人教版高中(必修一)数学第2章_函数概念和基本初等函数Ⅰ复习与小结(2)ppt课件

合集下载

人教版高中数学必修一第二章基本初等函数(Ⅰ)课件PPT

人教版高中数学必修一第二章基本初等函数(Ⅰ)课件PPT
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集为(0,1).
反思与感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
1 23 45
答案
3.f(x)=lg(x2+a)的值域为R,则实数a可以是( A )
A.0
B.1 C.2 D.10
1 23 45
答案
4.如果 log1 x log1 y 0 ,那么D( )
2
2
A.y<x<1
B.x<y<1
C.1<x<y
D.1<y<x
1 23 45
答案
1 23 45
5.若函数 y=f(x)是函数 y=ax(a>0 且 a≠1)的反函数,且 f(2)=1,则 f(x)
解析答案
类型三 对数不等式 例3 已知函数f(x)=loga(1-ax)(a>0,且a≠1).解关于x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化为loga(1-ax)>loga(1-a).
等于( A )
A.log2x
1 B.2x
C. log 1 x

D.2x-2
2
答案
规律与方法
1.与对数函数有关的复合函数单调区间、奇偶性、不等式问题都要注 意定义域的影响. 2.y=ax与x=logay图象是相同的,只是为了适应习惯用x表示自变量,y 表示应变量,把x=logay换成y=logax,y=logax才与y=ax关于y=x对称, 因为(a,b)与(b,a)关于y=x对称.

2019年最新-人教版高中数学必修一第二章小结与复习ppt课件

2019年最新-人教版高中数学必修一第二章小结与复习ppt课件

(ln x)' 1
x;
(loagx)'1 x;loga
(ex )' ex

(ax)'ax lna

5.导数的四则运算法则:
[ u (x ) v (x )' ] u '(x ) v '(x )
[ u ( x ) v ( x ) ] u ' ( x ) v ( x ) u (
[C u(x)]C u'(x)
练习:课本 作业:课本
P53 复习题:A组1、2、 P53 复习题:A组 5;
五、教后反思:
谢谢!
We are so hungry.How can we get to Italian restaurant?W e are in front of the cinema. Let’s go straight and turn left at the bookstore. Follow me. 加热高锰酸钾制取氧气的装置 适合用双氧水在二氧化锰作催化剂 条件下制取氧气吗?为什么?
[ 1 ( 3 x ) 3 ] 2
( 1
e2x 1(1 16x) (13x)4
例2、已知曲线C1: y, x 2 与曲线C2: y
,直线l与C1、C2都相切,, 求直线l的方程。
解:设l与C1相切于点
P1(x1, y1),l与C2相切于
,直线l的斜率为k。C1: y x,2 y 2,x k
C2: y(x2),2 y2(x2),k2
据此可得出气体的发生装置与哪些 因素有关?如何选择发生装置?如何 选择收集装置? Na2CO3 +2HCl == 2NaCl +H2O + CO2

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

高一数学必修1第二章基本初等函数知识点总结归纳(印刷)

高一数学必修1第二章基本初等函数知识点总结归纳(印刷)

