一元二次方程各种题型总结

合集下载

一元二次方程的实际应用题型总结

一元二次方程的实际应用题型总结

一元二次方程的实际应用题型总结【一】一元二次方程的定义与解【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a -1)x |a|+1+2x -7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a -1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x -2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x -1)+1=2x 2C. x 2+3x=2xD. ax 2+bx+c -0 2、已知关于x 的方程mx 2+(m -1)x -1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a -2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x -1)2-3x (x -2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a -2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a≠0)中,abc 满足a+b+c=0和a -b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx -40=0的一个解,且a≠b ,求2222a b a b--的值【二】一元二次方程的解法一、直接开平方法1、下列方程能用直接开平方法求解的是( )A. 5x 2+2=0B. 4x 2-2x -1=0C. 12(x -2)2=4 D. 3x 2+4=2 2、若关于x 的一元二次方程5x 2-k=0有实数根,则k 的取值范围是_________3、已知(a 2+b 2-1)2=9,则a 2+b 2=_________4、已知一元二次方程ax 2+bx+c=0的一个根是1,且a ,b 满足等式4,求方程13y 2-2c=0的根5、用开平方法解下列方程(1)2 9(x 1)25-= (2)()26x 181-= (3)(x -1)2=(3x -4)2二、配方法1、(1)x 2--____)2 (2)3x 2+12x+____=3(x+____)2 (3)12x 2-5x+____=12(x -____)2 2、若x 2+ax+9是关于x 的完全平方式,则常数a 的值是__________3、多项式4x 2+1加上一个单项式后,成为一个整式的完全平方,那么加上的这个单项式可以是4、一元二次方程x 2-px+1=0配方后为(x -q)2=15,那么一元二次方程x 2-px -1=0配方后为( )A. (x -4)2=17B. (x+4)2=15C. (x+4)2=17D. (x -4)2=17或(x+4)2=175、若x 为任意实数,则x 2+4x+7的最小值为__________★★★★当x=_______时,代数式3x 2-2x+1有最_______(填大或小)值为_______6、用配方法证明:关于x 的方程(m 2-12m+37)x 2+3mx+1=0,无论m 为何值,此方程都是一元二次方程。

一元二次方程题型

一元二次方程题型

一元二次方程四种常见题型一元二次方程在初中代数中占有重要的地位,是进一步学好其它知识的基础,也是各类考试中必考内容之一,常见题型有如下四类:一、一元二次方程的有关概念知识要点:1.一元二次方程满足的条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2;(4)系数不能为0.2.一元二次方程的一般形式:20(0)ax bx c a ++=≠,其中a 是二次项系数,b 是一次项系数,c 是常数项.典例分析:例1下列方程中,是关于x 的一元二次方程的是()A .)1(2)1(32+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 分析:根据一元二次方程需满足的条件可知,B中的未知数在分母中,是分式方程;C中二次项系数a 有可能为0;D整理后最高次项是一次,都不是一元二次方程,故选A.例2关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是为0,则a 的值为()A .1B .–1C .1或–1D .21分析:由方程根的定义,将0x =代入原方程中,则原方程变为关于a 的一元二次方程.解:.把0x =代入原方程中,得012=-a ,∴1a =±,∵10a -≠,即1a ≠,∴1a =-故应选B .评注:(1)判断一个方程是不是一元二次方程,有时需要将其化简后再判断,如例1中的D ;(2)在求一元二次方程中的参数时,不要忽视二次项系数不等于0这一内含条件,如例2中10a -≠.二、一元二次方程的解法知识要点:一元二次方程的一般解法有:直接开平方法、配方法、因式分解法、公式法,其中公式法是解一元二次方程的“万能”方法.典例分析:例3解方程0999162=--x x .分析:观察方程的特点:其常数项“–9991”是一个绝对值很大的数,若用公式法求解,其计算量比较大,注意到二次项的系数为1,一次项的系数是偶数,所以用配方法求解则十分简单.解:移项,得999162=-x x ,配方得99991962+=+-x x ,即10000)3(2=-x ,所以1003±=-x ,所以1031=x ,972-=x .评注:(1)一元二次方程的四种解法各有特点,解方程时应根据方程的特点依次选择:直接开平方法→因式分解法→公式法→配方法;(2)应用求根公式解一元二次方程时应注意要化方程为一元二次方程的一般形式再确定a 、b 、c 的值;(3)解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握.三、列一元二次方程解决实际问题1.列一元二次方程解应用问题的一般步骤可归纳为:审、设、列、解、检验、答.2.常见题型:(1)面积问题;(2)平均增长率问题;(3)销售利润问题;(4)其它问题.例4商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价-进价)分析:(1)根据所调查的市场信息分析;(2)利用“每件利润×件数=总利润”相等关系列方程.此题体现了数学与市场的关系.解:(1)当每件商品售价为170元时,比每件商品售价130元高出170-130=40元,则每天可销售商品70-40=30件,商场可获日盈利为(170-120)×30=1500(元).(2)设商场日盈利达到1600元时,每件商品售价为x 元,则每件商品比130元高出(x-130)元,每件可盈利(x-120)元,每日销售商品为70-(x-130)=200-x(件).依题意得(200-x)(x-120)=1600,解得x=160.答:每件商品的销售价定为160元时,商场日盈利可达到1600元.例5某校办工厂今年元月份生产课桌椅1000套,二月份因春节放假减产10%,三月份、四月份产量逐月上升,四月份产量达到1296套,求三、四月份产量的平均增长率.分析:本题属于增长率问题,只要把二月份的产量表示出来,根据题意很容易列出方程.解:设三、四月份产量的平均增长率为x ,依题意,得1296)1%)(101(10002=+-x ,解得%202.01==x ,2.22-=x (舍)答:三、四月份产量的平均增长率为20%.评注:解决实际问题的关键是认真审题,分析数量之间的关系,建立适当的数学模型,从而将实际问题转化为数学问题,如增长(降低)率问题中,增长(降低)前的量为a,增长(降低)率为x,增长(降低)后的量为b,则a、x、b 关系为2(1)a x b ±=.还要注意有的问题中需要根据实际情况舍去不合题意的解.四、一元二次方程的综合应用一元二次方程通过与不等式、统计、几何等知识相整合解决实际问题,这样的应用题背景更丰富、更贴近生活实际.例4:下表是我国近几年的进口额与出口额数据(近似值)统计表年份198519901995199820002002出口额(亿美元)2746211500180025003300进口额(亿美元)4235341300140023003000(1)下图是描述这两组数据折线图,请你将进口额折线图补充完整;(2)计算2000年到2002年出口额年平均增长率.15.132.1≈(3)观察折线图,你还能得到什么信息,写出两条。

