高炉炼铁论文

高炉炼铁论文
高炉炼铁论文

高炉炼铁论文

时间:2010-11-12 08:12:40|浏览:112次|评论:0条 [收藏] [评论] [进入论坛]

本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣…

本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣铁之间及与固态焦炭接触过程中,发生诸多反应,最后调整铁液的成分和温度达到终点。故保证炉料均匀稳定的下降,控制煤气流均匀合理分布是高质量完成冶炼过程的关键。

关键词: 固态焦炭渣铁分离炉料均匀煤气流分布

绪论

高炉是炼铁的专用设备。虽然近代技术研究了直接还原、熔融技术还原等冶炼工艺,但它们都不能取代高炉,高炉生产是目前获得大量生铁的主要手段。高炉生产是可持续的,他的一代寿命从开炉到大修的工作日一般为7-8年,有的已达到十年或十年以上。高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。

1.1我国钢铁工业生产现状

近代来高炉向大型化发方向发展,目前世界上已有数座5000立方米以上容积的高炉在生产。我过也已经有4300立方米的高炉投入生产,日产生铁万吨以上,日消耗矿石等近2万吨,焦炭等燃料5千吨。这样每天有数万吨的原、燃料运进和产品输出,还需要消耗大量的水、风、电气,生产规模及吞吐量如此之大,是其他企业不可比拟的。

1.2加入世贸对我国钢铁经济的影响

钢铁工业是人类社会活动中占有着极其重要的地位,对发展国民经济起着极其重要的作用。无论工业、农业、交通、建筑及国防均离不开钢铁。一个国家的钢铁生产水平,就直接反映了这个国家的科学技术发展和人民的生活水平。那么自中国加入世贸组织之后,自2001年底以来,全球钢铁价格已上涨2倍,提升了该行业的盈利水平。同期,由所有上市钢铁公司股价构成的全球钢铁股价格综合指数,表现超过所有上市公司平均股价表现近4倍。2003年,中国钢铁净进口量(进口减去出口)约为3500万吨。但今年,预计中国钢铁净出口量大约为5000万吨。假设这种趋势持续下去,中国钢铁公司出口量的上升,的确有可能影响全球钢铁行业的前景。中国从2006 年开始,从钢净进口国转变为净出口国,2007 年中国粗钢净出口量占中国粗钢产量的11.27%,占全球除中国外粗钢产量的6.47%。今年9 月受美国金融危机的影响,国内钢材出口量减少为667 万吨,较8 月份高点回落101 万吨。奥巴马上台后誓言要实施自己的金融新政,力争让美国经济在任期内重新好转。而积极的新政,无疑也会为中国钢铁出口带来新的消费希望。

1.3唐钢不锈钢高炉的情况介绍

唐钢不锈钢高炉现共有四座炼铁高炉分别有两座450t、两座550t高炉炼铁设备,其中两座550t高炉是由唐钢设计院主持设计的。不锈钢高炉现今以持续使用五年以上,日产量高,出铁效率高,并且在三号高炉中使用了TRT自动化控制系统,使得在随后的生产过程中,高炉出铁高效化,自动化迈进。

2唐钢不锈钢扩大生产规模化的可行性研究

2.1唐钢不锈钢生产规模能力

近一年来唐钢不锈钢在河北钢铁集团的带领下,生产能力逐步提高,并且在近一年的生产效益中都有纯利收入,也使得在不锈钢扩建竖炉设备中有了充足的信心,扩建竖炉使得不锈钢在高炉炼铁的过程中效率提高的更快,更高效。

2.2唐钢不锈钢扩大生产规模的条件

在成立了河北钢铁集团后正确领导下,唐钢不锈钢的年利润逐年提高,且唐钢不锈钢公司深入开展与先进企业对标,通过与优秀企业对标,找准差距,确立工作重点,开展好提高高炉配比、降低炼钢钢铁料消耗、降低白灰消耗,轧钢1580提高成材率,以及各工序降低能源成本,全面赶超先进企业指标。严格的费用控制。加强设备检修管理,建设精干的高效干部团队,狠抓两个“端口”通过加强市场管理,切实踏准市场节拍和实现顺向操作。

3高炉炼铁工艺技术研究

3.1工艺技术参数研究

高炉冶炼过程是在一个密闭的竖炉内进行的。高炉冶炼过程的特点是,在炉料与煤气逆流运动的过程中完成了多种错综复杂地交织在一起的化学反应和物理变化,且由于高炉是密封的容器,除去投入(装料)及产出(铁、渣及煤气)外,操作人员无法直接观察到反应过程的状况,只能凭借仪器仪表间接观察。为了弄清楚这些反应和变化的规律,首先应对冶炼的全过程有个总体和概括的了解,这体现在能正确地描绘出运行中的高炉的纵剖面和不同高度上横截面的图像。这将有助于正确地理解和把握各种单一过程和因素间的相互关系。高炉冶炼过程的主要目的是用铁矿石经济而高效率地得到温度和成分合乎要求的液态生铁。为此,一方面要实现矿石中金属元素(主要为Fe)和氧元素的化学分离——即还原过程;另一方面还要实现已被还原的金属与脉石的机械分离——即熔化与造渣过程。最后控制温度和液态渣铁之间的交互作用得到温度和化学成分合格的铁液。全过程是在炉料自上而下、煤气自下而上的相互紧密接触过程中完成的。低温的矿石在下降的过程中被煤气由外向内逐渐夺去氧而还原,同时又自高温煤气得到热量。矿石升到一定的温度界限时先软化,后熔融滴落,实现渣铁分离。已熔化的渣铁之间及与固态焦炭接触过程中,发生诸多反应,最后调整铁液的成分和温度达到终点。故保证炉料均匀稳定的下降,控制煤气流均匀合理分布是高质量完成冶炼过程的关键。

3.2上料系统的工艺

高炉供上料系统由贮矿槽、贮焦槽、槽下筛分、称量运输和向炉顶上料装置等组成。其作用是将来自原料场,烧结厂及焦化厂的原燃料和冶金辅料,经由贮矿槽、槽下筛分、称量和运输、炉料装入料车或皮带机,最后装入高炉炉顶。随着炼铁技术的发展,中小型高炉的强化、大型高炉和无钟顶的出现,对上料系统设备的作业连续性、自动化控制等提出来更高的要求,以此来保证高炉的正常生产。

3.3炼铁工艺

高炉炼铁的原料:铁矿石、燃料、熔剂

3.3.1铁矿石

铁都是以化合物的状态存在于自然界中,尤其是以氧化铁的状态存在的量特别多。现在将几种比较重要的铁矿石提出来说明:

(1)磁铁矿(Magnetite)是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和 FeO 的复合物,呈黑灰色,比重大约5.15左右,含Fe72.4%,O 27.6%,具有磁性。在选矿(Beneficiation)时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。经过长期风化作用后即变成赤铁矿。

(2)赤铁矿(Hematite)也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为5.26,含Fe70%,O 30%,是最主要的铁矿石。由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite)、镜铁矿(Specularhematite)、云母铁矿(Micaceous hematite)、粘土质赤铁(Red Ocher)等。

(3)褐铁矿(Limonite)这是含有氢氧化铁的矿石。它是针铁矿(Goethite)HFeO2和鳞铁矿(Lepidocrocite)FeO(OH)两种不同结构矿石的统称,也有人把它主要成份的化学式写成mFe2O3.nH2O,呈现土黄或棕色,含有Fe约62%,O 27%,H2O 11%,比重约为3.6~4.0,多半是附存在其它铁矿石之中。