必修1 基本初等函数知识点整理一、指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n=∈∈>,且n N+∈,那么x叫做a的n次方根.当n是奇数时,_______=x当n是偶数时,当_______,0=>xa;当=a0,_______=x;当0<a,_______=x._____,这里n叫做_____,a叫做_______.当n为奇数时,a为_____;当n为偶数时,__a③根式的性质:n a=;当n a=;当n为偶数时,(0)||(0)a aaa a≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N+=>∈且1)n>.0的正分数指数幂等于________.②正数的负分数指数幂的意义是:1()0,,,m mn na a m n Na-+==>∈.0的负分数指数幂__________.(3)分数指数幂的运算性质①__________=⋅sr aa②__________=sraa③__________)(=sra练习:1.下列根式与分数指数幂的互化,正确的是()(A)12()(0)x x=->13(0)y y=< (C)340)x x-=> (D)130)x x-=≠2.已知11223x x-+=,求22332223x xx x--+-+-的值;二、指数函数及其性质练习:1.设0x >,且1xxa b <<(0a >,0b >),则a 与b 的大小关系是 ( )(A )1b a << (B )1a b << (C )1b a << (D )1a b << 2.函数xex f -=11)(的定义域是3.如图为指数函数xx x x d y c y b y a y ====)4(,)3(,)2(,)1(,则d c b a ,,,与1的大小关系为 (A )d c b a <<<<1 (B )c d a b <<<<1(C )d c b a <<<<1 (D )c d b a <<<<1 4.若函数m y x +=+-12的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m5. 已知f (x)=2xxe e -+且x ∈[0, +∞ )(1) 判断f (x)的奇偶性; (2) 判断f (x)的单调性,并用定义证明三、对数与对数运算(1)对数的定义:若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作______=x ,其中a 叫做____,N 叫做____(2)几个重要的对数恒等式: log 10a = ,log 1a a = ,log ba ab =.(3)常用对数: (以_____为底),记作:_________; 自然对数:(以_____为底), 记作:_________. (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①________________)(log =MN a ②________________)(log =N Ma ③log log ()n aa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b ab N N b b a =>≠且 练习:1.________,2log 6log 31log .2________,32log 63564==⋅⋅=x x 则若3.设,518,9log 18==b a ,求45log 36.4.已知35a bc ==,且112a b+=,求c 的值5.求方程22log (1)2log (1)x x -=-+的解6. 求函数22(log )(log )34x x y =在区间8]上的最值四、对数函数及其性质1.函数y =( )A [1,)+∞B 23(,)+∞ C 23[,1] D 23(,1]2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 23.已知7.01.17.01.1,8.0log ,8.0log ===c b a ,则c b a ,,的大小关系是( )(A )c b a <<(B )c a b << (C )b ac <<(D )a cb <<4.已知函数f (x )=2log (0)3(0)x x x x >≤⎧⎨⎩,则f [f (14)]的值是( )A .9B .19C .-9D .-195.函数y=|log 2x|的图象是( )6.如果log 5log 50a b >>,那么a 、b 间的关系是( )A 01a b <<<B 1a b <<C 01b a <<<D 1b a <<7.若0<a <1,f(x)=|log ax|,则下列各式中成立的是( ) A .f(2)>f(13)>f(14) B .f(14)>f(2)>f(13) C .f(13)>f(2)>f(14) D .f(14)>f(13)>f(2)8.已知a>b ,函数f(x)=(x -a)(x -b)的图象如图所示,则函数g(x)=log a (x +b)的图象可能为( )9.已知:()lg()xxf x a b =-(a >1>b >0).(1)求)(x f 的定义域(2)判断)(x f 的单调性(3)若)(x f 在(1,+∞)恒为正,比较a-b 与1的大小.五、幂函数(1)幂函数的定义:一般地,函数________________叫做幂函数,其中x 为_________,α是___________. (2)常见幂函数的图象(在同一坐标系中画出下列函数的图像)23232211--======x y xy x y x y xy xy(3)幂函数的性质①图象分布:在第______象限都有图像,在第 ____象限无图象. ②过定点:_____________.③单调性:如果0α>,在[0,)+∞上为___函数如果0α<,则在(0,)+∞上为____函数,并且无限接近_____ ④奇偶性:当α为奇数时,幂函数为__________函数,当α为偶数时,幂函数为_______函数.当qpα=(其中,p q 互质,p 和q Z ∈), 若p 为奇数q 为奇数时,则qp y x =是_______函数,若p 为奇数q 为偶数时,则q p y x =是_______函数,若p 为偶数q 为奇数时,则q py x =是_______函数. 练习:1.函数y =(1-2x )21-的定义域是_________ 2.幂函数的图象过点(2,14), 则它的单调递增区间是3.函数43-=xy 在区间上 是减函数4.下列命题中正确的是( )A .当0α=时,函数y x α=的图象是一条直线 B .幂函数的图象都经过(0,0),(1,1)两点 C .幂函数的y x α= 图象不可能在第四象限内 D .若幂函数y x α=为奇函数,则在定义域内是增函数 六、函数的零点:对于函数y=f(x),我们把使___________的实数x 叫做函数y=f(x)的零点,函数的零点是一个______ 零点的存在性定理:如果函数y=f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且有_____________,那么函数y=f(x)在区间(a,b )内有零点,即存在c ∈ (a ,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.练习:1.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x>1,则函数f(x)的零点为( ) A.12,0 B.-2,0 C.12 D.02.在下列区间中,函数f(x)=e x +4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)3.函数f(x)=(12)x -sinx 在区间[0,2π]上的零点个数为________.4.若函数f(x)=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下表那么方程x 3+A.1.5 B.1.4 C.1.3 D.1.2七、一元二次方程的实根分布问题一元二次方程的根,其实质就是其相应二次函数的图象与x 轴交点的横坐标,因此,可以借助于二次函数及其图象,利用数形结合的方法来研究一元二次方程的实根分布问题,一元二次方程ax²+bx+c=0(a>0)的实根分布1.已知方程x ²+(m –3)x+m=0的两个根均小于1,求实数m 的取值范围。