一元二次方程经典题型汇总

一元二次方程经典题型汇总

一元二次方程经典题型汇总一、一元二次方程的概念一.一元二次方程:一个具有未知数且未知数的最高阶数为2的积分方程称为一元二次方程。

2.一元二次方程的一般形式:AX2?bx?C0(a?0),其特征是关于方程左侧未知x的11个二次多项式和方程右侧的0,其中AX2称为二次项,a称为二次项的系数;BX 称为主项,B称为主项系数;C被称为常数项。

一.填空题:1.方程mx2-3x=x2 mx+2是一个单变量的二次方程,然后是m______2.方程4x(x-1)=2(x+2)+8化成一般形式是_______________,二次项系数是____,一次项系数是____,常数项是______.3.对于X(M+3)x2+4x+m2-9=0的一元二次方程,如果有解0,则M=_4、。

如果二次方程AX2+BX+C=0(a≠ 0)的根为-1,则a、B和C之间的关系为_____5、当m时,方程m2?1x2?mx?5?0不是一元二次方程,当m时,上述方程是一元二次方程。

二.选择题:① 下式中x=3;②2x2-3x=2x(x-1)c1;③3x2-4xc5;④x2=-1+2x??是一元二次方程的共有()a0个b1个c2个d3个7、下列方程中,一元二次方程是()1(a)x2?2(b)ax2?bx(c)?十、1.十、2.1(d)3x2?2xy?5y2?0x8.一元二次方程的一般形式是()ax2+bx+c=0bax2+c=0(a≠0)cax2+bx+c=0dax2+bx+c=0(a≠0)9.方程6x2-5=0的一次项系数是()a6b5c-5d0A.1.x2?十、a2?1.0×10。

如果一元二次方程的一个根是0,那么a的值是()1a、1b、?1c、1或?1d、2三、将下列方程转化为一般形式,分别指出它们的二次项系数、一次项系数和常数项x(3x+2)=6(3x+2)(3CT)+T=922一般形式二次项系数一次项系数常数项2、一元二次方程1的解。