(4)菱铁矿(Siderite)是含有碳酸铁的矿石,主要成份为FeCO3,呈现青灰色,比重在3.8左右。这种矿石多半含有相当多数量的钙盐和镁盐。由于碳酸根在高温约800~900℃时会吸收大量的热而放出二氧化碳,所以我们多半先把这一类矿石加以焙烧之后再加入鼓风炉。

另外还有铁的硅酸盐矿(Silicate Iron)硫化铁矿(Sulphide iron)

3.3.2燃料

炼铁的主要燃料是焦炭。烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。其作用是熔化炉料并使铁水过热,支撑料柱保持其良好的透气性。因此,铸造焦应具备块度大、反应性低、气孔率小、具有足够的抗冲击破碎强度、灰分和硫分低等特点。(1)、焦炭分布

从我国焦炭产量分布情况看,我国炼焦企业地域分布不平衡,主要分布于华北、华东和东北地区。

(2)、焦炭主要用于高炉炼铁和用于铜、铅、锌、钛、锑、汞等有色金属的鼓风炉冶炼,起还原剂、发热剂和料柱骨架作用。

(3)、焦炭的物理性质

焦炭物理性质包括焦炭筛分组成、焦炭散密度、焦炭真相对密度、焦炭视相对密度、焦炭气孔率、焦炭比热容、焦炭热导率、焦炭热应力、焦炭着火温度、焦炭热膨胀系数、焦炭收缩率、焦炭电阻率和焦炭透气性等。

焦炭的物理性质与其常温机械强度和热强度及化学性质密切相关。焦炭的主要物理性质如下:

真密度为1.8-1.95g/cm3;

视密度为0.88-1.08g/cm3;

气孔率为35-55%;

散密度为400-500kg/m3;

平均比热容为0.808kj/(kgk)(100℃),1.465kj/(kgk)(1000℃);

热导率为2.64kj/(mhk)(常温),6.91kg/(mhk)(900℃);

着火温度(空气中)为450-650℃;

干燥无灰基低热值为30-32KJ/g;

比表面积为0.6-0.8m2/g。

(4)、焦炭的质量指标

焦炭是高温干馏的固体产物,主要成分是碳,是具有裂纹和不规则的孔孢结构体(或孔孢多孔体)。裂纹的多少直接影响到焦炭的力度和抗碎强度,其指标一般以裂纹度(指单位体积焦炭内的裂纹长度的多少)来衡量。衡量孔孢结构的指标主要用气孔率(只焦炭气孔体积占总体积的百分数)来表示,它影响到焦炭的反应性和强度。不同用途的焦炭,对气孔率指标要求不同,一般冶金焦气孔率要求在40~45%,铸造焦要求在35~40%,出口焦要求在30%左右。焦炭裂纹度与气孔率的高低,与炼焦所用煤种有直接关系,如以气煤为主炼得的焦炭,裂纹多,气孔率高,强度低;而以焦煤作为基础煤炼得的焦炭裂纹少、气孔率低、强度高。焦炭强度通常用抗碎强度和耐磨强度两个指标来表示。焦炭的抗碎强度是指焦炭能抵抗受外来冲击力而不沿结构的裂纹或缺陷处破碎的能力,用M40值表示;焦炭的耐磨强度是指焦炭能抵抗外来摩檫力而不产生表面玻璃形成碎屑或粉末的能力,用M10值表示。焦炭的裂纹度影响其抗碎强度M40值,焦炭的孔孢结构影

响耐磨强度M10值。M40和M10值的测定方法很多,我国多采用德国米贡转鼓试验的方法。

(5)、焦炭质量的评价

①、焦炭中的硫分:硫是生铁冶炼的有害杂质之一,它使生铁质量降低。在炼钢生铁中硫含量大于0.07%即为废品。由高炉炉料带入炉内的硫有11%来自矿石;3.5%来自石灰石;82.5%来自焦炭,所以焦炭是炉料中硫的主要来源。焦炭硫分的高低直接影响到高炉炼铁生产。当焦炭硫分大于1.6%,硫份每增加0.1%,焦炭使用量增加1.8%,石灰石加入量增加3.7%,矿石加入量增加0.3%高炉产量降低1.5—2.0%.冶金焦的含硫量规定不大于1%,大中型高炉使用的冶金焦含硫量小于0.4—0.7%。

②、焦炭中的磷分:炼铁用的冶金焦含磷量应在0.02—0.03%以下。

③、焦炭中的灰分:焦炭的灰分对高炉冶炼的影响是十分显著的。焦炭灰分增加1%,焦炭用量增加2—2.5%因此,焦炭灰分的降低是十分必要的。

④、焦炭中的挥发分:根据焦炭的挥发分含量可判断焦炭成熟度。如挥发分大于1.5%,则表示生焦;挥发分小于0.5—0.7%,则表示过火,一般成熟的冶金焦挥发分为1%左右。

⑤、焦炭中的水分:水分波动会使焦炭计量不准,从而引起炉况波动。此外,焦炭水分提高会使M04偏高,M10偏低,给转鼓指标带来误差。

⑥、焦炭的筛分组成:在高炉冶炼中焦炭的粒度也是很重要的。我国过去对焦炭粒度要求为:对大焦炉(1300—2000平方米)焦炭粒度大于40毫米;中、小高炉焦炭粒度大于25毫米。但目前一些钢厂的试验表明,焦炭粒度在40—25毫米为好。大于80毫米的焦炭要整粒,使其粒度范围变化不大。这样焦炭块度均一,空隙大,阻力小,炉况运行良好。

3.3.3熔剂

(1)、熔剂的作用

熔剂在冶炼过程中的主要作用有:

①.使还原出来的铁与脉石和灰分实现良好分离,并顺利从炉缸流出,即渣铁分离。

②.生成一定数量和一定物理、化学性能的炉渣,去除有害杂质硫,确保生铁质量。

(2)、熔剂的种类

根据矿石中脉石成分的不同,高炉冶炼使用的熔剂,按其性质可分为碱性、酸性和中性三类。

①.碱性熔剂

常用的碱性熔剂有石灰石(CaC03)和白云石(CaC03·MgC03)。

②.酸性熔剂

作为酸性熔剂使用的有石英石(Si02)、均热炉渣(主要成分为2FeO、Si02)及含酸性脉石的贫铁矿等。

③.中性熔剂

高铝原料。如铁钒土和粘土页岩。

三、对碱性熔剂的质量要求

对碱性熔剂的质量有如下要求:

1.碱性氧化物(CaO+MgO)含量高,酸性氧化物(Si02+A1203)愈少愈好。或熔剂的有效熔剂性愈高愈好。

一般要求石灰石中Ca0的质量分数不低于50%,Si02+A1203的质量分数不超过3.5%。

熔剂的有效熔剂性是指熔剂按炉渣碱度的要求,除去本身酸性氧化物含量所消耗的碱性氧化物外,剩余部分的碱性氧化物含量。可用下式表示:

当熔剂中与炉渣中Mg0含量很少时,计算式可简化为:

2.有害杂质硫、磷含量要少。

石灰石中一般硫的质量分数只有0.01%~0.08%,磷的质量分数为0.001%~0.03%。

3.较高的机械强度,粒度要均匀,大小适中。

适宜的石灰石入炉粒度范围是:大中型高炉为20~50mm,小型高炉为l0~30mm。

当炉渣黏稠引起炉况失常时,还可短期适量加入萤石(CaF2),以稀释炉渣和洗掉炉衬上的堆积物

四.高炉炼铁的工艺流程

炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例装入高炉,并由热风炉向高炉内鼓入热风助焦炭燃烧,原料、燃料随着炉内熔炼等过程的进行而下降。在炉料下降和煤气上升过程中,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣水淬后全部作为水泥生产原料。炼铁工艺流程和主要排污节点见上图