人教版高中数学必修一_第二章_基本初等函数(Ⅰ)本章回顾总结_新ppt课件

人教版高中数学必修一_第二章_基本初等函数(Ⅰ)本章回顾总结_新ppt课件
答案:C
6.(2014·安徽高考)1861-43 +log3 54+log3 45=________
解析:根据负分数指数幂的性质及对数运算性质求解.
3 4
+log3
54+log3
45=23-3+log31=287+0=287.
答案:287
7.(2013·安徽高考)函数 y=ln1+1x+ 1-x2的定义 _____解_. 析:(1)由题意,得1+1x>0,
(2)注意事项. 正确应用指数和对数的运算性质和结论进行变形,例如 e2-x+e2-x=21ex+2ex, logaxx+ -11=logaxx- +11-1=-logaxx- +11. 2.指数、对数、幂函数单调性的应用 (1)比较指数幂、对数的大小. (2)解指数、对数不等式. (3)求函数的值域.
• 答案:D
2.(2013·新课标全国高考Ⅱ)设 a=log36,b=log510,c=
14,则(
)
A.c>b>a
B.b>c>a
C.a>c>b
D.a>b>c
解析:根据公式变形,a=llgg 63=1+llgg 23,b=llgg150=1+
c=llgg174=1+llgg 27.因为 lg 7>lg 5>lg 3,所以llgg 27<llgg 25<llgg
设 a>0,f(x)=eax+eax是 R 上的偶函数. (1)求 a 的值; (2)判断 f(x)在(0,+∞)上的单调性,并给予证明. 解:(1)依题意,对一切 x∈R,有 f(-x)=f(x), 即ea-x+ea-x=eax+eax,
∴a-1aex-e1x=0 对一切 x∈R 成立, 则 a-1a=0,∴a=±1.∵a>0,∴a=1.
若关于 x 的方程 f

人教版高中数学必修一第二章函数复习优质PPT课件

人教版高中数学必修一第二章函数复习优质PPT课件

班级:高一(6)班
谢谢!
21
2020年4月19日3时47分
思考题 1
2
3
2.把下面不完整的命题补充完整,并使之成为真命题.若
函数f (x) =3+log 2 x 的图象与g (x)的图象关于 x轴 对称,则 函数g (x) = -3-log2 x . (注:填上你认为可以成为真命题的一种情形即可)
6
2020年4月19日3时47分
二、基础练习题 1
2
3
2.函数y =x2-2|x| 的图象是( C )
y
y
y
y
O1 x
O1 x
O1 x O1 x
(A)
(B)
g (x)=x2-2x
(C)
y =x2-2|x|
(D)
y =|x2-2x |
注意到x2=|x|2,∴函数y = |x|2-2|x| ,即 y=g (|x|) 的形式
x (iii)当k >0时,
y = k-x2 抛物线与 y= | 2x-1|的图象有两个交点,
画板
∴此时原方程有两解.
12
2020年4月19日3时47分
(二)利用函数图象解决方程与不等式问题
例4.已知函数f (x)=| log2(x+1) |,g(x) =1-x2,定义函数F (x): 当f (x)≥g(x) 时,F (x)= f (x); 当g(x) > f (x) 时,F(x)= -g(x).
y= f (x)
O x
5
2020年4月19日3时47分
二、基础练习题 1
2
3
1.为了得到 y=2x-3-1图象,只需把 y=2x图象上所有点( A ) (A) 向右平移3个单位长度,再向下平移1个单位长度 (B) 向左平移3个单位长度,再向下平移1个单位长度 (C) 向右平移3个单位长度,再向上平移1个单位长度 (D) 向左平移3个单位长度,再向上平移1个单位长度

高一数学必修一第二章基本初等函数复习要点-文档资料

高一数学必修一第二章基本初等函数复习要点总结每一章的知识点对学习知识是非常有利的,查字典数学网为您提供的是高一数学必修一第二章基本初等函数复习要点,希望可以帮助到你。

