初二数学综合练习题(含答案)

合集下载

初二数学下1.1等腰三角形综合练习含答案(北师大版)

初二数学下1.1等腰三角形综合练习含答案(北师大版)

初二数学下1.1等腰三角形(北师大版)一.选择题(共15小题)1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.△ABC中,∠B=50°,∠A=80°,若AB=6,则AC=()A.6 B.8 C.5 D.133.等腰三角形一边的长为4cm,周长是18cm,则底边的长是()A.4cm B.10cm C.7或10cm D.4或10cm4.等腰三角形中有一个角为100°,则其底角为()A.50°B.40°C.40°或100°D.50°或100°5.如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角为()A.22.5°B.67.5°C.67°50' D.22.5°或67.5°6.下列四个说法:①等腰三角形的腰一定大于其腰上的高;②等腰三角形的两腰上的中线长相等;③等腰三角形的高、中线、角平分线互相重合;④等腰三角形的一边为5,另一边为10,则它的周长为20或25.其中正确的个数为()A.1个B.2 C.3 D.47.下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍8.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10 B.13 C.17 D.13或179.如图,在△ABC中,∠A=45°,∠B=60°,点D在边AB上,且BD=BC,连结CD,则∠ACD的大小为()A.30°B.25°C.15°D.10°10.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q.延长MN至G,取NG =NQ,若△MNP的周长为12,则△MGQ周长是()A.8+2B.6+4C.8+4D.6+211.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点F、G,若FG =2,ED=6,则DB+EC的值为()A.3 B.4 C.5 D.912.如图,△ABC的面积为16,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积是()A.6 B.8 C.10 D.1213.如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2 B.4 C.6 D.815.如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°二.填空题(共5小题)16.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是cm.17.如图,在△ABC中,AB=BC,∠ABC=120°,D是AC边上的点,DA=DB=3,则AC的长为.18.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.19.如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E,在点D的运动过程中,△ADE的形状也在改变,当△ADE是等腰三角形时,∠BDA的度数是.20.如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD=AE.用等式表示∠1和∠2之间的数量关系是.答案选择题:CAABD ABCCB BBCCD 填空:16:6或717:9.18:25°19:110°或80°20: ∠1=2∠2。

初二数学练习题和答案

初二数学练习题和答案

初二数学练习题和答案一、选择题1. 已知一边长为3cm的正方形,那么它的面积是多少?A. 6cm²B. 3cm²C. 9cm²D. 12cm²2. 将一个正方形的边长增加了一倍,那么原来正方形的面积相比新正方形的面积增加了几倍?A. 1倍B. 2倍C. 3倍D. 4倍3. 如果一个长方形的长为5cm,宽为3cm,那么它的周长是多少?A. 11cmB. 13cmC. 15cmD. 16cm4. 一辆汽车以每小时60公里的速度行驶1小时,那么它行驶的总距离是多少?A. 30公里B. 60公里C. 80公里D. 90公里5. 在一个等腰三角形中,两个底角的度数是多少?A. 45°B. 60°C. 90°D. 120°二、填空题1. 一个多边形的内角和是 _____ 度。

2. 一个半径为5cm的圆的面积是 _____ 平方厘米。

3. 一个长方体的体积是 __________ 立方厘米。

4. 在一个直角三角形中,a² + b² = ________ 。

5. 一张纸的尺寸是24cm × 18cm,将其对折两次后,新的尺寸是________ 。

三、解答题1. 请用恰当的公式计算一个边长为9cm的正方形的面积。

解:正方形的面积公式为:面积 = 边长 ×边长。

将边长带入公式:面积 = 9cm × 9cm = 81cm²。

2. 一张长方形的纸的长是2倍于宽,纸的周长是20cm,请求纸的长和宽各是多少?解:设纸的宽为x,所以纸的长为2x。

根据周长的计算公式:周长 = 2 × (长 + 宽)。

将已知数据带入公式:20cm = 2 × (2x + x)20cm = 6xx = 20cm ÷ 6 = 3.33cm所以纸的宽为3.33cm,长为2 × 3.33cm = 6.66cm。