一元二次方程经典题型汇总

一元二次方程经典题型汇总

一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。

2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。

3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。

4、公式法:利用求根公式,直接求解一元二次方程的解。

三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。

可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。

答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

九年级上一元二次方程应用题常见类型总结

九年级上一元二次方程应用题常见类型总结

九年级上 专题复习之实际问题与一元二次方程【一、面积问题】【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2【题型二 矩形中通道】 【例2】如图,要设计一副宽20cm 、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?【题型三边框设计】【例3】如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5【针对练习1】1.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm2.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.3.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.4.如图,利用一面墙(墙的长度为20m ),用34m 长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m 宽的门,设AB 的长为xm .(1)若两个鸡场总面积为96m 2,求x ;(2)若两个鸡场总面积和为Sm 2,求S 关于x 的关系式;(3)两个鸡场面积和S 有最大值吗?若有,最大值是多少?【二、循环向题、增长率问题、传染等问题】1.n 支球队参加单循环比赛、一共赛12n (n -1)场;n 支球队参加双循环比赛,一共赛n (n -1)场; 2.基数A 经过两轮增长(下降),平均增长(下降)率为x ,两轮后结果为A (1±x )2; 3.一人感冒,经过两轮传染,平均每人传染x 人,两轮后感冒人数为(1+x )2【题型一 循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x 名学生,根据题意列出方程为________.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.102.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________3.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.84.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________6.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.【三、利润问题】【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【针对练习3】1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x元(x≥100).(1)每天有游客居住的房间数为(用x表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w(元)最大?(3)宾馆某天统计结果显示,该天利润为1870元,请求出这天每间房的定价x(元)的值。

一元二次方程与实际问题题型归纳

一元二次方程与实际问题题型归纳

一元二次方程与实际问题题型归纳在我们的数学学习中,一元二次方程是一个非常重要的知识点,它不仅在理论上有着重要的地位,而且在解决实际问题中也有着广泛的应用。

接下来,让我们一起来归纳一下一元二次方程在实际问题中的常见题型。

一、增长率问题增长率问题是一元二次方程在实际生活中常见的应用之一。

例如,某公司去年的利润为 100 万元,今年的利润比去年增长了 20%,明年预计在今年的基础上再增长 10%,求明年的利润。

设明年的利润为 x 万元,今年的利润为 100×(1 + 20%)= 120 万元,明年的利润为 120×(1 + 10%)= x 万元,整理可得方程:\\begin{align}120×(1 + 10%)&=x\\120×11&=x\\132&=x\end{align}\在这类问题中,通常设原来的量为 a,平均增长率为 x,增长后的量为 b,经过 n 次增长后的公式为:\(b = a(1 + x)^n\);若为平均降低率,则公式为:\(b = a(1 x)^n\)。

二、面积问题面积问题也是常见的题型之一。

比如,要在一块长方形的土地上建造一个花园,已知长方形的长比宽多 10 米,面积为 2400 平方米,求长方形的长和宽。

设长方形的宽为 x 米,则长为(x + 10)米,根据长方形面积公式可得方程:\\begin{align}x(x + 10)&=2400\\x^2 + 10x 2400&=0\\(x 40)(x + 60)&=0\end{align}\解得\(x = 40\)或\(x =-60\)(舍去),所以长方形的宽为 40 米,长为 50 米。

