(1)湿型砂的性能要求
常用型砂种类

机器造 )’ %’&()*& &.,/&.&.* * — ,.-/*.+ — 2&/)+& ’-/%& +.— — 型活化砂, 铸造机床 铸件
・ 2&, ・
第三篇
造型材料
配 比 (!) 碳酸钠 煤 粉 (以膨润 其他 土为基) 含水量紧实率 ( ! )( ! ) 性 湿 压 热湿拉 透气性 强 度 强 度 能 含泥量 用 其 他 途
%
—
.,/ + -,. &’’ + )’’ %0 + 11 —
0
—
1’(&-’
&’’
1,%
—
—
—
.,% + -,’
2 &’’
%’ + 1% —
1
—
1’(&-’
&’’
-,%
—
—
煤粉 ) + - .,’ + -,’
2 /’
%’ + 1’ —
表.5)5序 号 旧 砂 新 砂
工厂有色合金铸件湿型砂配方及性能实例
第三篇
造型材料
配 比 ( !) 他 含水量 ( !) 性 透气性 能 湿压 紧实 用 途 强度 率 ( !) ("#$) 小型铸 钢件 3 &’’"4 碳 钢件 3 &’’"4 耐 热钢件
序 号 旧 砂
新 砂 膨润土 碳酸钠 糊 精 其 粒度组别 加入量 &’’()’’ &’’ * + && ’,) ’,) + ’,—
震击造 %* *( ,( 0/()-/( — — ./()2/( — !’( 2*)*0 — — — 型背砂, 铸 造灰铸铁 缸体 黏土 0( 2( 0(+.( -( &)’ — %)0 木屑 手工造 2/.)&/. — 1 ,.( &()*( — ,(),. — 型, 铸造灰 铸铁大件
高密度湿型的型砂性能要求

壁 移动 而导 致铸 件 出现 疏松 和胀 砂缺 陷 。 生产 较大铸
件 的高 密度砂 型所用 砂 箱没 有箱 带 , 高强度 型砂 可 以 避 免塌 箱 、 箱 和漏 箱 。无 箱造 型 的砂型 在造 型后 缺 胀 少 砂箱 支撑 也需 要具 有 一定 的强 度 。 压 造 型时顶 出 挤 的砂 型要推 动 先前 造好 的砂 型 向前移 动 , 更对 型砂 的 强 度 提 出较 高要 求 。但 是 , 强度 也不 宜过 高 。因 为高 强 度 的型砂 需要 加 入更 多 的膨润 土 , 不但 影 响型砂 的
前 言
湿 度状 况 、 输距 离 、 运 型砂温 度 等 因素面 异 。 果 只根 如
据混 砂机 处 取样检 测结 果控 制 型砂 的湿度 , 要略增 就 少许 , 以补偿 紧实 率 和水分 的损 失 。 以前 的观 点 认 为 手工 造 型 和震 压 式 机 器 造 型最 适 宜 干 湿 状 态 下 的 紧实 率 大 约 在 4 ~5 ; 压 造 5 O 高 型 和气 冲造 型 时 为 4 ~4 ; O 5 挤压 造 型 要 求 流 动 性
砂 量过小 。表 明型砂 干湿状 态 的参数 有 两种 : 紧实 率
和含水 量 。
附表 中 国 内各 厂 的紧 实率 和含 水 量 除特 别 注 明 以外 , 样地 点都在 混 砂机 处 。但是 型砂 紧实率 和含 取
水 量 的控 制应 以造型处 取样 测 定为 准 。 混砂 机运 送 从
欧 洲铸 造工 厂 的型砂 湿压 强度 比美 、 日两 国工厂 高 的
原 因 之 一是 由 于 欧 洲 铸铁 用 原 砂 含 SO。 高 , i 较 型砂
中必须 加 入 大量 膨 润 土才 能 避 免 铸件 产 生 夹 砂结 疤
湿型砂

半型砂箱基本简介高密度造型方法(或称高紧实度造型,包括多触头高压、气冲、挤压、射压、静压、真空吸压等造型方法)的生产效率高、铸件品质较好,因而国内应用日益普遍。
高密度造型对型砂品质的要求比较严格。
本文用表格仅列举出作者搜集的一些比较典型的国内外铸造工厂实际应用的和部分设备公司推荐的高密度砂型的型砂性能,并在以下段落中加以评论。