数学初二练习题推荐还有答案

数学初二练习题推荐还有答案

数学初二练习题推荐还有答案数学是一门理论与实践相结合的学科,对于学生来说,练习题是巩固知识、提高技能的重要途径。

在初二阶段,学生需要通过大量的练习题来加深对数学知识的理解和应用。

本文将为大家推荐一些适合初二学生的数学练习题,并提供答案,希望能对同学们的学习有所帮助。

一、整数运算1. 计算下列各题:(1) (-3) + (+5) = ?(2) (+4) - (-7) = ?(3) (-6) × (+2) = ?(4) (+8) ÷ (-4) = ?答案:(1) 2(2) 11(3) -12(4) -22. 已知a = -5,b = 3,求下列各题的值:(1) a + b(2) a - b(3) -a(4) a × b(5) a ÷ b答案:(1) -2(2) -8(3) 5(4) -15(5) -1.6667二、方程与不等式1. 解下列方程:(1) 3x + 4 = 19(2) 2(x + 5) = 14(3) 5x - 8 = 7x + 1答案:(1) x = 5(2) x = 2(3) x = -32. 解下列不等式,并表示解集:(1) 2x - 5 < 11(2) 3x + 4 ≥ 10(3) 4 - 2x ≤ x + 6答案:(1) x < 8(2) x ≥ 2(3) x ≥ -1三、图形与几何1. 计算下列各题:(1) 一个正方形的边长为5cm,它的周长是多少?(2) 一个长方形的长为6cm,宽为3cm,它的面积是多少?(3) 一个圆的半径为8cm,它的周长是多少?答案:(1) 20cm(2) 18cm²(3) 16πcm2. 计算下列各题,保留π的精确值:(1) 一个三角形的底边长为5cm,高为8cm,它的面积是多少?(2) 一个圆的直径为10cm,它的面积是多少?答案:(1) 20cm²(2) 25πcm²四、概率与统计1. 在一副有52张牌的扑克牌中,红桃有13张,黑桃有13张,方块有13张,梅花有13张。

初二数学综合性试题及答案

初二数学综合性试题及答案

初二数学综合性试题及答案【试题一:代数基础】题目:若a、b、c为实数,且满足以下条件:\[ a + b + c = 12 \]\[ ab + ac + bc = 33 \]求a、b、c的值。

解答:根据题目给出的条件,我们可以利用韦达定理来解决这个问题。

设a、b、c是一元三次方程\[ x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc = 0 \]的根。

根据韦达定理,我们知道:\[ a + b + c = 12 \]\[ ab + ac + bc = 33 \]\[ abc = -1 \]将已知条件代入方程,我们得到:\[ x^3 - 12x^2 + 33x + 1 = 0 \]通过因式分解或使用求根公式,我们可以找到a、b、c的值。

【试题二:几何问题】题目:在直角三角形ABC中,∠C是直角,AB是斜边,AC = 5,BC = 12,求斜边AB的长度。

解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

设AB = c,AC = a,BC = b,我们有:\[ c^2 = a^2 + b^2 \]将已知值代入,得到:\[ c^2 = 5^2 + 12^2 \]\[ c^2 = 25 + 144 \]\[ c^2 = 169 \]\[ c = 13 \]所以,斜边AB的长度是13。

【试题三:函数与方程】题目:已知函数f(x) = 2x - 3,求f(5)的值。

解答:将x = 5代入函数f(x) = 2x - 3,我们得到:\[ f(5) = 2 \times 5 - 3 \]\[ f(5) = 10 - 3 \]\[ f(5) = 7 \]所以,f(5)的值是7。

【试题四:统计与概率】题目:在一个班级中有30名学生,其中15名男生和15名女生。

如果随机选择一名学生,求选出一名女生的概率。

解答:在这个班级中,总共有30名学生,其中15名是女生。

因此,选出一名女生的概率是:\[ P(\text{女生}) = \frac{\text{女生人数}}{\text{总人数}} \] \[ P(\text{女生}) = \frac{15}{30} \]\[ P(\text{女生}) = \frac{1}{2} \]所以,随机选择一名学生是女生的概率是1/2。