解决面积问题时,关键是要根据图形的形状和面积公式,找出等量关系,列出方程。

三、销售利润问题销售利润问题常常涉及到商品的进价、售价、销售量和利润等因素。

例如,某商品的进价为每件 20 元,售价为每件 30 元,每天可卖出 100 件。

一元二次方程应用题七大题型

一元二次方程应用题七大题型

一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体运动的距离。

公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体最终速度。

公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。

求物体运动的时间。

公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。

求物体加速度。

公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。

求物体在 t3 时刻的速度。

公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。

求加速度的变化率。

公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。

求速度的变化率。

公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程各种题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一元二次方程各种题型总结(一)一元二次方程的概念 1.一元二次方程的项与各项系数把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项: (1)x x 3252=- (2)015622=--x x (3)5)2(7)1(3-+=+y y y (4)22)3(4)15(-=-a a (5)m m m m m m 57)2())((2-=-+-+ 2.应用一元二次方程的定义求待定系数或其它字母的值(1)m 为何值时,关于x 的方程m x m x m m 4)3()2(2=+--是一元二次方程?(2)若分式01872=---x x x ,则=x .3.由方程的根的定义求字母或代数式值(1)关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则=a .(2)已知关于x 的一元二次方程)0(02≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a ,=+-c b a .(3)已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程032=-+c x x 的一个根,求方程032=-+c x x 的根及c 的值.(二)一元二次方程的解法 1.用直接开平方法解下列方程:(1)012552=-x (2)2169(3)289t -=(3)03612=+y (4)0)31(2=-m(5)22(31)85n +=2.用配方法解方程:(1)0522=-+x x (2)0152=++y y(3)3422-=-y y3.用公式法解下列方程:(1)2632-=x x (2)p p 3232=+(3)y y 1172= (4)2592-=n n(5)2(2)(21)3m m m +=--- 4.用因式分解法解下列方程:(1)09412=-x (2)04542=-+y y(3)281030m m +-= (420=(5)26t -=(6)2(5)2(5)1y y -=--(7)222(3)2(3)80t t t +-+-=5.解法的灵活运用(用适当方法解下列方程):(1)128)72(22=-x (2)222)2(212m m m m -=+-(3)6(2)(2)(3)y y y y -=-+ (4)3)13(2)23(332-+-=+y y y y y(5)2281(25)144(3)m m -=-6.解含有字母系数的方程(解关于x 的方程):(1)02222=-+-n m mx x (2)223421y a ay a +=-+(3)n m nx x n m -=++2)(2 (0≠+n m ) (4)2222(1)(1)(1)a t t a t a t -+--=-(三)一元二次方程的根的判别式 1.不解方程判别方程根的情况: (1)4x x x 732=+- (2)23(2)4y y +=(3)245t +=2.k 为何值时,关于x 的二次方程0962=+-x kx (1)有两个不等的实数根 (2)有两个相等的实数根 (3)无实数根3.已知关于x 的方程m x m x -=+-1)2(42有两个相等的实数根.求m的值和这个方程的根. 4若方程054)1(222=-++++a a x a x 有实数根, 求正整数a 的值.5.对任意实数m ,求证:关于x 的方程042)1(222=++-+m mx x m 无实数根.6.k 为何值时,方程0)3()32()1(2=+++--k x k x k 有实数根.7.设m 为整数,且404<<m 时,方程08144)32(222=+-+--m m x m x 有两个相异整数根,求m 的值及方程的根.(四)一元二次方程的应用1.已知直角三角形三边长为三个连续整数,求它的三边长和面积.2.一个两位数,个位上的数字比十位上的数字少4,且个位数字与十位数字的平方和比这个两位数小4,求这个两位数.3.某印刷厂在四年中共印刷1997万册书,已知第一年印刷了342万册,第二年印刷了500万册,如果以后两年的增长率相同,那么这两年各印刷了多少万册4.某人把5000元存入银行,定期一年到期后取出300元,将剩余部分(包括利息)继续存入银行,定期还是一年,且利率不变,到期如果全部取出,正好是275元,求存款的年利率(不计利息税)5.某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元,为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元6.已知甲乙两人分别从正方形广场ABCD 的顶点B 、C 同时出发,甲由C 向D 运动,乙由B 向C 运动,甲的速度为每分钟1千米,乙的速度每分钟2千米,若正方形广场周长为40千米,问几分钟后,两人相距102千米7.某科技公司研制一种新产品,决定向银行贷款200万元资金,用于生产这种产品,签订的合同上约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元,若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数. 8.如图,东西和南北向两条街道交于O 点,甲沿东西道由西向东走,速度是每秒4米,乙沿南北道由南向北走,速度是每秒3米,当乙通过O 点又继续前进50米时,甲刚好通过O点,求这两人在相距85米时,每个人的位置.9.已知关于x 的方程01)1(2=++-mx x n ①有两个相等的实数根.(1)求证:关于y 的方程03222222=+---n m my y m ②必有两个相等的实数根。

