植被指数计算方法
植被指数计算方法

2.1归一化植被指数(NDVI )归一化植被指数(Normalized Differenee Vegetation Index 即 NDVI )的计算公式为:其中:NIR 和RED 分别代表近红外波段和红光波段的反射率 NDVI 的值介于-1和 1之间。
2.2增强型植被指数(EVI )增强型植被指数(En ha need Vegetation In dex 即EVI )计算公式为:NIR 、 RED 和BLUE 分别代表近红外波段、红光波段和蓝光波段的反射率。
2.3高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外 和红光的谱段进行归一化植被指数计算:.. Hyp NIR Hyp RED Hyp NDVI----------- ------------ 一 Hyp _ NIR Hyp _ RED2.4其他植被指数(1) 比值植被指数(Ratio Vegetation Index ------ RVI )RVI 3RED该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。
但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。
(2) 差值植被指数(Differenee Vegetation Index -------- DVI )DVI NIR RED该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因 此又被称为环境植被指数(EVI )。
(3)土壤调整植被指数(Soil-Adjusted Vegetation Index --------- S AVI )NDVI NIR RED NIR REDEVI 2.5NIR RED NIR 6.° RED 7.5 BLUESAVI ―NR―RED(1 L)NIR RED L其中,L是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。
ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。
目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。
本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。
这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。
包括以下内容:∙∙●植被光谱特征∙∙●植被指数∙∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。
很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。
研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。
这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。
ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
植被指数计算公式

植被指数计算公式
1. 什么是植被指数?
植被指数(vegetation index)是用来描述植被覆盖程度的指数,通常是由植被反射和吸收辐射的比值,比如最常用的归一化植被指数NDVI(Normalized Difference Vegetation Index)。
2. 植被指数的作用和意义
植被指数是研究植被动态、生长状态和生产力的重要工具,广泛
应用于农业、林业、生态环境等领域。
它可以反映出植被覆盖程度、
叶面积指数、光合活动强度等信息。
3. 归一化植被指数NDVI的计算公式
归一化植被指数NDVI的计算公式如下:
NDVI=(NIR-RED)/(NIR+RED)
其中,NIR代表近红外波段反射率,RED代表红光波段反射率。
4. 归一化植被指数NDVI的解释
归一化植被指数NDVI的取值范围为-1到1之间,数值越接近1表明植被覆盖度越高,而数值越接近-1表明植被稀疏程度越高。
如果NDVI等于0,则表示没有植被覆盖。
5. 归一化植被指数NDVI的优势
归一化植被指数NDVI是反映植被变化最敏感、最广泛应用的指数之一。
它具有以下几个优势:
(1)NDVI可以从遥感图像中提取植被信息,避免了根据人工采样数据进行测量的不足。
(2)NDVI可以利用遥感数据中不可见的红外波段反射信息,使得植被覆盖率的测量更加准确。
(3)NDVI对于绿色和枯黄色的植被具有较强的差异性,可以很好的反映植被的生长状况。
总之,归一化植被指数NDVI是目前研究植被覆盖和生长状况的重要工具之一,可以应用于数个领域,例如生态环境监测、气象预测、农业生产等。
几种常用植被指数介绍

对几种常用植被指数的认识植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。
在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。
1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;~4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。
植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤植被指数是研究地表植被覆盖状况的重要指标,可以通过遥感技术获取高空间分辨率的植被信息。
植被指数的计算方法与遥感图像处理步骤是确定植被指数数值的关键环节。
一、什么是植被指数?植被指数是通过遥感技术获取的图像数据来计算植被覆盖状况的指标。
常见的植被指数有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、植被指数(Vegetation Index, VI)等。
这些指标利用遥感图像中红、近红外波段的反射光谱信息来反映植被生长情况,指数数值越高,代表植被覆盖程度越高。
二、植被指数的计算方法1. 归一化植被指数(NDVI)NDVI是最常用的植被指数之一,计算公式为(NIR-RED)/(NIR+RED),其中NIR是近红外波段的反射值,RED是红波段的反射值。
NDVI范围在-1到1之间,数值越接近1代表植被覆盖越高,数值越接近-1代表植被覆盖越低,数值接近0则代表无植被。
2. 植被指数(VI)植被指数是根据遥感图像中的红、蓝、绿波段的反射值计算得到的,常见的植被指数有绿光波段(Green)、蓝光波段(Blue)和红边波段(Red-edge)等。
植被指数的计算公式根据研究的需要而定,比如Normalized Green-Blue Vegetation Index(NGB)、Green-Blue Vegetation Index(GBVI)等。
三、遥感图像处理步骤1. 遥感图像获取遥感图像可以通过卫星、飞机等载体获取,一般包括多个波段的光谱信息。
从遥感图像中选取合适的波段进行植被指数的计算。
2. 数据预处理遥感图像预处理包括大气校正、几何纠正和辐射辐射校正等步骤,以消除由于大气、地表地貌等因素引起的图像噪声。
3. 波段选择根据研究需要和相关指数的计算公式选择合适的波段进行植被指数的计算。
常用的波段有红、近红外、绿、蓝等。
归一化差异植被指数数值