第二章基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a1图象特征函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式.两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.对数式与指数式的互化对数式指数式对数底数←→幂底数对数←→指数真数←→幂(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。

人教版数学必修一第二章-基本初等函数复习课共24张PPT(共24张PPT)

1
4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
(C)1<b<a
(D)0<b<1<a
5.方程loga(x+1)+x2=2(0<a<1)的解的个
数是( C ) (A)0 (B)1 (C)2 (D)无法确定
1.比较下列各组中两个值的大小,并说明 理由.
2.设函数. f (x) = lg(x + x2 +1) (1)确定函数f (x)的定义域; (2)判断函数f (x)的奇偶性; (3)证明函数f (x)在其定义域上是单调 增函数;
5.如图中曲线C1,C2,C3,C4分别是函数y=ax,y=bx, y=cx,y=dx的图象,则a,b,c,d与1的大小关系是(D )
(A)a<b<1<c<d (B)a<b<1<d<c (C)b<a<1<c<d (D)b<a<1<d<c
6.已知函数
f (x) = a x -1 ax +1
(a>1பைடு நூலகம்.
(1)判断函数f (x)的奇偶性; (2)证明f (x)在(-∞,+∞)上是增函数.
1 计算
2 log5 2 + log5 3
log
5
10
+
1 2
log 5
0.36
+
1 3
log 5
8
=1
2 求函数y = log x-1(3 - x)的定义域
3.(lg 2)2 lg 250 + (lg 5)2 lg 40 =
12 换底公式
注意换底公式在对数运算中的作用:
①公式
顺用和逆用;
②由公式和运算性质推得的结论

人教版高中数学必修一 第二章 基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。

注意:(1)na =(2)当 n a = ,当 n ,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r rra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 20<a<1a>1定义域R , 值域(0,+∞)注意: 指数增长模型:y=N(1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。

(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。

掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。

(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。

(4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。

(5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式)说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式.2、两个重要对数:(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =⇔=对数式 指数式对数底数← a → 幂底数对数← x → 指数真数← N → 幂 结论:(1)负数和零没有对数(2)log a a=1, log a 1=0 特别地, lg10=1, lg1=0 , lne=1, ln1=0(3) 对数恒等式:log Na a N =(二)对数的运算性质如果 a > 0,a ≠ 1,M > 0, N > 0 有:1、 log M N log log a a a M N ∙=+() 两个正数的积的对数等于这两个正数的对数和 2 、N M NMa a alog log log -= 两个正数的商的对数等于这两个正数的对数差3 、log log n na a M n M =∈(R ) 一个正数的n 次方的对数等于这个正数的对数n 倍说明:1) 简易语言表达:”积的对数=对数的和”……2) 有时可逆向运用公式3) 真数的取值必须是(0,+∞)4) 特别注意:N M MN a a a log log log ⋅≠ ()N M N M a a a log log log ±≠±注意:换底公式()log lg log 0,1,0,1,0log lg c a c b bb a ac c b a a==>≠>≠>利用换底公式推导下面的结论 ①a b b a log 1log =②log log log log a b c a b c d d ∙∙=③log log m n a a nb b m=(二)对数函数1、对数函数的概念:函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:(1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

高中新课程数学(新课标人教A版)必修一《第二章 基本初等函数》本章小结


A 版 必
g(x)=log2x 的图象的交点个数有
A.4 个
B.3 个
()

C.2 个
D.1 个

·
新 课 标
·
数 学
解析:本题考查函数的图象及数形结合思想的应
人 教
用.如下图所示,由图象可知有3个,故选B.





·
新 课 标
·
数 学
·
·
人 教 A 版 必 修 一 新 课 标 数 学
【例 7】
·
温馨提示:指数与指数幂的运算、对数与对数运算是
人 教
两个重要的知识点,它们既是学习和研究指数函数、对数
A 函数的基础,也是高考必考内容之一,教学中应给予足够
版 必 的重视。


·
新 课 标
·
数 学

【例 2】 设 f(x)=2-x
x∈(-∞,1]
教 A
log81x x∈(1,+∞),则满足 f(x)=14的 x 的值为
若-1<loga2 3<1,求 a 的取值范围.

解:-1<loga23<1⇒loga1a=-1<loga23<1=logaa,
教 A 版
①当 a>1 时,有 y=logax 为增函数,a1<32<a.
必 修
∴a>32,结合
a>1,故
3 a>2.
·
一 新
②当 0<a<1 时,有 y=logax 为减函数,a1>32>a.