受纸张宽度限制,只在表格中列出几种主要的和经常测定的性能。
数据搜集来源一部分为近年来中外公开发行刊物,在表格最右侧注明刊物名称和出版年月或期号。
另一部分是由各公司或工厂的工程师最近提供的。
在表中只标明数据获得日期而不具体注明工厂名称。
所列举数据只是当时情况,并不代表目前的实际状况。
表中工厂编号A、B、C分别代表国外工厂(或外资厂)、合资厂、本国厂。
符号中―○‖—造型机处取样;―●‖—混砂机处取样;―□‖—型砂含泥量;―*‖—旧砂含泥量。
1、紧实率和含水量湿型砂不可太干,否则膨润土未被充分润湿,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔和冲蚀缺陷。
型砂也不可太湿,过湿型砂易使铸件产生针孔、气孔、呛火、水爆炸、夹砂、粘砂等缺陷,而且型砂太粘、型砂在砂斗中搭桥、造型流动性降低,砂型的型腔表面松紧不均,还可能导致造型紧实距离过大和压头陷入砂箱边缘以内而损伤模具和砂型吃砂量过小。
表明型砂干湿状态的参数有两种:紧实率和含水量。
附表中国内各厂的紧实率和含水量除特别注明外,取样地点可能都在混砂机处。
但是型砂紧实率和含水量的控制应以造型处取样测定为准。
从混砂机运送到造型机时紧实率和含水量下降幅度因气候温度和湿度状况、运输距离、型砂温度等因素而异。
如果只根据混砂机处取样检测结果控制型砂的湿度,就要增多少许以补偿紧实率和水分的损失。
多年前的观点认为手工造型和震压式机器造型造型机处最适宜干湿状态的紧实率约在45~50%;高压造型和气冲造型为40~45%;挤压造型要求流动性好,紧实率为35~40%。
高密度湿型的型砂原材料品质要求

高密度湿型的型砂原材料品质要求于震宗(清华大学)2002年5月摘要高密度湿型对型砂的原材料提出比较高的要求。
应当选购高品质的膨润土和煤粉。
使用淀粉的铸造工厂应注意其中是否含有杂质。
文章还对回用砂和原砂的性能提出要求。
此外,也不可使用含电解质过多的和被污染的水。
关键词高密度湿型型砂原材料The Quality Requirement of Raw Materials for High Density MoldingYu Zhenzong (Tsinghua University)Abstract The high density molding set a comparative higher requirement on the quality of raw materials for molding sand. Bentonite and seacoal of excellent quality should be choiced. The starch user should be aware whether it contains any impurities. This paper also speaks of the property requirements of reused sand and new sand. In addition, the water containing high level electrolyte or contaminated water cannot be used for sand preparation.Keywords High Density Molding Raw Materials of Molding Sand前言高密度造型(或称高紧实度造型)包括多触头高压、气冲、挤压、射压、静压、吸压等造型方法对型砂品质的要求比较严格[1]。
制备出高品质型砂的最主要关键之一是选用优良品质的型砂原材料。
铸钢用湿型砂的性能分析及控制

26 含 泥 量 .
