一元二次方程与实际问题题型归纳
一元二次方程实际问题类型讲解

一元二次方程实际问题类型讲解
一元二次方程是一种形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。
一元二次方程在实际问题中的应用非常广泛,下面将介绍几个常见的实际问题类型:
1. 抛物线运动问题:例如一个抛出的物体在空中的运动轨迹可以用一元二次方程来描述。
方程的解可以告诉我们物体的最高点、落地时间等信息。
2. 面积和周长问题:比如求解一个长方形的边长或者一个圆的半径,可以通过建立一元二次方程来求解。
例如,已知长方形的周长为20米,要求长方形的面积最大,可以建立面积的一元二次函数并求解其最值。
3. 时间与距离问题:例如两个行人相向而行,一个以每小时4公里的速度前进,另一个以每小时6公里的速度前进,问多长时间他们相遇。
可以通过建立两个行人的距离关系的一元二次方程来解决问题。
4. 投影问题:例如一个人在斜坡上投掷物体,已知斜坡的高度和水平距离,求物体的飞行时间和最远的落点。
可以通过建立一元二次方程来求解。
5. 金融问题:一元二次方程也可以应用于金融领域,例如计算贷款的利率、还款时间等。
可以通过建立一元二次方程模型来帮助分析和解决金融问题。
这些只是一元二次方程在实际问题中的几个常见应用,实际上,一元二次方程具有广泛的应用领域,可以涉及物理、经济、工程等多个领域。
通过建立方程模型并求解方程,我们可以更好地理解和解决实际问题。
实际问题与一元二次方程公式总结

实际问题与一元二次方程公式总结一元二次方程,这个听起来有点高深的名词,其实在生活中随处可见,像是一个调皮的小孩,总是在我们不经意间出现。
你有没有想过,为什么有些时候我们在路上走着,突然发现了一道题目,问你这条路到底有多长?就是这时候,一元二次方程就可以派上用场了。
简单来说,它的形式就是ax² + bx + c = 0,这个公式里,a、b、c都是数字,而x就是我们要找的那个神秘的变量。
咱们先别被这几个字母吓着,想象一下,这就像是在解一个宝藏的谜题,越往下挖,越能发现里面的精彩。
说到这里,或许你会想,为什么这个方程在生活中如此重要呢?想想看,当我们想要知道一个物体的运动轨迹,比如一颗小球从空中掉下来的过程,或者在运动会上,跳远的同学是如何飞出去的,这些都是一元二次方程的应用。
很多时候,生活中的问题都可以变成数学题。
甚至你在计划一次旅行,想知道什么时候能到达目的地,速度和时间的问题都可以用到它,真的是“处处是学问”。
我们来聊聊求解方法吧!哎,解这个方程有好几种方法,其中最经典的就是“求根公式”,听起来是不是特别高级?它就像是一把万能钥匙,能帮你打开通往答案的大门。
公式是这样的:x = (b ± √(b² 4ac)) / (2a)。
听起来有点复杂,但别担心,只要我们把a、b、c代入进去,轻轻一算,答案就会乖乖地跑出来,像小猫一样,蹦跶着来到你面前。
你可能会问,这个“±”符号是个啥?哈哈,这可是个关键的角色。
它告诉我们,可能有两个不同的答案,就像在选择午餐时,一边是披萨,一边是汉堡,你可以随意选择。
如果b² 4ac这个部分大于零,嘿,那就有两个不同的答案。
如果等于零,那只有一个答案,就像你今天的午餐只有一个选择。
而如果它小于零,哎,那就没办法了,答案就像是被藏起来的宝藏,无论你怎么找也找不到。
光会解方程可不够,我们还得学会如何把这些答案应用到实际中。
比如,当你计算出一个物体的运动轨迹时,结合一下时间和速度,你就能知道它在什么时候到达什么地方。
实际问题与一元二次方程(传播问题)