3.3.4高炉炼铁原的理

炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。

炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。

高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。

高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。

3.3.5高炉的主要组成部分

高炉炉壳:炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷、热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。

炉喉:高炉本体的最上部分,呈圆筒形。炉喉既是炉料的加入口,也是煤气的导出口。它对炉料和煤气的上部分布起控制和调节作用。

炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。炉身角的大小对炉料下降和煤气流分布有很大影响。

炉腰:高炉直径最大的部位。它使炉身和炉腹得以合理过渡。由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为

宜。炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。

炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行。

炉缸:高炉燃料燃烧、渣铁反应和贮存及排放区域,呈圆筒形。出铁口、渣口和风口都设在炉缸部位,因此它也是承受高温煤气及渣铁物理和化学侵蚀最剧烈的部位,对高炉煤气的初始分布、热制度、生铁质量和品种都有极重要的影响。

炉底:高炉炉底砌体不仅要承受炉料、渣液及铁水的静压力,而且受到1400~4600℃的高温、机械和化学侵蚀、其侵蚀程度决定着高炉的一代寿命。只有砌体表面温度降低到它所接触的渣铁凝固温度,并且表面生成渣皮(或铁壳),才能阻止其进一步受到侵蚀,所以必需对炉底进行冷却。通常采用风冷或水冷。目前我国大中型高炉大都采用全碳砖炉底或碳砖和高铝砖综合炉底,大大改善了炉底的散热能力。

炉基:它的作用是将所集中承担的重量按照地层承载能力均匀地传给地层,因而其形状都是向下扩大的。高炉和炉基的总重量常为高炉容积的10~18倍(吨)。炉基不许有不均匀的下沉,一般炉基的倾斜值不大于0.1%~0.5%。高炉炉基应有足够的强度和耐热能力,使其在各种应力作用下不致产生裂缝。炉基常做成圆形或多边形,以减少热应力的不均匀分布。

炉衬:高炉炉衬组成高炉的工作空间,并起到减少高炉热损失、保护炉壳和其它金属结构免受热应力和化学侵蚀的作用。炉衬是用能够抵抗高温作用的耐火材料砌筑而成的。炉衬的损坏受多种因素的影响,各部位工作条件不同,受损坏的机理也不同,因此必须根据部位、冷却和高炉操作等因素,选用不同的耐火材料。

炉喉护板:炉喉在炉料频繁撞击和高温的煤气流冲刷下,工作条件十分恶劣,维护其圆筒形状不被破坏是高炉上部调节的先决条件。为此,在炉喉设置保护板(钢砖)。小高炉的炉喉保护板可以用铸铁做成开口的匣子形状;大高炉的炉喉护板则用100~150mm厚的铸钢做成。炉喉护板主要有块状、条状和变径几种形式。变径炉喉护板还起着调节炉料和煤气流分布的作用。

3.3.6高炉解体

为了在操作技术上能正确处理高炉冶炼中经常出现的复杂现象,就要切实了解炉内状况。在尽量保持高炉的原有生产状态下停炉、注水冷却或充氮冷却后,对从炉喉的炉料开始一直到炉底的积铁所进行的细致的解体调查,称为高炉解体调查。它虽不能完全了解高炉生产的动态情况,但对了解高炉过程、强化高炉冶炼很有参考价值。

3.3.7高炉冷却装置

高炉炉衬内部温度高达1400℃,一般耐火砖都要软化和变形。高炉冷却装置是为延长砖衬寿命而设置的,用以使炉衬内的热量传递出动,并在高炉下部使炉渣在炉衬上冷凝成一层保护性渣皮,按结构不同,高炉冷却设备大致可分为:外部喷水冷却、风口渣口冷却、冷却壁和冷却水箱以及风冷(水冷)炉底等装置。

3.3.8高炉灰

也叫炉尘,系高炉煤气带出的炉料粉末。其数量除了与高炉冶炼强度、炉顶压力有关外,还与炉料的性质有很大关系。炉料粉末多,带出的炉尘量就大。目前,每炼一吨铁约有 10~100kg的高炉灰。高炉灰通常含铁40%左右,并含有较多的碳和碱性氧化物;其主要成分是焦末和矿粉。烧结料中加入部分高炉灰,可节约熔剂和降低燃料消耗。

3.3.9高炉除尘器

用来收集高炉煤气中所含灰尘的设备。高炉用除尘器有重力除尘器、离心除尘器、旋风除尘器、洗涤塔、文氏管、洗气机、电除尘器、布袋除尘器等。粗粒灰尘(>60~90um),可用重力除尘器、离心除尘器及旋风除尘器等除尘;细粒灰尘则需用洗气机、

电除尘器等除尘设备。

3.3.10高炉鼓风机

高炉最重要的动力设备。它不但直接提供高炉冶炼所需的氧气,而且提供克服高炉料柱阻力所需的气体动力。现代大、中型高炉所用的鼓风机,大多用汽轮机驱动的离心式鼓风机和轴流式鼓风机。近年来使用大容量同步电动鼓风机。这种鼓风机耗电虽多,但启动方便,易于维修,投资较少。高炉冶炼要求鼓风机能供给一定量的空气,以保证燃烧一定的碳;其所需风量的大小不仅与炉容成正比,而且与高炉强化程度有关、一般按单位炉容2.1~2.5m3/min的风量配备。但实际上不少的高炉考虑到生产的发展,配备的风机能力都大于这一比例

高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。

高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。

3.3.11高炉冶炼工艺--炉前操作

一、炉前操作的任务

1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。

2.完成渣、铁口和各种炉前专用设备的维护工作。

3、制作和修补撇渣器、出铁主沟及渣、铁沟。

4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。

高炉冶炼工艺--高炉基本操作 :

高炉基本操作制度:

高炉炉况稳定顺行:一般是指炉内的炉料下降与煤气流上升均匀,炉温稳定充沛,生铁合格,高产低耗。

操作制度:根据高炉具体条件(如高炉炉型、设备水平、原料条件、生产计划及品种指标要求)制定的高炉操作准则。

高炉基本操作制度:装料制度、送风制度、炉缸热制度和造渣制度。

高炉冶炼主要工艺设备简介:

[高炉设备]高炉:

横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸5部分。由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产效率高,能耗低等优点,故这种方法生产的铁占世界铁总产量的绝大部分。高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中未还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的主要产品是生铁,还有副产高炉渣和高炉煤气。

[高炉设备]高炉热风炉介绍 :

热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。

[高炉设备]铁水罐车:

铁水罐车用于运送铁水,实现铁水在脱硫跨与加料跨之间的转移或放置在混铁炉下,用于高炉或混铁炉等出铁。

3.4高炉煤气清洗系统

从高炉炉顶排出的煤气一般汗CO2 15-20%,CO 20-26%,其发热值大于3200KJ/m3,装入高炉的焦炭等燃料的热量约有三分之一通过高炉煤气排出。因此将高炉煤气作为钢铁厂的一部分充分加以利用,在经济上十分重要。一般是将高炉煤气单独使用,或者和焦炉煤气掺合使用,作为热风炉、焦炉、加热炉、发电厂锅炉的燃料。但从炉顶排出的高炉粗煤气含有10-40g/m3的粉尘,具体数值取决与炉料中的粉尘率和炉顶压力、煤气流速,使用富氧等情况。

