2013年浙江省高考数学(理科)试题精校版(word版)(含答案)

合集下载

2013高考真题——(浙江卷)理科数学(解析版+Word版含答案)

2013高考真题——(浙江卷)理科数学(解析版+Word版含答案)

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的运用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则A.yxyx lg lg lg lg 222+=+ B.yxy x lg lg )lg(222∙=+C.y x yx lg lg lg lg 222+=∙ D.y x xy lg lg )lg(222∙= 答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法; 6、已知210cos 2sin ,=+∈αααR ,则=α2tanA.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解能力;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00∙≥∙。

2013年高考理科数学浙江卷word解析版

2013年高考理科数学浙江卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+i B.-1+3iC.-3+3i D.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T=().A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg y B.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A .a =4B .a =5C .a =6D .a =7 答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a (+)=2-11a +的值,由已知输出的值为95,可知当a =4时2-11a +=95.故选A .6.(2013浙江,理6)已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=10或10,当cos α=10sin α=10;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C,则( ). A .∠ABC =90° B .∠BAC =90°C .AB =ACD .AC =BC 答案:D解析:设PB =t AB(0≤t ≤1),∴PC =PB +BC =t AB +BC,∴PB ·PC =(t AB )·(t AB +BC )=t 22AB +t AB ·BC .由题意PB ·PC ≥0P B ·0P C, 即t 22AB +t AB ·BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫ ⎪⎝⎭2AB +14AB ·BC ,即当14t =时PB·PC 取得最小值. 由二次函数的性质可知:2142AB BC AB ⋅-=, 即:AB - ·BC=122AB , ∴AB ·12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC=MB +BC =MC ,∴AB ·MC=0,即AB ⊥MC . ∴AC =BC .故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ).A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x -1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H ′(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C .9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF |2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=2e ==,故选D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 答案:-10解析:T r +1=553255C C (1)rr rr r r r x x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3, 所以A =(-1)335C =25C -=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).答案:480解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x 2+2(k 2-2)x+k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k +-=-=-+,1222y y k+=,即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.答案:3解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0),则M ,02a ⎛⎫ ⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭,cos ∠MAB =AB AMAB AM ⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=.∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2,sin ∠CAB3===. 17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2xy .∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯,P (ξ=4)=2312256618⨯⨯+⨯=⨯,P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a a b c a b c a b c ++=++++++,D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (0,2),B (0,0),D (00). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC = ,所以Q 00331,,4442x y ⎛⎫+ ⎪ ⎪⎝⎭.因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,044x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量.由CM =(-x 00y ,1),BM=(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩取y =-1,得m=00,1,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD=0, 故(-x 0,0y ,0)·(-x 00y ,0)=0,即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或0022x y ⎧=±⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=又∠BDC 是锐角,所以∠BDC =60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB==.又l2⊥l1,故直线l2的方程为x+ky+k=0.由220,44,x ky kx y++=⎧⎨+=⎩消去y,整理得(4+k2)x2+8kx=0,故0284kx=-.所以|PD|=24k+.设△ABD的面积为S,则S=12|AB|·|PD|=24k+,所以S=32=当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1-x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于f(故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。

2013年浙江高考数学理科试卷(带详解)

2013年浙江高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则(1i)(2i)-+-= ( ) A .3i -+ B. 13i -+ C. 33i -+ D.1i -+ 【测量目标】复数代数形式的四则运算. 【考查方式】求两个复数相乘的结果 【难易程度】容易 【参考答案】B【试题解析】(-1+i)(2-i)=- 2+i+2i+1=-1+3i ,故选B.2.设集合2{|2},{|340}S x x T x x x =>-=+-…,则()S T =R ð ( ) A .(2,1]- B.]4,(--∞ C.]1,(-∞ D.),1[+∞ 【测量目标】集合的基本运算.【考查方式】用描述法给出两个集合求补集的并. 【难易程度】容易 【参考答案】C【试题解析】∵集合S ={x |x >-2},∴S R ð={x |x …-2},由2x +3x -4…0得:T={x |-4…x …1},故(S R ð) T ={x |x …1},故选C.3.已知y x ,为正实数,则 ( )A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.lg lg lg lg 222x yx y =+ D.lg()lg lg 222xy x y = 【测量目标】指数幂运算.【考查方式】给出指数型的函数,化简函数. 【难易程度】容易 【参考答案】D 【试题解析】因为s ta+=s a ta ,lg(xy )=lg x +lg y (x ,y 为正实数),所以()lg 2xy =lg +lg 2x y=lg 2xlg 2y ,满足上述两个公式,故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( )A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【测量目标】三角函数的性质,三角函数的诱导公式.【考查方式】给出含参量的三角函数表达式,由函数是奇函数判断命题条件. 【难易程度】中等 【参考答案】B【试题解析】若φ=π2,则f (x )=A cos(ωx +π2)⇒f (x )=-A sin(ωx )(A >0,ω>0,x ∈R )是奇函数;若f (x )是奇函数⇒f (0)=0,∴f (0)=A cos(ω×0+φ)=A cos φ=0.∴φ=k π+π2,k ∈Z ,不一定有φ=π2,“f (x )是奇函数”是“φ=π2”必要不充分条件.故选B.5.某程序框图如图所示,若该程序运行后输出的值是59,则 ( )A.4=aB.5=aC. 6=aD.7=a第5题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图的输出值求输入的值. 【难易程度】容易 【参考答案】A【试题解析】由已知可得该程序的功能是:计算并输出S =1+112⨯+…+1(1)a a +=1+1-11a +=2-11a +.若该程序运行后输出的值是95,则2-11a +=95.∴a =4,故选A.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ) A.34 B. 43 C.43- D.34-【测量目标】二倍角,三角函数的诱导公式.【考查方式】给出正弦和余弦的方程求解二倍角的正切. 【难易程度】中等 【参考答案】C【试题解析】∵sin α+2cos α,又2sin α+2cos α=1,联立解得sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩,故tan α=sin cos αα =13-或tan α=3,代入可得tan2α=22tan 1tan αα-=212()311()3⨯---=34-或tan2α=22tan 1tan αα-=22313⨯-=34-.