x
1
2.要组织一场篮球联赛,赛制为单循环形式,即每两 队之间都赛一场,计划安排15场比赛,应邀请多少个 球队参加比赛? 3.要组织一场篮球联赛, 每两队之间都赛2场,计划 安排90场比赛,应邀请多少个球队参加比赛? 4.参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
…… ……
被 传 染 人
被 传 染 人
被 传 染 人
被 传 染 人
x
被传染人
x
被传染人
……
……
……
x
开始传染源
x
开始传染源
1
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
x+1+x(x+1) 人患 用代数式表示,第二轮后共____________ 了流感
x+1+x(x+1)=121
解方程,得 10 -12 (. 不合题意,舍去) _____, ______ x1 x2
10 答:平均一个人传染类问题是传播问题. 2,计算结果要符合问题的实际意义.
思考:如果按照这样的传播速度,n轮后 有多少人患流感?
(1 x)
实际问题与一元二次方程
(传播问题)
传播问题
例 1: 有一人患了流感 经过两轮传染后共 有121人患了流感, 每轮传染中平均一 个人传染了几个人?
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
被 传 染 人 被 传 染 人
一元二次方程的实际应用题型总结

一元二次方程的实际应用题型总结【一】一元二次方程的定义与解【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a -1)x |a|+1+2x -7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a -1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x -2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x -1)+1=2x 2C. x 2+3x=2xD. ax 2+bx+c -0 2、已知关于x 的方程mx 2+(m -1)x -1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a -2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x -1)2-3x (x -2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a -2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a≠0)中,abc 满足a+b+c=0和a -b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx -40=0的一个解,且a≠b ,求2222a b a b--的值【二】一元二次方程的解法一、直接开平方法1、下列方程能用直接开平方法求解的是( )A. 5x 2+2=0B. 4x 2-2x -1=0C. 12(x -2)2=4 D. 3x 2+4=2 2、若关于x 的一元二次方程5x 2-k=0有实数根,则k 的取值范围是_________3、已知(a 2+b 2-1)2=9,则a 2+b 2=_________4、已知一元二次方程ax 2+bx+c=0的一个根是1,且a ,b 满足等式4,求方程13y 2-2c=0的根5、用开平方法解下列方程(1)2 9(x 1)25-= (2)()26x 181-= (3)(x -1)2=(3x -4)2二、配方法1、(1)x 2--____)2 (2)3x 2+12x+____=3(x+____)2 (3)12x 2-5x+____=12(x -____)2 2、若x 2+ax+9是关于x 的完全平方式,则常数a 的值是__________3、多项式4x 2+1加上一个单项式后,成为一个整式的完全平方,那么加上的这个单项式可以是4、一元二次方程x 2-px+1=0配方后为(x -q)2=15,那么一元二次方程x 2-px -1=0配方后为( )A. (x -4)2=17B. (x+4)2=15C. (x+4)2=17D. (x -4)2=17或(x+4)2=175、若x 为任意实数,则x 2+4x+7的最小值为__________★★★★当x=_______时,代数式3x 2-2x+1有最_______(填大或小)值为_______6、用配方法证明:关于x 的方程(m 2-12m+37)x 2+3mx+1=0,无论m 为何值,此方程都是一元二次方程。
实际问题与一元二次方程知识点总结及重难点精析

实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
一元二次方程实际应用题型

一、列一元二次方程解应用题的步骤(1)应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.(2)一般情况下列方程解决实际问题的一般步骤如下:①审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(与一次方程思路相似)②设:是在理清题意的前提下,进行未知量的假设(分直接与间接).③列:是指列方程,根据等量关系列出方程.④解:就是解所列方程,求出未知量的值.⑤验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.⑥答:即写出答案,不要忘记单位名称.二、常见应用题类型(1)数字问题解有关数字问题的应用题,首先要能正确地表示诸如多位数、奇偶数,连续的整数的形式,如一个三位数可表示为100a+10b+c,连续三个偶数可表示为2n-2,2n,2n+2(n为整数) 等,其次解这类问题的关键是正确而巧妙地设出未知量,一般采用间接设元法,如有关奇数个连续数问题,一般设中间一个数为x,再用含x的代数式表示其他数,又如多位数问题,一般设这个多位数的某个数位上的数字,再用代数式表示其余数位上的数字,等量关系由题目中的关键语句“译出”【例1】某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.分析:本题等量关系比较明显:新的两位数×原来的两位数=736,关键是如何表示出这两个两位数和整理方程,要注意检验是否求得的解都符合题意.解:设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x-5x+6=0,解得x=2,x=3.当x=2时,5-x=3,符合题意,原两位数是23.当x=3时,5-x=2 符合题意,原两位数是32.答:原来的两位数是23或32.【例2】三个连续奇数的和是129,求这三个数。
实际问题与一元二次方程题型归纳总结