3.4.1高炉煤气除尘系统的组成

我国1000m3以上的高炉采用煤气除尘系统,从炉喉出来的煤气先经过重力除尘器进行除尘,然后经过洗涤塔进行半精除尘在进入文氏管进行精除尘,除尘后的煤气经过脱水器进入净煤气总管。但随着炉顶压力的增高,促进了文氏管的效率提高,近年来大型高炉已用串联双级文氏管系统来代替塔后文氏管系统。

3.4.1脱泥脱水设备

高炉煤气经过洗涤塔、文氏管等除尘装置湿法清洗后,煤气中夹带部分水泥和灰泥。水分会降低煤气发热值,同时由于水滴中带有灰尘,影响煤气的实际除尘效果,必须采用脱泥脱水设备使其从煤气中分离出来。目前,高炉煤气清洗系统中采用的脱泥脱水设备主要有重力式灰泥捕集器、旋风式灰泥捕集器、伞形或伞旋脱水器和填料式脱水器。

3.4.1.2重力式灰泥捕集器

气流进入重力式灰泥捕集器后,速度降低,并且改变气流方向,而气流中的灰泥和水滴仍直线加速沉降,产生了水气分离,重力式灰泥捕集器结构简单,不易堵塞,但对细尘粒和水滴的脱尘效率不高。

重力式灰泥捕集器有挡板式和直入式两种型式

3.4.1.3旋风式灰泥捕集器

把煤气从切向引入捕集器,利用气流的回旋运动,灰泥由于离心力的作业碰撞圆筒壁而沉降,达到捕集灰泥的目的。

3.4.1.4伞形或伞旋脱水器

伞形脱水器是一种利用改变煤气流向,使水滴撞于伞形挡板上,因失去动能而分离的脱水器设备。

3.4.1.5填料脱水器

填料脱水器一般作为最后一级的脱水设备,同题高度约为二倍筒体直径。筒内填料目前多用角钢代替木材。材料脱水器的脱水效率为85%,煤气流经脱水器的压力降为

500-1000Pa。

结论: 高炉工作者应努力防止各种事故的发生,保证联合企业的生产进行。目前上料系统多采用皮带上料,电子计算机,工业电视等,但必须保证其可持续作业。高炉从开炉投产到停炉中,此期间连续不间断生产,仅在设备检修或发生时候是才停产。那么我们必须保证各个环节都步步到位,要不必然会影响整个高炉冶炼过程,甚至停产,给企业造成巨大损失。

参考文献;

1. 李士玲主编炼铁工艺

2. 韩志进主编赵育新副主编高炉炼铁实习

3. 陈坤楠主编炼铁设备

炼铁的发展

炼铁的发展 由于人类对铁的需要量不断增加,人们把视线投向了地球本身,希望能在地球中找到所需要的铁,而不再是坐等“天外来客”的馈赠。为此人们作了不懈的努力。当人们学会了从矿石中提炼出铁以后,青铜时代就让位于铁器时代。在人类历史上,起过革命作用的原材料中铁应该居首位,无论在世界的哪个地区,冶铁技术的发明都是划时代的重大事件。 据研究,铁的大量出现是在公元前八世纪。在霍萨巴德的王宫贡物中(公元前720-705年)就发现了160吨铁,其中多是铁棒。公元前800年,欧洲转入早期铁器时期。炼铁知识传到不列颠,大约是在公元前500年。与此同时,约公元前400年,已由伊朗自东传到印度,也可能传到中国。欧洲早期铁器时代带触角木剑柄的剑与中国商周青铜剑之间就有很大的相似性。 制铁技术分为两部分:即冶炼和热锻。可能首先掌握并用于陨铁。 纯铁的熔点为1540℃。这个温度在公元19世纪前是不可能达到的。因此早期生产的锻铁都是固态铁。用木炭火在约1200℃的温度下,把铁矿石还原成基本上是纯的固态铁。还原出来的铁呈团块状,称为“坯铁”。这是一种固态铁、渣和未烧完木炭屑的混合物。有时要把这种坏铁破碎,靠敲击使小铁块相互分开。这种小铁块可以与其它部分区别开来。因为它们是可锻的,在敲击下变平。然后把它们放在锻炉加热,经过热锻,小铁块就能被锻接成大块。 早期的冶铁技术,大多采用“固体还原法”,即冶铁时,将铁矿石和木炭一层夹一层地放在炼炉中,点火焙烧,在650 ̄1000℃温度下,利用炭的不完全燃烧,产生一氧化碳,遂使铁矿石中的氧化铁被还原成铁。但是由于炭火温度不够高,致使被还原出的铁只能沉到炉底而不能保持熔化状态流出。人们只好待把铁炼成,炼炉冷却后,再设法将铁取出。这种铁块表面因夹杂渣滓而显粗糙,有的还不如青铜坚韧。后人们发现,炼出的铁反复加热,压延锤打,才能柔韧不脆。人们还发现再将红热的锻铁猛淬入冷水会变成坚韧的好铁,这种铁比青铜好。 最原始的炼铁炉是碗式炉。它只不过是在地上或岩石上挖出一个坑,风可以从鼓风器通过风嘴直接鼓入,碎矿石和木炭混装或分层装在烧红的炭火上,最高温度至少应达1150℃。这种炼炉没有出渣口,炉渣向下流到底部结成渣饼或渣底,有时则结成圆球,即渣球或渣粒。坯铁留在渣上面,在冶炼过程结束后,打

年产量500万吨高炉炼铁车间设计毕业论文

年产量500万吨高炉炼铁车间设计毕业论文 目录 1 绪论 1.1 高炉炼铁的任务及工艺流程 (8) 1.2 高炉生产的特点及优点 (9) 1.3 设计原则和指导思想 (9) 2炼铁工艺计算 2.1 配料计算 (10) 2.2 物料平衡计算 (12) 2.3 热平衡计算 (15) 3高炉本体 3.1 高炉炉型 (19) 3.2 高炉炉衬 (20) 3.3 炉体冷却方式 (21) 3.4 冷却系统 (24) 3.5 高炉钢结构及高炉基础 (25) 4 炉顶装料制度 4.1 并罐式无钟炉顶装料设备 (29) 4.2 均压装置 (31) 4.3 探料尺 (32) 5 供料系统 5.1 矿槽、焦槽容积与数量的确定 (33) 5.2 筛分 (33) 5.3上料系统 (33) 5.4 贮矿槽下运输称量 (34)

6送风系统 6.1 鼓风机的选择 (35) 6.2 热风炉的结构 (35) 6.3 热风炉常用耐火材料 (37) 6.4 燃烧器及送风制度的选择 (37) 6.5 热风炉主要管道直径的选定 (37) 7.渣铁处理系统 7.1 风口平台及出铁场 (39) 7.2 炉前设备 (39) 7.3 炉渣处理 (41) 8 煤气除尘系统 8.1 除尘设备及原理 (44) 8.2 有关设备 (45) 8.3 重力除尘器 (45) 9 喷吹设备 9.1 设计为喷吹煤粉 (47) 9.2 高炉喷煤设备 (48) 10车间布置形式 10.1 车间布置 (50) 10.2 本设计车间平面布置形式 (50) 结束语 (52) 参考文献 (53)