型砂 必 须具 备一定 的强 度 ,以承受各 种
外 力 的作用 。如 果强 度不 足 , 在起模 、 运砂 搬
型、 下芯 、 箱 等 过 程 中 , 型 有 可能 造 成 破 合 铸
损 塌 落 ;浇 注 时也可 能承受 不住 金属 液 的冲 刷 和 冲击 , 型被 冲 坏造 成 铸件 砂 孔 、 肉 、 砂 多
型铸造得 到 广泛应用 。 我 车间正 是基 于湿 型 的诸多 优点 .采 用 了石 英砂 湿 型铸造 方法 , 经过 不断 摸 索 、 研究 和改进 , 已能生 产 出结 构较 为复 杂 、 现 重量 达
由于湿 型本 身存在 以上 缺陷 。这就 要求
在生产 中加 强湿 型砂各 种性 能 的控制 。使之 达 到较 好 的使用效 果 , 同时 , 造型设 备必 须使 砂 型 紧实 、 匀 , 模 平 稳 , 型腔 具 有较 高 均 起 使
维普资讯
《 重庆重 汽 科技》
20 0 7年 第 1 期
铸钢用湿型砂 的性 能分析及控制
冯小涛
【 摘要 】 本文说明了湿型铸造 的特点 , 对铸钢用湿型砂 的主要性能进行 了分析 , 而根据铸钢 进
生 产 的特 点 提 出 了对 型 砂 各 主要 性 能 的控 制措 施 . 以得 到 质 量较 好 的 铸钢 件 。
关键 词
湿型
湿型砂
性能
水分
湿 压 强度
湿 透气性
紧 实率
流 动性
前 言
遇 时 , 分 蒸 发 , 积骤 胀 , 使 铸钢 件产 生 水 体 易 气孔 缺陷 。
在 砂 型铸造 中 .根据 砂型 在合 箱和 浇注 时的状 态 不 同可 以分 为湿 型 、干型 和表 面干 型三类 。 它们 的区别 主要在 于 : 型在造好 型 湿 后 不必 烘干 . 可直 接浇 入高 温金属 液 体 ; 型 干 在合箱 和浇 注前 要将 整个 砂型送 入 窑炉 中烘 干 :表 面干 型只 需将砂 型 型腔表 面烘 干到 一 定深 度 即可 , 必全部烘 干 。 不
粘土湿型砂的控制要点

粘土湿型砂的控制要点粘土湿型砂在铸造工艺中起着重要的作用,控制好粘土湿型砂的质量是确保铸件质量和生产效率的关键。
以下是控制粘土湿型砂质量的要点:1. 选择合适的粘土湿型砂配方:根据铸件的要求和工艺要求,选择合适的粘土种类和比例。
不同的粘土具有不同的粘结性和流动性,要根据具体情况进行选择,保证铸件的表面光滑度和精度。
2. 严格控制水分含量:粘土湿型砂中的水分含量对于浇铸过程和铸件的表面质量有着重要影响。
过少的水分会导致砂型难以成型和裂纹的产生,过多的水分则会造成砂型的变形和铸件的表面缺陷。
因此,要通过严格控制水分含量来确保砂型的强度和铸件的质量。
3. 控制粘度和流动性:粘度和流动性是粘土湿型砂的两个重要指标,直接影响到砂型的成型性能和浇注的顺利进行。
通过控制粘土的粒度分布、粘接剂的种类和比例等因素,调整粘土的粘度和流动性,确保砂型的成型质量和铸件的形状精度。
4. 保证砂型的干燥性能:粘土湿型砂在使用前需要进行干燥处理,以去除多余的水分。
因为湿度高的砂型易造成铸件内部气孔,降低铸件的强度和表面质量。
因此,在干燥处理过程中,要严格控制砂型的干燥温度和时间,确保砂型的干燥性能。
5. 严格控制砂型质量:粘土湿型砂的质量对于铸件的成型质量和表面质量至关重要。
因此,要定期进行砂型的质量检测,包括外观检查、尺寸测量、强度测试等。
对于不合格的砂型,要及时进行处理或更换,以保证生产的正常进行。
6. 做好砂型的储存和保管:在使用粘土湿型砂的过程中,要做好砂型的储存和保管工作。
砂型应放置在干燥、通风的环境中,避免接触水分和其他污染物。
同时,要定期检查砂型的保存状态,及时处理发现的问题,以保证下次使用时的质量。
通过以上的控制要点,可以有效地提高粘土湿型砂的质量,确保铸件的表面质量和生产效率的提升。