初二数学练习题附答案

初二数学练习题附答案

初二数学练习题附答案1. 简答题(1) 数轴是什么?数轴是用来表示实数的一种图示工具,它可以将实数用点的方式在直线上表示出来。

(2) 如何用数轴表示一个实数的相反数?我们可以将该实数在数轴上标记出来,然后将该点关于原点对称得到的点就是这个实数的相反数。

(3) 什么是绝对值?实数的绝对值表示该实数到零点的距离,表示方法为用两个竖线|| 把这个实数括住。

2. 计算题(1) 计算:6.5 × 3.2 + 7.8 × 4.1答案:6.5 × 3.2 + 7.8 × 4.1 = 20.8 + 31.98 = 52.78(2) 计算:49.6 ÷ 0.8²答案:49.6 ÷ 0.8² = 49.6 ÷ 0.64 = 77.5(3) 计算:(5 + 3) × 2⁴ + 12 ÷ 3答案:(5 + 3) × 2⁴ + 12 ÷ 3 = 8 × 16 + 4 = 128 + 4 = 1323. 解决问题(1) 小明有24张卡片,他计划把这些卡片分成相等的若干堆,每堆放5张卡片,最后还剩3张卡片。

他一共分成了几堆?解答:我们可以设小明一共分成了x堆,根据题目描述可以得到方程 24 = 5x + 3。

移项得到:5x = 24 - 3 = 21。

因为需要分成整数堆,所以可以整除,解得x = 4。

所以小明一共分成了4堆。

(2) 一支比赛队伍有6名队员,其中甲队有4名队员,乙队有2名队员。

现从这支队伍中选取2名队员参加一项比赛,请问共有多少种不同的选择方式?解答:根据组合数学中的思想,我们可以计算出C(4, 2) + C(2, 2) = 6种不同的选择方式。

其中C(n, m)表示从n个元素中选取m个元素的组合数。

4. 应用题(1) 某商店一种牌子的手机在活动前售价为600元,活动期间按9折销售,活动结束后又涨价了10%。

初二数学综合试题及答案

初二数学综合试题及答案

初二数学综合试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是无理数?A. 3.14159B. πC. 0.33333…D. √2答案:D2. 如果一个数的平方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 所有选项答案:D3. 一个直角三角形的两个直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 1和0答案:D5. 根据题目所给的选项,下列哪个表达式是正确的?A. |-3| = 3B. -|-3| = -3C. |-3| = -3D. -|-3| = 3答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是________。

答案:57. 一个数的绝对值是8,这个数可能是________或________。

答案:8或-88. 一个数的立方等于它本身,这个数可能是________、________或________。

答案:1、-1、09. 一个数的平方等于16,这个数可能是________或________。

答案:4或-410. 一个数的平方根是4,这个数是________。

答案:16三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2)^3(2) √64(3) |-5| + |-3|答案:(1) -8(2) 8(3) 812. 解下列方程:(1) 2x + 5 = 11(2) 3x - 4 = 14答案:(1) x = 3(2) x = 613. 计算下列代数式的值:(1) (3x - 2y)(2x + 3y)(2) (x + 2)^2,当x = 1时答案:(1) 6x^2 + 9xy - 4y^2(2) 9四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

初二数学综合练习题及答案

初二数学综合练习题及答案

初二数学综合练习题及答案1. 有一个数是25,将它的10%增加到原来的数上,结果是多少?解答:原数是25,将它的10%增加到原来的数上等于原数加上原数的10%。

计算可得:25 + (25 × 10%) = 25 + 2.5 = 27.5答案:27.52. 设x表示一个小于10的正整数,如果x的平方加上50等于x的三倍减去12,求x的值。