1 绪论 1.1 高炉炼铁的任务及工艺流程 高炉炼铁的任务是用还原剂(焦炭、煤粉)在高温条件下将铁矿石或含铁原料还原成液态生铁的过程。高炉生产要求以最小的投入获得最大的产出,即做到高产、优质、低耗、有良好的经济效益。 高炉生产时借助高炉本体和其辅助设备来完成的。高炉本体是冶炼生铁的主体设备,它是由耐火材料砌筑的竖立式圆筒形炉体,最外层是由钢板制成的炉壳,在炉壳和耐火材料之间有冷却设备。要完成高炉炼铁生产,除高炉本体外,还必须有其他附属系统的配合,其生产工艺流程如图1-1所示。 图1-1 高炉炼铁生产工艺流程 1—矿石输送皮带机;2—称量漏斗;3—贮矿槽;4—焦炭输送皮带机;5—给料机; 6—焦粉输带机;7—焦粉仓;8—贮焦槽;9—电除尘器;10—调节阀;11—文氏管除尘器;12—净煤气放散管;13—下降管;14—重力除尘器;15—上料皮带机;16—焦炭称量漏斗;17—矿石称量漏斗;18—冷风管;19—烟道;20—蓄热室;21—热风主管;22—燃烧室; 23—煤气主管;24—混风管;25—烟筒。 (1)供料系统。包括贮矿槽、贮焦、称量与筛分等一系列设备,其任务是将

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉炼铁生产工艺流程简介(一)

高炉炼铁生产工艺流程简介(一) 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。高炉:炼铁一般是在高炉里连续进行的。高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。这些原料是铁矿石、石灰石及焦炭。因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。 高炉的主要组成部分高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。炉壳除承受巨大的重力外,还要承受热应力和部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。炉壳外形尺寸应与高炉型、炉体各部厚度、冷却设备结构形式相适应。炉喉:高炉本体的最上部分,呈圆筒形。炉喉既是炉料的加入口,也是煤气的导出口。它对炉料和煤气的上部分布起控制和调节作用。炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形

成料拱,并减小炉料下降阻找力。炉身角的大小对炉料下降和煤气流分布有很大影响。炉腰:高炉直径最大的部位。它使炉身和炉腹得以合理过渡。由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。炉腰高度对高炉冶炼过程影响不很显著,一般只在很小围变动。炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行。炉缸:高炉燃料燃烧、渣铁反应和贮存及排放区域,呈圆筒形。出铁口、渣口和风口都设在炉缸部位,因此它也是承受高温煤气及渣铁物理和化学侵蚀最剧烈的部位,对高炉煤气的初始分布、热制度、生铁质量和品种都有极重要的影响。炉底:高炉炉底砌体不仅要承受炉料、渣液及铁水的静压力,而且受到1400~4600℃的高温、机械和化学侵蚀、其侵蚀程度决定着高炉的一代寿命。只有砌体表面温度降低到它所接触的渣铁凝固温度,并且表面生成渣皮(或铁壳),才能阻止其进一步受到侵蚀,所以必需对炉底进行冷却。通常采用

2012年高炉炼铁毕业设计

(2012届) 专科毕业设计(论文)资料 湖南工业大学教务处

本次设计是根据娄底地区设计年产量为480万吨的高炉炼铁车间,该地区矿藏丰富,水资源充沛,交通发达,设计炼铁车间比较合理。炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸H 2 造外,绝大部分是作为炼钢原料。虽然现在高炉并不是以后炼钢的发展趋势,但高炉冶金是获得生铁的重要手段。它是以铁矿石是为原料,焦炭煤粉作为燃料和还原剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程。随着冶金技术的不断发展,对其冶炼的关键设备——“高炉”。也有了越来越严格的要求。高效率、高质量、高寿命、低能耗、低污染——是本次设计所追求的目标。 在本次设计中翻阅了大量的参考文献,相当于又系统的学习了一遍高炉的有关知识,是对高炉发展的新的具体认识和总结,是本人三年专业知识学习的一个促进过程。本次设计中得到了王建丽老师的悉心指导和帮助,本人表示非常的感谢。然而,由于本人水平有限,设计中难免有不足和纰漏之处。望各位给予指正。

第一章绪论 (1) 1.1 高炉炼铁任务及工艺流程 (1) 1.2 高炉生产的特点及优点 (2) 1.3 设计原则和指导思想 (2) 1.4 厂址及建厂条件论证 (3) 第二章炼铁工艺计算 (4) 2.1 配料计算 (4) 2.2 根据铁平衡求铁矿石需要量 (6) 2.3 渣量及炉渣成分计算 (6) 2.4 物料平衡计算 (7) 2.5 热平衡计算 (8) 第三章高炉本体 (14) 3.1 高炉炉型 (14) 3.2 高炉炉衬 (16) 3.3 炉体冷却方式 (16) 3.4 冷却系统 (19) 3.5 高炉钢结构及高炉基础 (20) 第四章炉顶装料系统 (23) 4.1 串罐式无钟炉顶装料设备 (23) 4.2 串罐式无钟炉顶的特点 (25) 第五章供料系统 (26) 5.1 高炉供料系统 (26) 5.2 储矿(焦)槽及其主要设备 (27)

炼铁高炉冶金技术的应用与发展

炼铁高炉冶金技术的应用与发展 改革开放以来,随着我国经济社会的高速发展,我国的冶金技术取得了巨大的进步,使得冶金炼铁效率得到了极大的提高,钢铁的生产质量也有了质的飞跃,有效的支撑了我国社会主义事业的发展,满足了经济社会发展的需要。 标签:炼铁高炉;冶金技术;应用;发展 前言 近年来,我国炼铁行业在经济快速发展的带动下,各方面都取得不错的进步,冶金技术在炼铁高炉中的普遍应用,更是明显的提高了经济效益,不仅促进了炼铁的发展,还促进了炼铁技术向节能环保方面的发展,在一定程度上提高了企业的竞争力,适应了经济市场的环境变化。因此,对炼铁高炉中的冶金技术有必要进行总结和进一步研究。 1 冶金技术及我国高炉炼铁的发展概况 从上世纪70年代末,我国全面引进先进的钢铁生产装备和技术开始,到现在发展了30多年,其技术日臻完善,提高了钢铁生产的效率。进入新世纪以来我国高炉炼铁利用系数呈现先升后降的趋势,显示出我国钢材业由供不应求逐渐转向供大于需的局面。并且根据有关数据显示,随着市场竞争和环保的需求,我国高炉炼铁的燃料也出现喷煤比高,焦比和燃料比降低的态势。而一些先进的高炉炼铁的燃料比已经低于490.00kg/t,焦比将近300kg/t,而高炉煤比则控制在一定的范围内,说明随着先进的冶金技术大规模的应用于高炉炼铁,我国高炉炼铁技术已经有了一个质的提升。 冶金技术主要是指从铁矿石等矿物中提取金属及其金属化合物,然后使用科学的加工方法将提取出的金属或其化合物制成具有一定性能的金属材料的过程和工艺。通常,常见的现代冶金技术主要有三种,即湿法冶金技术、电冶金技术和火法冶金技术。 首先,湿法冶金技术是指在溶液里进行冶金的过程,其温度一般要求不高。湿法冶金技术的步骤主要有:第一,浸出,是指使用能与矿石中金属反应的溶液,对矿石进行浸泡反应,金属通常以离子的形式呈现在溶液中,然后提取分离出来的金属。需要注意的是,在对比较复杂的矿石提取时,需要对矿石进行预处理,使金属成为混合物后在进行浸出提取。第二,净化,该过程主要对分离出来的含有金属的溶液进行处理,去除杂质的过程。第三,制备金属,对不含杂质的溶液进行电离、氧化还原反应等方法提取出所需要金属的过程。 其次,电冶金技术是指利用电能将所需金属提取出来的一种方法。电冶金技术可以分为电热和电化冶金两种,电热冶金主要是指将电能转化为热能来提取金属的过程,而电化冶金技术是指将溶液或熔体中的金属通过电化学反应进行提