实际问题与一元二次方程题型归纳总结实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:列一元二次方程解应用题的步骤可归纳为:“审、找、设、列、解、验、答”七个步骤。
1.审清题意,弄清已知量与未知量;2.找出等量关系;3.设未知数,有直接和间接两种设法,因题而异;4.列出一元二次方程;5.求出所列方程的解;6.检验方程的解是否正确,是否符合题意;7.作答。
二、典型题型1、数字问题例1:有两个连续整数,它们的平方和为25,求这两个数。
例2:有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练:1.两个连续的整数的积是156,求这两个数。
2.一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A。
25 B。
36 C。
25或36 D。
-25或-362、传播问题公式:(a+x)=M,其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例3:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3、相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题n(n-1),双循环问题n(n-1)和复杂循环问题2n(n-3)例4:1.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5:一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6:生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是()A。
实际问题与一元二次方程练习题

实际问题与一元二次方程类型归纳练习题姓名:班级:座位号:一、传播问题例题:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了x人,第一轮后共有(x+1)人患了流感;②第二轮传染中,这些人中的每个人又传染了x人,第二轮后共有(x+1)(x+1)人患了流感.则:列方程 (x+1)2=121,解得x=10或x=-12(舍),即平均一个人传染了10个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?练习题:1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,求每个枝干长出多少小分支?2、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有多少名同学?3、一个小组若干人,新年互相发送祝福短信,若全组共发送祝福短信72条,则这个小组共有多少人?4、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?5、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?二、增长率问题例题:两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?(精确到0.001)分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元.依题意,得5 000(1-x)2=3 000 .解得:x1≈0.225,x2≈1.775.根据实际意义,甲种药品成本的年平均下降率约为0.23.②设乙种药品成本的年平均下降率为y.则,列方程:6 000(1-y)2=3 600.解得:y1≈0.225,y2≈1.775(舍).答:两种药品成本的年平均下降率相同.练习题:1、青山村种的水稻2001年平均每公顷产7 200 kg,2003年平均每公顷产8 460 kg,求水稻每公顷产量的年平均增长率.2、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.3、某印刷厂元月份印刷课本30万册,第一季度共印了150万册,问2、3月份平均每月的增长率是多少?4、来自信息产业部的统计数字显示,2007年一至四月份我国手机产量为4000万台,相当于2006年全年手机产量的80%,预计到2008年年底手机产量将达到9800万台,试求这两年手机产量平均每年的增长率:5、某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363C.300(1+2x)=363 D.363(1-x)2=300三、利润问题此类问题常见的等量关系是:利润=售价-进价,总利润=每件商品的利润×销售数量,利润率=例题:某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?分析:假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程题型归纳总结
一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)审:审清题意,弄清已知量与未知量;
(2)找:找出等量关系;
(3)设:设未知数,有直接和间接两种设法,因题而异;
(4)列:列出一元二次方程;
(5)解:求出所列方程的解;
(6)验:检验方程的解是否正确,是否符合题意;
(7)答:作答。
二、典型题型
1. 数字问题
例 1、有两个连续整数,它们的平方和为 25,求这两个数。
例 2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的
个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于 1008,求调换位置后得到的两位数。
练习: 1、两个连续的整数的积是 156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,
则这个两位数为()
A. 25
B. 36
C. 25 或 36
D. -25 或-36
2. 传播问题:公式:(a+x)n=M 其中 a 为传染源(一般 a=1),n 为传染轮数,M 为最后得病总人数
例 3 、有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了几个人?
练习:有一个人患了流感,经过两轮传染后共有 196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?
3. 相互问题(循环、握手、互赠礼品等)问题
循环问题:又可分为单循环问题]n(n-1),双循环问题n(n-1).
2
例4、( 1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛, 共有多少个队参加比赛?
(2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有
多少个队参加比赛?
例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加
会议的人数共有多少人?