(2)f(x)·f(y)=(ex-e-x)(ey-e-y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:如果函数f(x)的反函数f -1(x)存在,则f(x)的定义域是f -1(x)的值域; f(x)的值域是f -1(x)的定义域. f(x)与f -1(x)的图象关于直线y=x对称.
数学应用:
六、幂函数的概念、图象与性质 已知函数f(x)满足:对任意的实数a、b,都有f(a+b)=f(a)· f(b), 试写出一个满足上述条件的f(x)= .
数学建构:
指数函数y=ax(a>0,a≠1)
对数函数y=log x(a>0,a≠1)
函数基本模型
幂函数y=x
(1)y=x (2)y=x2 (3)y=x3 (4)y=x-1 (5)y=x0.5
cx d y= ax b
y=kx+b y=ax2+bx+c 概念、图象与性质 下列关系:(1)0<a<b<1;(2)1<a<b;(3)0<b<a<1; (4)1<b<a. 能满足loga3>logb3的有 (写出所有正确结论的序号) .
数学应用:
已知y=loga(2-x)是x的增函数,则实数a的取值范围是 .
已知函数f(x)=loga(2-ax)在区间(-,4)上是增函数,则实数a的 取值范围是 .

数学应用:
已知函数y=ax,y=bx, y=cx, y=dx的图象在同一坐标系的位置 如图所示,则a,b,c,d 的大小关系为 .
y=bx y y=ax y=cx y=dx
1
O 1
x
数学应用:
已知函数y=logax,y=logbx, y=logcx, y=logdx的图象在同一坐标 系的位置如图所示,则a,b,c,d 的大小关系为 .
高中数学 必修1
第2章 复习与小结(2)
数学建构:
数的运算 根式与分数指数幂 对数
数学应用:
一、根式与分数指数幂 已知x+x-1=3,求下列各式的值: (1) x
1 x
(2)
x x
3 2
-
3 2
(3)x-x-1
3 3 2 2 (x x ) (x x -3 ) (4) 4 4 x -x
数学应用:
全文结束
y y= logax 1 O
y= logbx 1 x y= logcx
y= logdx
数学应用:
已知函数y=xa,y=xb, y=xc与 y=x与 y=x-1位于第一象限内的 图象在同一坐标系中的位置如图所示,则实数a,b,c与0,1和-1 的 大小关系为 .
y y=x-1 y=bx y=ax y=x y=cx 1 O
1
x
数学探究:
已知定义在实数集上的函数y=f(x)满足对于任意的x、y∈R, f(x+y)=f(x) f(y).求证:(1)f(0)=1;(2)对任意的实数x, f(x)>0; (3)若当x>0时,有f(x)>1,求证f(x)是增函数.
作业:
P93习题10,11,12,14,17,25.
谢谢观看!
二、对数及其运算法则 若2lg
b - a a =lga+lgb,求log2 的值. 2 b
注:零和负数没有对数,是在解决对数计算中易忽略的细节.
数学应用:
l o g l o g cb ca 设a、b、c都是不等于1的正数,求证: a b
数学建构:
根式与分数指数幂 新增的数的运算 对数及其运算法则
数学应用:
设f(x)=lg(ax2-2x+a) (1)若f(x)的定义域是R,求实数a的取值范围; (2)若f(x)的值域是R,求实数a的取值范围. 注意体会二者的区别.
数学应用:
五、指数函数与对数函数的互为反函数关系
已知f(x)=logax是区间(0,+)上的单调增函数,g(x)是f(x)的反函 数,则g(x)的单调性是 ,单调区间为 .
数学应用:
三、指数函数的概念、图象与性质 若函数f(x)=(2a2-3a+2)ax是指数函数,则实数a= .
数学应用:
求下列函数的定义域与值域: (1) f(x)= 8
1 2 x-1

1 x (2) f(x)= 1 - ( ) . 2
数学应用:
已知函数f(x)的图象过定点(0,2),则函数f(2x-1)+1的图象必过定 点是 .
y= ax b
数学应用:
已知函数f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),下列结 论:(1) 2a>2c;(2)2a>2b; (3)2-a<2c;(4)2a+2c <2.其 中一定不正确 的结论序号有 (写出所有不正确结论的序号) .
已知0<a<b<1, 则aa、ab、ba三个数的大小关系为
相关文档
最新文档