高炉炼铁工艺关键技术介绍

高炉炼铁工艺关键技术介绍 王维兴<中国金属学会北京100711) 136********yejinbu@https://www.360docs.net/doc/4017968664.html, 钢铁工业是国民经济的基础产业,也是能源消耗的大户,约占我国总能耗的16.3%,占全国GDP的3.2%。随着我国工业化进程的快速发展,钢铁需求量还要增长,随之带来能耗的急剧增加,污染物排放加剧,产业发展与资源环境的矛盾日趋尖锐。因此,推进钢铁行业节能减排,对加快钢铁工业结构调整,切实转变钢铁工业发展方式,促进节约、清洁和可持续发展具有重要意义。 目前,铁矿石的价值与价格发生严重扭曲,铁矿石价格高居不下和钢材价格下跌,使钢铁企业微利或亏损。这种态势将会维持较长时间。为此,企业要加快技术改造、产品升级、结构调整,进行精细化管理,用系统工程<技术、经济、管理向结合,统筹规划等),科学地、可持续地发展企业。 炼铁系统能耗、污染物排放、生产成本约占钢铁联合企业的70%。所以,炼铁系统要完成钢铁企业节能减排,降低生产成本的重任。高炉的能耗占钢铁企业总能耗的近50%。高炉炼铁所需能源78%是由碳素<焦炭和煤粉=燃料比)燃烧提供的,热风提供19%的能量,炉料化学反应热占3%。因此,降低燃料比是炼铁节能减排、降低生产成本的主攻方向。 高炉炼铁是以精料为基础。精料水平对炼铁指标的影响率在70%,高炉操作占10%,企业管理占10%,设备运行状态占5%,外界因素占5%。当前,铁矿石品位下降是国内外大趋势,适度使用低

品位矿;我们应在“稳”、“均”、“少”、“好”等方面下功夫。 炼铁系统的关键生产技术介绍: 1.烧结、球团工序 低质矿预处理、预混合和强力混合技术、烧结机厚料层、防漏风、余热回收利用和高效低成本烟气净化技术。烧结机大型化、现代化的集成技术。 <1)加快推广的关键技术 1)原料综合技术经济评价技术(采购、物流、贮运和钢铁冶炼最终效益>和管理技术; 2)原、燃、辅料的高效加工(破碎、细磨、干燥、再细磨>技术; 3)高精度及微量精确自动称量配料设备及技术; 4)高效强力混合、高效强化造球和大型圆盘造球机高效強化造球、生球筛分、破碎技术; 5)高配比褐铁矿、高铁、低硅烧结技术; 6)提高烧结烟气和冷却废气的余热发电效率。 7)成熟、先进、经济的烧结烟气综合治理技术<脱硫、脱硝、除二噁英、除尘等)。 <2)需积极探索、研发、加快烧结工程化的关键技术 1)新型低漏风率、长寿命、高质量和高效节能型大型烧结机、带式焙烧机、链箅机-回转窑氧化球团成套设备设计和制造技术;

高炉炼铁简介

高炉炼铁简介 高炉炉前出铁 高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197立方米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。中国在清朝末年开始发展现代钢铁工业。1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,中国高炉总容积约8万米,其中1000米以上的26座。1980年全国产铁3802万吨,居世界第四位。 高炉炼铁面临淘汰中国钢铁业急需升级换代 高炉炼铁技术,适合于那些工业化初步发展的国家,生产大路货、初级钢材,但在发达国家,高炉技术正面临淘汰。电炉技术炼钢是当今世界趋势。电炉炼铁可以提升钢材质量和特殊性能,减少原材料和电力等的浪费。在订单经济时代,生产要根据市场需求变化,但高炉炼铁技术周期长,生产产品低级,且生产的产品还需要一道甚至更长的加工链条。电炉炼钢则可缩短钢材冶炼周期,可根据订单安排生产,原材料和动力资源浪费少,不再如高炉炼铁那样存在大量的产品积压情况。当今社会进入材料时代后,市场需要的钢材不再是传统的材料,高炉炼铁生存空间更大为缩小,且附加值很低,以中国钢铁业为例,全国钢铁产业利润还不如开采铁矿的赚钱,原因就是因为高炉炼铁技术低级落后,不能生产高附加值产品。我们固然赞美中国钢铁业对国家的贡献,但不能躺在功劳薄上睡大觉,高炉炼铁技术已经进入死胡同。作为世界上第一钢铁生产大国,世界铁矿第一进口大国,世界钢铁业初级钢材第一出口大国,世界钢铁第一进口大国,世界钢铁产业人数最多的国家,世界钢铁厂最多的国家,中国必须认真思考中国钢铁业的下一步发展战略。不能以推动就业为借口,把钢铁业的发展寄托在国家的巨型投资拉动钢铁业的繁荣,而要认真的思考减少污染,提高产品附加值和适应市场的实际需求,实现钢铁业的产业升级,效益升级。 编辑本段主要产铁国家产量和技术经济指标

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

高炉炼铁论文

高炉炼铁论文 时间:2010-11-12 08:12:40|浏览:112次|评论:0条 [收藏] [评论] [进入论坛] 本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣… 本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣铁之间及与固态焦炭接触过程中,发生诸多反应,最后调整铁液的成分和温度达到终点。故保证炉料均匀稳定的下降,控制煤气流均匀合理分布是高质量完成冶炼过程的关键。 关键词: 固态焦炭渣铁分离炉料均匀煤气流分布 绪论 高炉是炼铁的专用设备。虽然近代技术研究了直接还原、熔融技术还原等冶炼工艺,但它们都不能取代高炉,高炉生产是目前获得大量生铁的主要手段。高炉生产是可持续的,他的一代寿命从开炉到大修的工作日一般为7-8年,有的已达到十年或十年以上。高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。 1.1我国钢铁工业生产现状 近代来高炉向大型化发方向发展,目前世界上已有数座5000立方米以上容积的高炉在生产。我过也已经有4300立方米的高炉投入生产,日产生铁万吨以上,日消耗矿石等近2万吨,焦炭等燃料5千吨。这样每天有数万吨的原、燃料运进和产品输出,还需要消耗大量的水、风、电气,生产规模及吞吐量如此之大,是其他企业不可比拟的。 1.2加入世贸对我国钢铁经济的影响 钢铁工业是人类社会活动中占有着极其重要的地位,对发展国民经济起着极其重要的作用。无论工业、农业、交通、建筑及国防均离不开钢铁。一个国家的钢铁生产水平,就直接反映了这个国家的科学技术发展和人民的生活水平。那么自中国加入世贸组织之后,自2001年底以来,全球钢铁价格已上涨2倍,提升了该行业的盈利水平。同期,由所有上市钢铁公司股价构成的全球钢铁股价格综合指数,表现超过所有上市公司平均股价表现近4倍。2003年,中国钢铁净进口量(进口减去出口)约为3500万吨。但今年,预计中国钢铁净出口量大约为5000万吨。假设这种趋势持续下去,中国钢铁公司出口量的上升,的确有可能影响全球钢铁行业的前景。中国从2006 年开始,从钢净进口国转变为净出口国,2007 年中国粗钢净出口量占中国粗钢产量的11.27%,占全球除中国外粗钢产量的6.47%。今年9 月受美国金融危机的影响,国内钢材出口量减少为667 万吨,较8 月份高点回落101 万吨。奥巴马上台后誓言要实施自己的金融新政,力争让美国经济在任期内重新好转。而积极的新政,无疑也会为中国钢铁出口带来新的消费希望。 1.3唐钢不锈钢高炉的情况介绍 唐钢不锈钢高炉现共有四座炼铁高炉分别有两座450t、两座550t高炉炼铁设备,其中两座550t高炉是由唐钢设计院主持设计的。不锈钢高炉现今以持续使用五年以上,日产量高,出铁效率高,并且在三号高炉中使用了TRT自动化控制系统,使得在随后的生产过程中,高炉出铁高效化,自动化迈进。 2唐钢不锈钢扩大生产规模化的可行性研究 2.1唐钢不锈钢生产规模能力