例&生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全
组共互赠了 182件,设全组有x个同学,则根据题意列出的方程是()A. x x 1 182 B. xx 1 182 C. 2x x 1 182 D. x x 1 182 2
练习:1、甲A联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110 场,则联赛中共有多少个队参加比赛?
2、参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?
3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?
4. 平均增长率问题:b=a(1 ± x)n,n为增长或降低次数,b为最后产量,a为基数,x为平均增长率或降低率
例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
例 8 、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒 200元下调至 128 元,则这种药品平均每次降价的百分率为多少?
练习: 1、恒利商厦九月份的销售额为 200 万元,十月份的销售额下降了 20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率 .
2、从盛满 20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精 5 升.问每次倒出溶液的升数?
5. 商品销售问题
例 9、某商店购进一种商品,进价 30 元.试销中发现这种商品每天的销售量 P (件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种
商品要获得 200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
例 10、益群精品店以每件 21 元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350— 10a)件,但物价局限定每件商品的利润不得超过 20%,商店计划要盈利 400 元,需要进货多少件?每件商品应定价多少?
练习: 1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为 260 元时,月销售量为 45 吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降 10元时,月销售量就会增加 7.5 吨。
综合
考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用 100
元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为 9000元。
(3)小静说:“当月利润最大时,月销售额也最大。
”你认为对吗?请说明理由。
2、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500
千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
6. 形积问题
例11、如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
A D E
C F
' ....... ■■......... 2X <
例12、一张长方形铁皮,四个角各剪去一个边长为 4cm的小正方形,再折起来做成一个无盖的小盒子。
已知铁皮的长是宽的2倍,做成的小盒子的容积1536cm?,求长方形铁皮的长与宽
练习:1、一个直角三角形的两条直角边的和是 14cm,面积是24cm,两条直角边的长分别是。
2、为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为______ 米,宽为_____ 米。
7. 动点几何问题
例13、如图,△ ABC中,/ B=90° , AB=6 BC=8点P从点A开始沿边AB向点 B以1cm/s的速度移动,与此同时,点 Q从点B开始沿边BC向点C以2cm/s 的速度移动•如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动:
(1)经过几秒,△ PBQ的面积等于8cm2
2)A PBQ勺面积会等于10cm2吗?会请求出此时的运动时间,若不会请说明理
由.
例14、已知矩形ABCD勺边长AB=3cm BC=6cm某一时刻,动点M从A点出发沿
AB方向以1cm s的速度向B点匀速运动;同时,动点 N从D出发沿DA方向以 2cm s的速度向A点匀速运动,则经过多长时间,△ AMN的面积等于矩形 ABCD
1
面积的丄?
9
练习:已知:如图所示,在△ ABC中, B 90 ,AB 5cm, BC 7cm.点P从点 A开始沿AB 边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以 2cm/s的速度移
动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△ PBQ的面积等于4cm?( 2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?( 3)在(1)中,△ PQB的
面积能否等于7cm2?说明理由.
互赠了 182件,这个小组共有多少名同学?
课后作业:
1.生物兴趣小组的学生,
2.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排 28场比赛,应邀请多少个球队参加比赛?
3.国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策•现在知道某种品牌的香烟每条的市场价格为 70元,不加收附加税时,每年产销100 万条,若国家征收附加税,每销售100元征税x元(叫做税率X%),则每年的产销量将减少10X万条.要使每年对此项经营所收取附加税金为 168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?国家征收的附加税金总额=香烟的销售额(即单价X销售量)X征收的税率.
4. 合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存•经市场调查发现:如果每件童装降价 4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利 1200元,那么每件童装因应降价多少元?
5. 在一幅长80cm宽50cm的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如果要使整个挂图的面积是 5400cm,求需要金色纸边的宽是多少?
6. 如图所示,某小区规划在一个长为 40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与 AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.。