粘土湿型砂在铸造工艺中扮演着重要的角色,其质量的控制直接影响到铸件的成型质量和表面质量。
为了保证粘土湿型砂具备良好的流动性和粘结性,需要在配方设计、水分控制、粘土颗粒分布、干燥处理、质量检测以及储存保管等方面进行精细的控制。
湿型砂解析PPT课件

5.韧性:韧性是指型砂抵抗外力破坏的性能。 6.不粘模性:型(芯)砂粘附模样或芯盒表面的性质。 (2)铸件浇注、冷却、落砂、清理要求。
1.耐火度:型(芯)砂抵抗高温作用的性能。 2.透气性:砂型让气体通过而逸出的能力。 3.发气量和有效煤粉含量:型砂中煤粉或有机物(如 重油、沥青等)受热挥发气体量称发气量; 4.退让性:型砂随铸件收缩而体积减小的能力 5.溃散性:型芯砂在清理时的溃散性能。
山砂——风化后的产物或就地贮集的砂矿称为山砂,含泥分较多
, 粒形不规则,如江苏六合红砂、河北唐山红砂等。
河砂、湖砂、海砂——经过水力搬运,含泥量少,颗粒较圆,
粒度均匀,海砂如北戴河砂、新会砂、福建东山砂;湖砂如江西都 昌砂、星子砂;河砂如上海吴淞砂、河南郑庵 砂;
风砂——经风力搬运的砂称为风积砂。内蒙古通辽市大林、哲里木
• 原理:通过在一定条件下气体流过试样时所受到的阻 第11页/共92页
• 测量方法
• 标准法:如图2-1-2,在 水封钟罩内吸入2000cm3 空气,造成10g/cm2的压 力条件,用秒表测出在 该压力下2000cm3空气通 过试样流出的时间t,并 记下气压计读数(p)
第12页/共92页
• 透气率
第22页/共92页
• 韧性的测定 • 落球法:标准抗压试样、
φ50mm,510克钢球, 12.7mm的筛。 • 破碎指数:留在筛网上的型 砂质量占试样质量的比值。 • 表示在冲击条件下的韧性 • 高,表示型砂的起模性好, 过高,流动性差,不够致密。
• 跌碎法:试样从1.8米的高 第23度页/直共9接2页坠 落 到 铁 砧 上 。
第25页/共92页
(2)测量
测热湿拉强度
见图2-1-9。模拟金属浇 入铸型后型砂的受热情况。 湿型砂试样φ50mmх50mm, 加热板温度320±10℃, 紧贴20-30s,形成5mm左 右的干砂层及水分凝聚区, 测定热湿拉强度。
(1)湿型砂的性能要求

湿型砂的性能为了保证湿型铸件具有良好的表面质量,必须使用良好性能的型砂。
本文将介绍高质量湿型砂的性能要求、工厂实际应用实例,并分析型砂性能与铸件品质之间的关系。
一般认为使用造型紧实压力150~400kPa的普通震压式造型机,砂型平面硬度才只有70~80度,垂直面下端硬度可能只有50~60度,铸件局部极易产生缩孔、缩松、胀砂和粘砂缺陷。
由于砂型平均密度仅1.2~1.3 g/cm3,称为低密度造型或低压造型。
为了克服上述缺点,出现了气动微震造型机,在压实的同时增添了震动作用,改善了砂型紧实时型砂的流动性能,使压实比压几乎相当于提高了一倍,达到400~700kPa左右,砂型平面硬度大约为80~90度,平均密度可能在1.4~1.5g/cm3范围内。
密度比较均匀,减少了局部缩松、胀砂和粘砂缺陷。
近代化造型机的压实比压有可能提高到700kPa或稍高,所得到砂型表面硬度大约为90~95度,平均密度可达1.5~1.6g/cm3,称为高密度造型方法。
高密度造型的生产效率高、铸件尺寸精度高,机械加工余量少。
应用多触头高压、气冲、挤压(即垂直分型无箱射压造型)、射压、静压等造型机制成砂型都可能达到上述的紧实密度,因而国内外应用日益普遍。
为了具体说明湿型砂的性能和控制范围,本文数据搜集大部分取自上世纪90年代中外公开发行刊物。
还有一部分数据是由国内各工厂的工程师提供的,凡属未正式发表过的都不注明工厂名称,所列举数据只是当时情况,并不代表目前实际状况。
