )43
p2 ( 1 p )42
C
0 4
C
1 4
C
2 4
C
3 4
C
4 4
P( X k ) C4k pk ( 1 p )4k k 0,1,2, 3,4
设试验 E 只有两个结果:A和 A,
§2.2 离散型随机变量及其分布律
例 有奖储蓄,20万户为一开奖组,设特等 奖20名,奖金4000元;一等奖120名,奖 金400元;二等奖1200名,奖金40元;末 等奖4万名,奖金4元。考察得奖金额 X 。
例有奖储蓄,20万户为一开奖组,设特等奖 20名,奖金4000元;一等奖120名,奖金 400元;二等奖1200名,奖金40元;末等奖 4万名,奖金4元。考察得奖金额 X 。
例2 10件产品中,有3件次品,任取两 件,X是“抽得的次品数”,求分布律。
解: X 可能取值为 0,1,2。
P{ X 0 }
C72 C120
7 6 10 9
7 15
P{ X 1 }
C31C71 C120
21 7 45 15
1 P{ X 2 }
15
所以,X的分布律为:
X
0
1
2
p 7/15 7/15 1/15