故选C.7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC….则 ( ) A. 90ABC ∠= B. 90BAC ∠=C. AC AB =D.BC AC =【测量目标】平面向量的算量积运算,向量的坐标运算.【考查方式】在三角形中给出定点在三角形中的位置,求定点与各顶点所成向量数量积的大小.【难易程度】中等 【参考答案】D【试题解析】以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系,设AB =4,C (a ,b ),P (x ,0),则0BP =1,A (-2,0),B (2,0),0P (1,0),∴0P B =(1,0),PB =(2-x ,0),PC =(a -x ,b ),0PC =(a -1,b ),∵恒有PB PC ≥00P B PC ,∴(2-x )(a -x )≥a -1恒成立,整理可得2x - (a +2)x +a +1≥0恒成立,∴Δ=()22a +-4(a +1)≤0,即Δ=2a ≤0,∴a =0,即C 在AB 的垂直平分线上,∴AC =BC ,故△ABC 为等腰三角形,故选D.第7题图8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)x k f x x k =--=,则 ( ) A .当1=k 时,)(x f 在1=x 处取得极小值 B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【测量目标】利用导数求函数的极值.【考查方式】给出含未知量的函数表达式,判断函数何时取得极值. 【难易程度】中等 【参考答案】C【试题解析】当k =2时,函数f (x )=(e x-1)2(1)x -.求导函数可得()f x '=e x 2(1)x -+2(e x -1)(x -1)=(x -1)(x e x +e x -2),∴当x =1,()f x '=0,且当x >1时,()f x '>0,当12<x <1时,()f x '<0,故函数f (x )在(1,+∞)上是增函数;在(12,1)上是减函数,从而函数f (x )在x =1取得极小值.对照选项.故选C.第8题图9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( )第9题图A.2 B.3 C.23 D.26【测量目标】椭圆和双曲线的简单几何性质.【考查方式】椭圆和双曲线相交焦点和交点构成矩形,求双曲线的离心率. 【难易程度】较难 【参考答案】D【试题解析】|1AF |=x ,|2AF |=y ,x y <∵点A 为椭圆1C :24x +2y =1上的点,∴2a =4,b =1,c|1AF |+|2AF |=2a =4,即x +y =4①;又四边形12AF BF 为矩形,∴21AF +22AF =212F F ,即2x +2y =()22c=(2=12②,由①②得:22412x y x y +=⎧⎨+=⎩,解得x =2-y2x y ==-,设双曲线2C 的实轴长为12a ,焦距为12c ,则12a =|2AF |-|1AF |=y -x12c=2C 的离心率e =11c a故选D. 10.在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( ) A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60【测量目标】空间中点、线、面之间的位置关系,二面角. 【考查方式】给出两个平面判断面面之间的位置关系. 【难易程度】较难 【参考答案】A【试题解析】设1P =()f P α,则根据题意,得点1P 是过点P 作平面α垂线的垂足,∵1Q =()[]f f P βα=1()f P β,∴点1Q 是过点1P 作平面β垂线的垂足,同理,若2P =()f P β,得点2P 是过点P 作平面β垂线的垂足,因此2Q =()[]f f P αβ表示点2Q 是过点2P 作平面α垂线的垂足,∵对任意的点P ,恒有1PQ =2PQ ,∴点1Q 与2Q 重合于同一点,由此可得,四边形112PPQ P 为矩形,且∠112PQ P 是二面角α﹣l ﹣β的平面角,∵∠112PQ P 是直角,∴平面α与平面β垂直,故选A.第10 题图二、填空题 11.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【测量目标】二项式定理.【考查方式】给出含根式的二项式,求解展开式中常数项的系数. 【难易程度】容易 【参考答案】-10【试题解析】二项式5的展开式的通项公式为 1r T +=5325C (1)rr r rx x --- =15565(1)C r rr x-- .令1556r-=0,解得r =3,故展开式的常数项为-35C =-10.故答案为-10.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________3cm .第12题图【测量目标】由三视图求几何体的表面积和体积. 【考查方式】给出几何体的三视图,求几何体的体积. 【难易程度】中等 【参考答案】24【试题解析】几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,棱柱的高为5,被截取的棱锥的高为3.如图:V =V 棱柱-V 三棱锥=12×3×4×5-13×12×3×4×3=24(3cm ),故答案为:24.第12题图13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩………,若z 的最大值为12,则实数=k ________.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出可行域的不等式和目标函数的最大值,求目标函数中未知数的值. 