非高炉炼铁工艺发展现状

万方数据

万方数据

非高炉炼铁工艺发展现状 作者:王振智 作者单位:中冶天工上海十三冶建设有限公司设备安装分公司,上海,201900 刊名: 中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期):2011(2) 参考文献(7条) 1.王保利发展直接还原铁是解决废钢资源短缺的有效途径 1998(02) 2.钱晖;周渝生HYL-III直接还原技术[期刊论文]-世界钢铁 2005(01) 3.Oehlberg R J;Arthur G.McKee FIOR process for direct reduction of iron ore 1974(04) 4.阴继翔煤基直接还原技术的发展[期刊论文]-太原理工大学学报 2000(03) 5.Borl é e J;Steyls D;Colin R COMET:a coal-based process for the production of high quality DRI from iron ore fines 1999(03) 6.余琨原矿原煤冶炼-21世纪与高炉竞争的炼铁方式[期刊论文]-东北大学学报(自然科学版) 1998(04) 7.徐国群Corex技术的最新发展与发展前景[期刊论文]-炼铁 2004(23) 本文读者也读过(7条) 1.宁振.郑志强.NING Zhen.ZHENG Zhiqiang浅谈非高炉冶炼技术的发展前景[期刊论文]-科技传播2011(11) 2.崔胜楠.杨吉春对非高炉炼铁技术发展现状的综述[期刊论文]-科技信息2011(6) 3.唐恩.周强.翟兴华.阮建波适合我国发展的非高炉炼铁技术[期刊论文]-炼铁2007,26(4) 4.储满生.赵庆杰.CHU Man-sheng.ZHAO Qing-jie中国发展非高炉炼铁的现状及展望[期刊论文]-中国冶金2008,18(9) 5.庞建明.郭培民.赵沛.Pang Jianming.Guo Peimin.Zhao Pei煤基直接还原炼铁技术分析[期刊论文]-鞍钢技术2011(3) 6.花皑.崔于飞.吴培珍.李可卿.HUA Ai.CUI Yu-fei.WU Pei-zhen.LI Ke-qing直接还原铁的制造工艺及设备[期刊论文]-工业加热2011,40(1) 7.周渝生.钱晖.张友平.冯华堂非高炉炼铁技术的发展方向和策略[期刊论文]-世界钢铁2009,9(1) 本文链接:https://www.360docs.net/doc/4017968664.html,/Periodical_zggxjsqy201102025.aspx

年产530万吨生铁的高炉炼铁车间工艺设计毕业论文

年产530万吨生铁的高炉炼铁车间工艺 设计毕业论文 目录 前言 (1) 1 高炉配料计算 (2) 1.1原始资料 (2) 1.1.1 矿石的选配 (4) 1.2原始资料的整理 (4) 1.3冶炼条件的确定 (4) 1.4物料平衡 (11) 1.4.1 根据碳平衡计算风量 (11) 1.4.2 煤气的成分和数量计算 (13) 1.4.3物料平衡表的编制 (15) 1.5热平衡 (16) 1.5.1 计算热量收入项 (16) 1.5.2 计算热量支出项 (18) 1.5.3 列出热量平衡表 (21) 1.5.4 高炉热工指标的分析 (22) 2 高炉本体设计 (23) 2.1高炉内型相关计算 (23) 2.2高炉内衬设计 (26) 2.2.1炉底 (26) 2.2.2炉缸 (27) 2.2.3炉腹 (27) 2.2.4炉腰 (28) 2.2.5炉身 (28) 2.3高炉炉壳和高炉基础 (32) 2.4炉体设备 (35) 2.4.1 炉体冷却设备 (35)

2.4.3 铁口套 (36) 2.4.4炉喉钢砖 (36) 2.4.5 炉顶保护板 (36) 3 料运系统计算及装料布料设备 (37) 3.1贮矿槽 (37) 3.1.1 平面布置 (37) 3.1.2 槽上运输方式 (37) 3.1.3 储矿槽工艺参数 (37) 3.1.4 槽下供料 (37) 3.2料坑设备 (38) 3.3碎焦运送设施 (39) 3.4上料设备 (39) 4 高炉鼓风机的选择 (40) 4.1高炉鼓风量及鼓风压力的确定 (40) 4.1.1 高炉入炉风量 (40) 4.1.2 鼓风机出口风量 (40) 4.1.3 高炉鼓风压力 (41) 4.2高炉鼓风机能力的确定 (41) 4.2.1 大气状况对高炉鼓风的影响 (41) 4.2.2 鼓风机工况的计算 (42) 4.3高炉鼓风机的工艺过程 (43) 5 热风炉 (44) 5.1计算的原始数据 (44) 5.2燃烧计算 (45) 5.2.1 煤气成分换算 (45) 5.2.2 煤气发热值计算 (45) 5.2.3 燃烧1标米3煤气的空气需要量 (46) 5.2.4燃烧1标米3煤气生成的烟气量百分组成 (46) 5.2.5理论燃烧温度和实际燃烧温度计算 (47) 5.3热平衡计算 (50) 5.3.1 计算鼓风从80℃提高到1200℃所增加的热含量 (50)

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入 高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉

顶是由料钟与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石 中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生 成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 :高炉冶炼工艺流程简图 [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批 送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。

浅析富氧对高炉炼铁的影响

〈〉 0引言 富氧喷煤技术在我国高炉生产中应用较为普 遍[1-2]。高炉操作中,提高鼓风富氧量能够富化鼓风 的氧含量,进而提高风口前煤粉的燃烧率,提高煤 粉的置换比,降低焦比及铁前成本。同时,还可以解 产量点。根据理论燃烧温度计算方法可知,富氧和 喷煤对高炉冶炼过程的影响是相反的,两者之间可 以优势互补,所以在调整富氧率时也要相应调整喷 煤才能保证高炉稳定顺行;富氧率增加后,煤气量 减少,上部热交换区域扩大,炉顶温度降低,当温度 降到结露温度将会影响高炉除尘系统的正常运行。 1.1富氧率与吨铁氧量 根据已有的研究结果可知,一般来说富氧率在 一定范围内的时候鼓风中富氧率每提高1%,铁水 产量可以提高2.5%耀3%[3-4]。但是富氧率和高炉铁水 产量存在一个相关的关系,可以实现产量和富氧利 用的最佳比例,因此有必要寻找到最佳的富氧和产 量对比关系,用来指导高炉的日常生产,从而优化 高炉生产的经济指标。 吨铁氧量的计算: q=Q t(1) 式中,Q为每天高炉的富氧流量,m3;t为铁水日产 浅析富氧对高炉炼铁的影响 郭晓鹏 (德龙钢铁有限公司,河北邢台054009) [摘要]根据高炉物料平衡和热平衡,计算出高炉冶炼过程中,富氧率对高炉产量、顶温的影响,富氧、煤比与理论燃烧温度的关系,得出随着富氧率的增加,顶温逐渐降低,煤比逐渐升高;富氧率和铁水产量关系存在缓变区域,最高值对应的最佳富氧率值为4.2%。 [关键词]高炉;富氧;顶温;理论燃烧温度;煤比 Brief Analysis on the Effect of Oxygen Enrichment on Ironmaking GUO Xiao-peng (Delong Iron and Steel Co.,Ltd.,HEBEI054009) Abstract According to the relationship of material balance and heat balance of blast furnace,the effect of oxygen enrichment rate on blast furnace output and the temperature at the furnace throat and the the relationship of oxygen enrichment,coal ratio and theoretical combustion temperature in ironmaking are calculated.The results show that the temperature at the furnace throat gradually decreases and the coal ratio gradually increases with the oxygen enrichment rate increase,The relationship between oxygen enrichment rate and molten iron output has a slow change region,and the best oxygen enrichment rate corresponding to the highest value is4.2%. Key words blast furnace,oxygen enrichment,top temperature,theoretical combustion temperature,coal ratio DOI:10.3969/j.issn.1006-110X.2019.01.003 从事财务方面的研究工作。 18 --