本文中各种性能排列顺序基本上按照日常检验的顺序和常用性。
有关型砂检测方法另有专门文章中介绍。
1 紧实率和含水量型砂的手感干湿程度是极为重要的性能,它反映型砂是否处于最适宜的造型状态。
直到1969年才找到如何用数值衡量型砂干湿程度的方法,即测定型砂的紧实率。
湿型砂不可太干,紧实率不可过低,因为型砂中膨润土未被充分润湿,性能较为干脆,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔和冲蚀缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湿型砂的性能为了保证湿型铸件具有良好的表面质量,必须使用良好性能的型砂。
本文将介绍高质量湿型砂的性能要求、工厂实际应用实例,并分析型砂性能与铸件品质之间的关系。
一般认为使用造型紧实压力150~400kPa的普通震压式造型机,砂型平面硬度才只有70~80度,垂直面下端硬度可能只有50~60度,铸件局部极易产生缩孔、缩松、胀砂和粘砂缺陷。
由于砂型平均密度仅1.2~1.3 g/cm3,称为低密度造型或低压造型。
为了克服上述缺点,出现了气动微震造型机,在压实的同时增添了震动作用,改善了砂型紧实时型砂的流动性能,使压实比压几乎相当于提高了一倍,达到400~700kPa左右,砂型平面硬度大约为80~90度,平均密度可能在1.4~1.5g/cm3范围内。
密度比较均匀,减少了局部缩松、胀砂和粘砂缺陷。
近代化造型机的压实比压有可能提高到700kPa或稍高,所得到砂型表面硬度大约为90~95度,平均密度可达1.5~1.6g/cm3,称为高密度造型方法。
高密度造型的生产效率高、铸件尺寸精度高,机械加工余量少。
应用多触头高压、气冲、挤压(即垂直分型无箱射压造型)、射压、静压等造型机制成砂型都可能达到上述的紧实密度,因而国内外应用日益普遍。
为了具体说明湿型砂的性能和控制范围,本文数据搜集大部分取自上世纪90年代中外公开发行刊物。
还有一部分数据是由国内各工厂的工程师提供的,凡属未正式发表过的都不注明工厂名称,所列举数据只是当时情况,并不代表目前实际状况。
本文中各种性能排列顺序基本上按照日常检验的顺序和常用性。
有关型砂检测方法另有专门文章中介绍。
1 紧实率和含水量型砂的手感干湿程度是极为重要的性能,它反映型砂是否处于最适宜的造型状态。
直到1969年才找到如何用数值衡量型砂干湿程度的方法,即测定型砂的紧实率。
湿型砂不可太干,紧实率不可过低,因为型砂中膨润土未被充分润湿,性能较为干脆,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔和冲蚀缺陷。
型砂也不可太湿,紧实率不可过高,否则型砂太粘,造型时型砂容易在砂斗中搭桥和降低造型流动性,还易使铸件产生针孔、气孔、呛火、水爆炸、夹砂、粘砂等缺陷。
根据造型方法、操作习惯不同,对型砂的干湿程度要求也不相同。
手工造型要求起模性好,希望型砂较湿一些。
高密度造型要求型砂具有较高流动性,以便砂型各处紧实均匀,希望型砂稍干一些。
型砂紧实率控制应以造型处取样测定为准。
从混砂机运送到造型机时紧实率下降幅度因气候温度和湿度状况、运输距离、型砂温度等因素而异。
工厂实测经验表明,一般情况下造型机处紧实率可能比混砂机中低2%以上。
南方潮湿阴冷季节,紧实率下降可能不足1%。
以前的论点是手工造型和震压式机器造型用型砂要求起模性好,最适宜干湿状态下的紧实率大约在50%;高压造型和气冲造型时为45%;射压和挤压造型要求较高的流动性好,紧实率为40%。
近年来各国铸造工厂的型砂紧实率都有降低趋势。
这是因为高密度造型设备的起模精度提高,而且砂型各部位硬度均匀分布的要求使型砂的流动性成为更重要的考虑因素。
工厂的控制原则大多是只要不影响起模,就尽量压低紧实率。