【难易程度】中等 【参考答案】2【试题解析】可行域如图:由24=024=0x y x y -+⎧⎨--⎩得:A (4,4),同样地,得B (0,2),(步骤1)①当k >-12时,目标函数z =kx +y 在x =4,y =4时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=4k +4,故k =2. (步骤2) ②当k ≤-12时,目标函数z =kx +y 在x =0,y =2时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=0×k +2,故k 不存在.综上,k =2.故答案为:2. (步骤3)第13题图14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【测量目标】排列组合及其应用.【考查方式】给出六个字母和限定条件求排法的种数. 【难易程度】中等 【参考答案】480【试题解析】按C 的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可. (步骤1)当C 在左边第1个位置时,有55A =120种,当C 在左边第2个位置时2343A A =72种,(步骤2)当C 在左边第3个位置时,有2333A A +2323A A =48种,共为240种,乘以2,得480.则不同的排法共有 480种.故答案为:480. (步骤3)15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程和直线过的定点和直线与抛物线交线的长度求直线斜率. 【难易程度】较难 【参考答案】不存在【试题解析】由题意设直线l 的方程为my =x +1,联立214my x y x=+⎧⎨=⎩得到2y -4my +4=0,(步骤1)Δ=162m -16=16(2m -1)>0.设A (1x ,1y ),B (2x ,2y ),Q (0x ,0y ).∴1y +2y =4m ,∴0y =122y y +=2m ,(步骤2)∴0x =m 0y -1=22m -1.∴Q (22m -1,2m ),(步骤3)由抛物线C :2y =4x 得焦点F (1,0).∵|QF |=2=2,化为2m =1,解得m =±1,不满足Δ>0.故满足条件的直线l 不存在. (步骤4)故答案为不存在. 16.ABC △中,90C ∠= ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 【测量目标】正弦定理和余弦定理解三角形.【考查方式】直角三角形中直角边的中点,求三角形中角的正弦值. 【难易程度】较难【参考答案】3【试题解析】如图,设AC =b ,AB =c ,CM =MB =2a,∠MAC =β,在△ABM 中,由正弦定理可得2sin sin ac BAM AMB=∠∠,代入数据可得21sin 3a c AMB =∠,解得2sin 3c AMB a ∠=,(步骤1)故πcos cos 2AMC β⎛⎫=-∠ ⎪⎝⎭=sin AMC ∠=()2sin πsin 3c AMB AMB a -∠=∠=,而在Rt △ACM 中,cos β=AC AM =23ca =,化简可得a 4-4a 2b 2+4b 4=(a 2-2b 2)=0,解之可得a,(步骤2)再由勾股定理可得a 2+b 2=c 2,联立可得c,故在Rt △ABC 中,sin ∠BAC=BC a AB c ===骤3)第16题图17.设12,e e 为单位向量,非零向量12x y +b =e e ,,x y ∈R ,若12,e e 的夹角为π6,则||||x b 的最大值等于________.【测量目标】向量模的计算,向量的数量积,不等式性质. 【考查方式】给出单位向量和非零向量,求向量模的比值. 【难易程度】较难 【参考答案】2【试题解析】∵12,e e 为单位向量,1e 和2e 的夹角等于30°,(步骤1)∴12 e e =1×1×cos30°=2.∵非零向量12x y +b =e e ,(步骤2)∴===b (步骤3)∴x====b故当x y=x b取得最大值为2,故答案为 2. (步骤4) 三、解答题18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【测量目标】等差数列的通项公式和.【考查方式】给出等比数列的首相和三项成等比数列,求通项公式,和前n 项绝对值和. 【难易程度】容易【试题解析】(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(步骤1)(Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n剟时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--∴++++=++++==…(步骤2)②当12n …时,1231231112132123111230||||||||()11(2111)(21)2ln 2202()()2222n n n n a a a a a a a a a a a a n n n a a a a a a a a ∴++++=++++-+++---+=++++-++++=⨯-=…所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧⎪⎪++++=⎨-+⎪⎪⎩ 剟…;(步骤3)19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a 【测量目标】随机事件与概率,期望和方差.【考查方式】有放回取样的分布列和已知期望和方差求个数比. 【难易程度】中等【试题解析】(Ⅰ)由已知得到:当两次摸到的球分别是红红时2ξ=,此时331(2)664P ξ⨯===⨯;(步骤1)当两次摸到的球分别是黄黄,红蓝,蓝红时4ξ=,此时2231135(4)66666618P ξ⨯⨯⨯==++=⨯⨯⨯;(步骤2)当两次摸到的球分别是红黄,黄红时(3)P ξ=,此时32231(3)66663P ξ⨯⨯==+=⨯⨯;(步骤3)当两次摸到的球分别是黄蓝,蓝黄时(5)P ξ=,此时12211(5)66669P ξ⨯⨯==+=⨯⨯;(步骤4)当两次摸到的球分别是蓝蓝时P (6ξ=),此时111(6)P ξ⨯===;(步骤5)所以ξ的分布列是: 9所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b ca b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以2,3::3:2:1b c a c a b c ==∴=.