高炉炼铁工艺流程(经典)

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要 方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

高炉炼铁设备技术研究毕业论文

高炉炼铁设备技术研究毕业论文 第一章文献综述 1.1 炼铁行业概述 钢铁工业在过去的100多年里进行了快速发展,无论是在设备还是技术上都取得了重大的进步,但也存在这很大的缺陷,比如污染严重,矿石利用率低,严重耗能等等的问题。在近些年里钢铁行业的重要性有了不小的下降,更为严重的是钢铁行业现在已经处于一个微利甚至是负利的产业,所以现在急需要我们的生产工作者更加努力,提高钢铁行业的技术进而扭转这一不利的局面。 我国钢铁工业现状如下[1]:行业集中度低, 生产专业化程度低, 尚不能达到规模经济, 在一定的程度上限制了我国钢业的竞争力,结构不合理,企业平均技术装备水平低,产业升级和任务技术改造非常艰巨。我国钢铁企业不注重新技术新产品的开发利用,和国外一些企业形成了鲜明的对比。钢铁产品质量有待进一步提高。我国钢铁产品的实物质量水平比国外先进水平相比还有一段距离; 我国钢材产品销售服务水平较低。钢材产品销售服务和产品的质量是提高产品竞争力的重要方面; 我国钢铁行业的信息迟缓,企业与企业间相互恶意压价竞争,而且没有一个统一的部门进行指导和规,导致了现在我们钢铁行业的严重被动局面,加工服务中心基本上处于空白,而且我国的钢铁企业目光仅仅局限于国,在国际上的竞争力不足,所以现在我国钢铁行业处于一个极为不利的局面,急需要一些措施来改变。 目前我国钢铁业产能过剩,严重超出了需求量,在2008年我国生铁产量已经到达4.6944亿t比去年度增长15. 19%,其增加幅度低于钢产量同期增加幅度,占剧全世界钢铁总产量的49.74%。2007年全国重点钢铁企业产铁3. 69亿t,同去年的产量比增长了13.74%,其他非重点钢铁企业产量1.20亿t,增长19.60%。2008年上半年我国产铁量2.4642亿t,与去年相比增加了 7.89%,但发展势头降低了。预计, 2008年我国钢产量达到5.2亿t,生铁产量将达到4.9亿t。2009年产铁5.43亿吨,占世界总产量的60.53%,2010年前十个月我国铁产4.96亿吨,比上年同期增长8.27%。高炉生产技术取得了很大的的进步,但随之而来的问题也是不少的,如钢铁产能过剩,钢铁质量不达标,钢铁

非高炉炼铁工艺发展现状_王振智

2011.01 57 摘要: 文章阐述了非高炉炼铁技术的发展现状及分类,并对主要工艺流程法作了较为详细的介绍,并对各种工艺流程的特点进行了分析,展望了非高炉炼铁技术在新世纪的发展前 景。 关键词: 非高炉炼铁;直接还原;熔融还原;二步法熔融还原;转底炉法中图分类号: TF557 文献标识码:A 文章编号:1009-2374(2011)03-0057-02非高炉炼铁工艺发展现状 王振智 (中冶天工上海十三冶建设有限公司设备安装分公司,上海 201900) 高炉炼铁发展至今,因其必须使用储量有限的焦炭为主要燃料,需要以一定粒径的块状铁矿石入炉冶炼等原因,面临着能源、环境、投资等方面的困扰。近几十年来世界各国的冶金工作者们一直致力于研究和改进各种非高炉炼铁技术。 一、非高炉炼铁生产工艺技术 直接还原和熔融还原是两种最主要的非高炉炼铁思路,他们较高炉炼铁具有更多的优势,因而具有较大的发展空间。直接还原分为气基和煤基直接还原,其中气基直接还原主要是气基竖炉法、气基流化床法,是利用天然气经裂化产出的H 2和CO作为还原剂,在竖炉中将铁矿石在固态温度下还原而成海绵铁,目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床中将铁矿石在固态温度下还原成海绵铁,其中回转窑工艺是最成熟、应用最广的方法,具有代表性的是SL/RN法。熔融还原法是以煤炭为主要能源,使用天然富矿、人造富矿(烧结矿或球团矿)取代高炉生产液态生铁的方法。 二、直接还原工艺 (一)气基直接还原工艺 Midrex技术和HYL-III技术占直接还原铁产量的85%以上,是直接还原铁的两大主流技术。两者均采用逆流移动床作为反应器,还原气为天然气,天然气经转化炉变成H 2+CO的混合气,进入还原竖炉与氧化球团矿反应,最终金属化率>90%。HYL-III技术的特点是其还原温度比Midrex技术高约50℃~100℃(Midrex技术还原温度为800℃~900℃),另外,HYL-III反应器内压力>0.55MPa,其高温、高压、高氢气浓度的条件保证其高的还原速率。 Midrex技术和HYL-III技术具有污染较小,能耗低的特点,但都只解决了不使用焦炭这一个问题,仍必须使用球团矿,另外我国天然气资源严重缺乏,这两 种工艺难以适应我国国情。 图1 Midrex 竖炉结构示意图 F i o r 法和C i r c o f e r 法均采用流化床技术。Circofer法工艺原理:粉矿经过两段预热后进入反应器,在高于900℃的温度下被还原。反应器由流化床反应炉、再循环旋风收尘器和气化器组成。还原反应器中的流态化介质为还原性气体。在气化器中,煤与氧发生氧化,气体和再循环物料将反应热带入还原反应器内,氧化铁被还原为金属铁。目前流化床技术存在的问题是粉矿粘结及其对设备带来的损害。 (二)煤基直接还原工艺 煤基直接还原工艺主要包括回转窑法(如SL-RN 法)和转底炉法(如COMET法)。 SL-RN法工艺原理:铁矿石或球团矿与煤粉同时由窑尾加入窑内,借助于炉体的倾斜和转动,使炉料向窑头方向运动,经过预热带、还原带而得到产品。 COMET法是一种转底炉法,1997年由比利时的CRM 公司开发的一种用粉矿和煤生产优质海绵铁的工艺,工艺原理:采用转底炉,将煤层和铁矿粉交替铺在炉床上,通过煤气烧嘴加热。这样的混合物可使温度很快上升到1300℃以上。此工艺可以使用粉矿,但煤层和铁矿粉的交替铺层必然导致其生产率低的弱点。煤基直接还原有着自己的特点,我国煤资源丰富,此工 交流园地 E xchange Field DOI:10.13535/https://www.360docs.net/doc/4017968664.html,ki.11-4406/n.2011.03.015

相关文档
最新文档