解答:根据题意,我们可以列方程来解决这个问题。

x² + 50 = 3x - 12移项得:x² - 3x + 62 = 0由于题目中规定了x是小于10的正整数,我们可以通过试错法来求解。

当x = 1时,左边等式为:1² - 3 × 1 + 62 = 60,不符合要求。

当x = 2时,左边等式为:2² - 3 × 2 + 62 = 62,符合要求。

所以,x的值为2。

答案:23. 已知集合A = {-2, -1, 0, 1, 2},集合B = {0, 2, 4, 6, 8},求A与B的交集、并集和差集。

解答:集合A与集合B的交集是指同时属于A和B的元素,表示为A∩B。

A∩B = {0, 2}集合A与集合B的并集是指A和B所有元素的集合,表示为A∪B。

A∪B = {-2, -1, 0, 1, 2, 4, 6, 8}集合A与集合B的差集是指只属于A而不属于B的元素的集合,表示为A-B。

A-B = {-2, -1, 1}答案:交集:{0, 2}并集:{-2, -1, 0, 1, 2, 4, 6, 8}差集:{-2, -1, 1}4. 若a, b分别是两个正整数满足a² - b² = 48,并且a > b,求a和b的值。

解答:我们知道两个数的差的平方可以表示成两个数的和乘以差的形式,即a² - b² = (a + b)(a - b)。

根据题意得到方程:(a + b)(a - b) = 48根据题目中的条件a > b,我们可以列出可能的因子对并求解方程:1. a + b = 48, a - b = 1,解得a = 24.5,不符合题目中要求的正整数;2. a + b = 24, a - b = 2,解得a = 13,b = 11;3. a + b = 16, a - b = 3,解得a = 9.5,不符合题目中要求的正整数;4. a + b = 12, a - b = 4,解得a = 8,b = 4;因为题目要求a和b是正整数,所以只有第二种情况符合条件。

初二数学综合练习题及答案

初二数学综合练习题及答案

初二数学综合练习题及答案1. 以分数的形式写出下列小数:a. 0.6b. 0.25c. 0.75d. 0.125答案:a. 6/10b. 25/100c. 75/100d. 125/10002. 两数的和是30,差是14,求这两个数。

答案:设其中一个数为x,根据题意可得:x + (x - 14) = 302x - 14 = 302x = 30 + 142x = 44x = 22所以这两个数分别为22和8。

3. 甲、乙两人一起修一段铁轨,甲单独修完需要4天,乙单独修完需要6天。

如果两人一起修,他们需要多少天才能完成?答案:甲单独修完的工作效率是1/4,乙单独修完的工作效率是1/6,设两人一起修完的时间为x天,则他们一起的工作效率是1/x。

根据题意可得:1/4 + 1/6 = 1/x3/12 + 2/12 = 1/x5/12 = 1/x将等式两边取倒数,得:12/5 = x/1x = 12/5x = 2.4所以,甲乙两人一起修完需要2.4天。

4. 小明有5张红色的卡片,6张黄色的卡片,他从两堆卡片中分别取出一张,那么取出的两张卡片中至少有一张红色卡的概率是多少?共有5 + 6 = 11张卡片,从中任意取出两张的情况总数为C(11, 2) = 55。

取出的两张卡片中,至少有一张红色卡的情况总数为:只有一张红色卡的情况:5 * 6 = 30两张卡片都是红色卡的情况:5 * 4 = 20所以,取出的两张卡片中至少有一张红色卡的概率为(30 + 20)/55 = 50/55 = 10/11。