归一化差异植被指数数值归一化差异植被指数(Normalized Difference Vegetation Index,NDVI)被广泛应用于遥感技术的植被监测领域。
NDVI可以用于评估植被的生长状态和空间分布,并可用于估算植被物质和叶面积指数。
对于遥感技术卫星传感器获取图像数据进行相关测量和分析处理方面具有重要意义。
本文将深入探讨归一化差异植被指数数值的相关话题,包括其定义、计算方法及应用等方面。
一、NDVI的定义NDVI是一种逐像元计算的植被指数,它通过遥感技术将反射波段红色和近红外波段的能量进行比较,以反映植被的生长状态。
其数学表达式为:NDVI = (NIR – Red) / (NIR + Red)其中,NIR (Near Infrared) 表示近红外波段的反射率,Red表示红光波段的反射率。
由于植被在近红外波段有较高的反射率,在红光波段有较低的反射率,在NDVI计算中使用比值法可以消除不同亮度的干扰之后,NDVI的值范围在-1到1之间。
当NDVI接近于1时,表明该区域植被覆盖较好;当NDVI接近于0时,表明该区域的植被覆盖率较低;当NDVI为负数时,表明该区域是水体、建筑物或石块等非植被覆盖面。
NDVI数值越高,表明该区域植被密度越大,植被生长状况越好。
二、NDVI的计算方法计算NDVI需要获取遥感图像中的红光和近红外反射率数据。
这需要使用卫星或无人机等平台获取的遥感图像数据和数字图像处理技术进行相关处理。
常用的遥感图像处理软件包括ENVI、ERDAS等。
计算NDVI的具体步骤如下:1. 读取遥感图像数据并进行预处理。
2. 提取遥感图像中的红光与近红外反射波段数据。
3. 对红光与近红外反射波段进行数学运算得出NDVI数值。
4. 将NDVI数值进行归一化处理(即将NDVI数值映射到0到1之间)。
归一化差异植被指数在环境控制、土地利用和植被监测等领域中都有着重要的应用价值。
1. 环境控制在环境控制方面,NDVI可用于监测陆地、农田、森林和荒漠等区域的植被覆盖状态和生长情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 归一化植被指数(NDVI )
归一化植被指数(Normalized Difference Vegetation Index ,即NDVI )的计算公式为:
NIR RED NIR RED
NDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。
2.2 增强型植被指数(EVI )
增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为:
2.5 6.07.51
NIR RED NIR RED BLUE EVI ρρρρρ-=⨯+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。
2.3 高光谱归一化植被指数(Hyp_NDVI )
对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算:
_____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED
-=+ 2.4 其他植被指数
(1) 比值植被指数(Ratio Vegetation Index ——RVI )
NIR RED
RVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。
但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。
(2) 差值植被指数(Difference Vegetation Index ——DVI )
NIR RED DVI ρρ=-
该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。
(3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )
(1)NIR RED NIR RED SAVI L L
ρρρρ-=+++g 其中,L 是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。
当L=0是,SA VI 就是NDVI ;对于中等植被覆盖区,L 的值一般接近于0.5。
乘法因子(1+L )主要是用来保证最后的SA VI 值介于-1和1之间。
该指数能够降低土壤背景的影响,但可能丢失部分植被信号,使植被指数偏低。
(4) 修正土壤调整植被指数(Modified Soil-Adjusted Vegetation Index —
—MSA VI )
MSAVI =关于植被指数更详细的介绍,可参见田庆久(1998)[1]。