DISA公司挤压造型和HWS公司静压造型都建议用40±2%;AGM公司要求水平无箱吸压造型用40±5%;GF、BMD和FA公司推荐气冲造型用型砂紧实率分别为35~40%、38~42%和36~39%。
加拿大矿业能源技术中心1988年调查76家各种造型方法的铸铁工厂中铸件品质优良的高密度造型型砂紧实率为35~45%。
日本土芳公司1979~1985年调查125种湿型(包括中、高密度造型)铸铁生产线的紧实率平均值为38.0%;1998年再一次调查94种型砂紧实率平均值降为35.8%。
GF、BMD和FA公司推荐气冲造型用型砂紧实率分别为35~40%、38~42%和36~39%。
目前铸件品质较好的高密度造型的工厂中,造型机处取样型砂紧实率通常都在34~38%之间,比起当年有明显的降低趋势。
震压造型和气动微震造型的的起模精度稍差,型砂紧实率可能在36~45%。
手工造型需要型砂更湿一些,紧实率约在45~55%。
型砂含水量指含有水分的绝对量,它是紧实率的从变数。
当型砂的干湿程度(紧实率)要求确定后,如果型砂含泥量高,就需提高含水量;含泥量低,就要降低含水量。
不过,在正常生产条件下,型砂含水量与紧实率仍然具有一个比率关系。
从混砂机运送到造型机时含水量也会下降,大约降低0.1~0.2%左右,控制型砂性能应以造型处为准。
由资料上可以看到国外用高压造型、气冲造型方法生产汽车、拖拉机等铸件的灰铁和球铁铸造工厂高密度砂型的型砂含水量大多数在2.6~3.8%之间(集中在3.2%左右)。
例如美国通用汽车公司Pontiac 铸造厂生产缸体、缸盖的型砂––3.0~3.3%,Chevolet铸造厂––2.8~3.4%。
福特汽车厂Cleveland铸造厂汽缸体高压造型线––3.2±0.2%,生产进排气管––2.8~3.4%。
美国John Deere公司缸体型砂含水3.0~3.4%,缸盖––3.5~3.8%,泵阀––2.7~3.1%。
德国大众汽车公司生产缸体––3.4~3.6%。
奔驰汽车厂生产刹车鼓––3.2%。
意大利FA公司推荐气冲造型机用型砂––3.0~3.4%。
瑞士GF公司调查五家欧洲气冲造型铸造厂的型砂含水量分别为2.9%、3.64%、4.1%、4.3%和4.4%。
德国Berndt调查四家气冲和高压铸造厂平均为3.48%、3.82%、3.87%和4.2%。
日本土芳公司调查八家静压和气冲造型铸造工厂的型砂含水量在2.5~4.0%范围内,平均为3.1%。
欧美各国的铸钢型砂的含水量和挤压造型的铸铁型砂含水量也在上述范围内。
凡是生产大量树脂砂芯铸件(如发动机铸件)的型砂含水量大多偏于下限。
生产少砂芯铸件的型砂可能接近上限。
这是因为大量树脂砂芯溃散后混入型砂使含泥量下降,型砂吸水量降低。
国外工厂经验认为湿型砂的含水量也不可过低,假如含水量不足2.5%,只要有±0.2%的波动就会对型砂的各种性能造成巨大影响。
使用震压和气动微震造型的型砂含水量比高密度造型的型砂高一些,可能在3.4~4.0%,手工造型含水量更高,通常在4.0~5.5%。
型砂的(紧实率)/(含水量)比值是个重要的控制参数,可表示每1%型砂含水量能够形成多少紧实率。
高密度造型的型砂最好在10~12。
由国内几家外商独资或合资企业的检验结果计算比值都大致在此范围内。
三家乡镇铸造厂的比值在5.0~8.5之间,说明型砂中吸水物质过多。
2 透气性砂型的排气能力除了靠冒口和排气孔来提高以外,更要靠型砂的透气性。
因此砂型的透气性不可过低,以免浇注过程中发生呛火和铸件产生气孔缺陷。
但是绝不可理解为型砂的透气性能越“高”越“好”。
因为透气性过高表明砂粒间孔隙较大,金属液易于渗透入砂粒间孔隙中造成铸件表面粗糙,还可能发生机械粘砂。