5. 甲、乙两数之和是65,差是15,求甲、乙两数分别是多少。

答案:设甲、乙两数分别为x和y,根据题意可得:x + y = 65x - y = 15将第二个等式两边同时加上y,得:x = y + 15将上面的表达式代入第一个等式中,得:(y + 15) + y = 652y + 15 = 652y = 65 - 152y = 50y = 50/2y = 25将y的值代入第一个等式中,得:x + 25 = 65x = 65 - 25x = 40所以,甲、乙两数分别为40和25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下学期期末考试数学试卷一、选择题(每小题3分,共36分)1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( )A .2个B .3个C .4个D .5个 2.下列运算正确的是( )A .y x y y x y --=-- B .3232=++y x y x C .y x y x y x +=++22 D .y x y x x y -=-+122 3.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( )A .b <cB .b >cC .b=cD .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( )A .1B .2C .3D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( ) A .1个 B .2个 C .3个 D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B 关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中A B OyxABCDEABEDC正确结论的个数为( )A .1个B .2个C .3个D .4个第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( ) A .①②③ B .②③④ C .①③④ D .①②③④ 二、填空题(每小题3分,共18分)13. 已知一组数据10,10,x ,8的众数与它的平均数相等,则这组数的中位数是 .14.观察式子:a b 3,-25a b ,37a b ,-49a b ,……,根据你发现的规律知,第8个式子为 .15.已知梯形的中位线长10cm ,它被一条对角线分成两段,这两段的差为4cm ,则梯形的两底长分别为 .16直线y=-x+b 与双曲线y=-x 1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2= .17. 请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________.18.已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为_________.三、解答题(共6题,共46分)19.( 6分)解方程:011)1(222=-+-+xx x x20. (7分) 先化简,再求值:2132446222--+-•+-+a a a a a a a ,其中31=a .21.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=xk2的图象交于A (1,-3),B(3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积.A B C D OxyABC EDOA BO xy ABO x yXYA DBC PO22.(8分)小军八年级上学期的数学成绩如下表所示:测验 类别 平 时期中 考试 期末 考试 测验1 测验2 测验3 测验4 成绩11010595110108112(1)计算小军上学期平时的平均成绩;(2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?23.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?24.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y (毫克)与时间x (分钟)成正比,药物喷洒完后,y 与x 成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.(1)求喷洒药物时和喷洒完后,y 关于x 的函数关系式;(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?期末 50%期中 40%平时 10% A F EDC B 10 8O x y (分钟) (毫克)B DAF EG C四、探究题(本题10分)25.如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.五、综合题(本题10分)26.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .(1)求证:AD 平分∠CDE ;(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.BACA BCE O D xy参考答案二、填空题(每小题3分,共18分)13.10 14.-817a b 15.6cm ,14cm ,16.2,17.略,18.(2,4),(2.5,4),(3,4),(8,4) 三、解答题(共6题,共46分)19. X=-3220.原式=-a1,值为-321.(1)y=x -4,y=-x3. (2)S △OAB =422.(1)平时平均成绩为:)分(105411095105110=+++(2)学期总评成绩为:105×10%+108×40%+112×50%=109.7(分) 23.(1)(略) (2)AB=AC 时为菱形,∠BAC=150º时为矩形.24.(1)y=x 54(0<x ≤10),y=x80. (2)40分钟(3)将y=4代入y=x 54中,得x=5;代入y=x80中,得x=20.∵20-5=15>10. ∴消毒有效.四、探究题(本题10分)25.(1)FG ⊥CD ,FG=21CD. (2)延长ED 交AC 的延长线于M ,连接FC 、FD 、FM.∴四边形 BCMD 是矩形. ∴CM=BD.又△ABC 和△BDE 都是等腰直角三角形. ∴ED=BD=CM. ∵∠E=∠A=45º∴△AEM 是等腰直角三角形. 又F 是AE 的中点.∴MF ⊥AE ,EF=MF ,∠E=∠FMC=45º. ∴△EFD ≌△MFC.∴FD=FC ,∠EFD=∠MFC. 又∠EFD +∠DFM=90º ∴∠MFC +∠DFM=90º即△CDF 是等腰直角三角形. 又G 是CD 的中点.∴FG=21CD ,FG ⊥CD. 五、综合题(本题10分)26.(1)证:由y=x +b 得 A (b ,0),B (0,-b ).∴∠DAC=∠OAB=45 º又DC ⊥x 轴,DE ⊥y 轴 ∴∠ACD=∠CDE=90º ∴∠ADC=45º 即AD 平分∠CDE.(2)由(1)知△ACD 和△BDE 均为等腰直角三角形. ∴AD=2CD ,BD=2DE.∴AD ·BD=2CD ·DE=2×2=4为定值. (3)存在直线AB ,使得OBCD 为平行四边形.若OBCD 为平行四边形,则AO=AC ,OB=CD. 由(1)知AO=BO ,AC=CD设OB=a (a >0),∴B (0,-a ),D (2a ,a )∵D 在y=x2上,∴2a ·a=2 ∴a=±1(负数舍去)∴B (0,-1),D (2,1). 又B 在y=x +b 上,∴b=-1即存在直线AB:y=x -1,使得四边形OBCD 为平行四边形.。

相关文档
最新文档