(2)若方程①的一根的相反数恰好是方程②的一个根,求代数式n n m 122+的值.东10.一次函数6+-=x y 和反比例函数ky x=,(1)k 满足什么条件时,这两个函数在同一坐标系中的图象有两个交点(2)设(1)中的两个公共点为A 、B ,AOB ∠是锐角还是钝角?十二、补充习题1.方程260x x +=的解是( ).A .10x =,26x =-B .10x =,26x =C .6x =-D .0x = 2.方程2(23)(32)0x x -+-=的解是( ).A .123x =,21x =- B .123x =,21x = C .123x =,213x = D .1223x x == 3.已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( ). A .3 B .4 C .5 D .64.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值是( ). A .1 B .1- C .1或1- D .0.5 5.已知下列方程:1246x x +=-,6285x x -+=,4111x x -=-,231433x x +-=,其中,整式方程的个数是( ).A .1B .2C .3D .4 6.方程222x x x x +=--的根是( ). A .2 B .1- C .1-或2 D .1或27.用换元法解方程213()(3)2x x x x ---=-时,如果设1x y x-=,那么原方程可化为( ). A .2320y y ++= B .2320y y --= C .2320y y +-= D .2320y y -+=8.*方程22653x xx x -=+-的实根的个数是( ).A .3B .2C .1D .没有 9.如果26910xx -+=,那么3x的值等于( ). A .1 B .1- C .2- D .1±10.冰雪节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元.出发时,又增加了两名同学,结果每名同学比原来少分摊3元车费.若设参加游览的学生共有x 人,则所列的方程为( ). A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x-=- 11.用直接开平方法解下列各方程:(1)20.010y -=; (2)210.503m -=; (3)2(3)2t -=; (4)2(31)90x +-=. 12.用配方法解下列各方程:(1)2280x x --=; (2)2324y y -=;(3)22300t +-=; (4)211063m m +-=.13.用公式法解下列各方程:(1)2220x x --=; (2)2227p p +=;(3)23412y y =-; (4)3(32)1t t -=-.14.用因式分解法解下列各方程:(1)230x =; (2)7(3)39y y y -=-;(3)2(1)2(1)3m m+-+=;(4)224(3)25(2)p p+=-.15.阅读下题的解答过程,请判断其是否有错;若有错,请你写出正确答案.已知m是关于x的方程220mx x m-+=的一个根,求m的值.将x m=代入原方程,化简,得3m m=.两边同除以m,得21m=,所以1m=.把1m=代入原方程检验,可知1m=符合题意,所以m的值是1.16.要使关于x的方程210x bx++=与20x x b--=有且只有一个公共根,求b的值.17.是否存在使函数23102x xyx--=+的函数值为0的x值,若存在,就把它求出来;若不存在,请说明理由.18.*解下列方程:(1)63371x xx x+-=+;(2)256011x xx x⎛⎫-+=⎪++⎝⎭.19.一个两位数,两个数位上的数字之和为6,两个数之积等于这个数的三分之一,求这个两位数.60cm80cm20.已知:如图,在一块长80cm,宽60cm的白铁片的四个角上截去四个相同的小正方形,然后把四边折起来,做成底面积是15002cm的没有盖的长方体盒子,问截去的小正方形边长是多少?21.某林场准备修一条长1000米,断面为等腰梯形的渠道,断面面积为1.4万平方米,上口宽比渠面深多2.3米,渠底宽比渠深多0.3米.(1)渠道的上口与渠底宽各是多少?(2)如果计划每天挖土70立方米,需要多少天才能把这条渠道的土挖完?22.旧车交易市场有一辆原价为12万元的轿车,但已使用3年.如果第一年的折旧率为20%,以后折旧率有所变化;现知第三年末这辆轿车值7.776万元,求这辆车第二年、第三年平均每年的折旧率.23.某工厂2007年初投资100万元生产某种新产品,2007年底将获得的利润与年初的投资的和作为2008年初的投资,到2008年底两年共获利润56万元.已知2008年的年获利率比2007年的年获利率多10个百分点,求2007年和2008年的年获利率各是多少?24.某农户种植花生,原来种植的花生单位面积产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克),现在种植新品种花生后,每单位面积收获的花生可加工成花生油132千克,其中花生的出油率的增长率是单位面积产量的增长率的一半,求新品种花生单位面积产量的增长率.拓展练习1.已知关于x 的方程2340mx x -+=,如果0m <,那么此方程的根的情况是( ).A .有两个不相等的实根B .有两个相等的实根C .没有实根D .不能确定2.关于x 的方程220x kx k -+-=的根的情况是( ).A .有两个不相等的实根B .有两个相等的实根C .没有实根D .不能确定3.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( ).A .2m ≠B .6m ≤且2m ≠C .6m <D .6m ≤4.已知0k >,且方程23121kx x k ++=-有两个相等实根,那么k 的值等于( ).A .B .±.3或4- D .35.若关于x 的方程2430kx x -+=有实根,则k 的非负整数值是( ).A .0,1B .0,1,2C .1D .1,2,36.如果是α、β是方程2234x x +=的两个根,则22αβ+的值为( ).A .1B .17C .6.25D .0.257.已知1x 、2x 是方程220x ax c +-=的两个实数根,则12122x x x x +-等于( ).A .2a c + B .2a c -- C .2a c -+ D .2a c - 8.设1x 、2x 是方程22630x x -+=的两个实数根,则122111()()x x x x ++的值为( ). A .146 B .253 C .16- D .146-9.方程2380x x m -+=的两根之比为3:1,则m 等于( ).A .4B .4-C .3D .510.已知一个直角三角形的两条直角边的恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( ).AB .3C .6D .9。

相关文档
最新文档