所以湿型用面砂和单一砂的透气性能是否“好”,指的是透气性是否在一个适当的范围内。
型砂工艺规程应当同时规定透气性的下限和上限。
对湿型砂透气性的要求需根据浇注金属的种类和温度、铸件的大小和厚薄、造型方法、是否分面砂与背砂、型砂的发气量大小、有无排气孔和排气冒口、是否上涂料和是否表面烘干等等各种因素而异。
用单一砂生产中小铸件时,型砂透气性能的选择必须兼顾防止气孔与防止表面粗糙或机械粘砂两个方面。
高密度造型的砂型排气较为困难,要求型砂的透气性比起低、中密度机器造型(如震压造型、震击造型等)的型砂稍高些。
BMD公司推荐气冲造型用型砂的透气率为为120~140;新东公司要求水平无箱射压造型为>120。
国际密烘铸铁公司认为高压造型最好用100~200。
B&P公司的水平无箱射压造型要求60~120。
AGM水平无箱吸压造型要求80~120。
国外一些铸造工厂实际应用的高密度砂型的型砂(单一砂、型腔表面无涂料、铸铁及铸钢件)透气率举例如下:德国生产大众汽车缸体的Luitpold铸造厂型砂为90~110。
Hofmann 调查欧州五家铸造厂气冲型砂分别为67、78、89、110和164。
Berndt调查两条气冲线透气率平均值分别为75和141.8。
加拿大矿业能源技术中心调查76家各种造型方法的球铁和灰铁铸造工厂中,铸件品质优良的透气率在120~180范围内。
德国Rexroth要求高压造型为110~135。
美国使用SPO高压造型线生产缸体和缸盖的John Deere铸造厂为75~90,通用汽车厂Pontiac铸造厂为100~130。
福特汽车厂生产排气管用型砂为150。
日本土芳公司1998年对5条高压线调查结果平均为148,26条挤压线平均为108。
宫本润调查6条水平分型无箱射压线为60~115。
三菱自动车的2070挤压线作业标准为140±20。
以上数据可以看出有些透气率数值>160,其原因可能是由于有大量粗粒溃碎芯砂混入回用的旧砂中使型砂粒度变粗,或者是由于除尘系统风力过强使旧砂中微细颗粒被吸掉。
如果已经影响到铸件表面光洁程度,应当及时向型砂中掺入细粒原砂,或者调整除尘风力和将全部旋风分离器中细粒和布袋除尘器中部分的粉料返回旧砂回送系统中。
较为适当的高密度造型型砂透气性大多在100~140之间。
如果型砂透气性在160以上或更高,除非在砂型表面喷涂料,否则铸件表面会出现粗糙甚至有局部机械粘砂。
一般机器造型的紧实密度稍低,型砂透气性可以为70~100。
手工造型便于在砂型上扎排气孔,型砂透气性可以更低,例如50~80。
应当注意型砂标准试样测得的透气性与砂型的排气能力并非同一概念,因为砂型的排气除了靠型砂的透气性以外,取决于①砂型的实际紧实程度:砂型的紧实程度与型砂标准试样有极大区别。
同一砂箱中各个部位的差别也会很大。
例如气冲造型砂型的工作表面密度较高,而砂型背面就较松软,有利于排气。
由于型砂的流动性和可紧实性有限,型腔的棱角、凸缘、深坑等处不易紧实到要求的密度。
手工造型和普通机器造型时操作工人可以用手指或用尖头砂冲专门塞紧,而高密度造型机不允许人工操作,这些部位砂型松散最容易造成严重粘砂。
生产厚大铸件、金属液压头较高、金属保持液态时间较长、表面被热透的深度较大,机械粘砂更为严重。
必要时砂型局部或下砂型需喷涂醇基涂料。
②对于有砂芯铸件,必须保证砂芯所发气体能通畅地从芯头排出。
也还需要各种类型的排气渠道将散发入型腔和侵入金属液的气体排出。
生产汽缸体铸件的模样上密布短通气针以及溢流槽、溢流冒口,其目的除了可将混杂气体、渣、砂的脏铁水排出铸件以外,更重要的是保证排气通畅。
通气针形成的盲孔即使只扎穿砂型厚度的一半,也会使局部的透气能力提高一倍。
有些生产中小铸件的高密度造型方法,如挤压、射压造型等,砂型上不能扎出气孔,可以靠溢流冒口和薄片状排气槽排出气体。