(步骤6)20.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.第20题图【测量目标】空间直线与平面的位置关系,异面直线成角.【考查方式】给出四面体和直线间的位置和长度关系求解二面角大大小. 【难易程度】中等【试题解析】(Ⅰ)方法一:如图,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以PF BD ;(步骤1)又因为3AQ QC =且3AF FD =,所以QF CD ,所以面PQF 面BDC ,且PQ ⊂面PQF ,所以PQ 面BDC ;(步骤2)第20题图方法二:如图所示,第20题图取BD 中点O ,且P 是BM 中点,所以12PO MD ;取CD 的三等分点H ,使3DH C H =,且3AQ QC =,所以1142QH AD MD,(步骤1)所以PO QH 四边形PQHO 是平行四边形PQ OH ∴ ,且OH BCD ⊂面,所以PQ 面BDC ;(步骤2) (Ⅱ)如图所示,第20题图由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥面,过G 作GH BM ⊥于H ,连结CH ,所以CHG ∠就是C BM D --的二面角;(步骤3)由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在Rt BCG △中,2s i ns i n BG BCG BG BCααα∠=∴=∴=,(步骤4)所以在Rt BHG △中,13HG =∴=,所以在Rt CHG △中tan tan 603CG CHG HG ∠==== (步骤5)tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;(步骤6)21.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程; (2)求ABD △面积取最大值时直线1l 的方程.第21题图【测量目标】直线与椭圆的位置关系,直线与圆的位置关系.【考查方式】给出定点和圆的方程,由直线与椭圆、圆的位置关系求椭圆方程和直线方程. 【难易程度】较难【试题解析】(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(步骤1)(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,0)到直线1:110l yk x k x y =-⇒--=的距离为d =,(步骤2)所以直线1l 被圆224x y +=所截的弦AB ==;(步骤3)由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,(步骤4) 所以228||44D P k x x DP k k +=-∴==++,(步骤5)所以11||||22444313ABDS AB DP k k k ====++++△23232===…(步骤6)当2522k k =⇒=⇒=±时等号成立,此时直线1:1l y x =-(步骤7) 22.已知a ∈R ,函数.3333)(23+-+-=a ax x x x f(1)求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值. 【测量目标】利用导数求函数的最值问题.【考查方式】给出含有未知量的函数求函数的最大值. 【难易程度】较难【试题解析】(Ⅰ)由已知得:2()363(1)33f x x x a f a ''=-+∴=-,且(1)13333f a a =-++-=,所以所求切线方程为:1(33)(1)y a x -=--,即为:3(1)430a x y a --+-=;(步骤1)(Ⅱ)由已知得到:2()3633[(2)]f x x x a x x a '=-+=-+,其中44a ∆=-,当[0,2]x ∈时,(2)0x x -…,(步骤2)(1)当0a …时,()0f x '…,所以()f x 在[0,2]x ∈上递减,所以max |()|max{(0),(2)}f x f f =,(步骤3)因为max (0)3(1),(2)31(2)0(0)|()|(0)33f a f a f f f x f a =-=-∴<<∴==-;(步骤4) (2)当440a ∆=-…,即1a …时,()0f x '…恒成立,所以()f x 在[0,2]x ∈上递增,所以max |()|max{(0),(2)}f x f f =,(步骤5)因为max (0)3(1),(2)31(0)0(2)|()|(2)31f a f a f f f x f a =-=-∴<<∴==-;(步骤6) (3)当440a ∆=->,即01a <<时,212()363011f x x x a x x '=-+=∴==+,且1202x x <<<,即所以12()12(1()12(1f x a f x a =+-=--,且31212()()20,()()14(1)0,f x f x f x f x a ∴+=>=--<12()()4(1f x f x a -=-,所以12()|()|f x f x >,(步骤7)所以max 1|()|max{(0),(2),()}f x f f f x =;(步骤8) 由2(0)(2)3331003f f a a a -=--+>∴<<,所以 (ⅰ)当203a <<时,(0)(2)f f >,所以(,1][,)x a ∈-∞+∞ 时,()y f x =递增,(1,)x a ∈时,()y f x =递减,所以max 1|()|max{(0),()}f x f f x =,(步骤9)因为21()(0)12(1332(1(23f x f a a a a -=+-+=--=,又因为203a <<,所以230,340a a ->->,所以1()(0)0f x f ->,所以m a x 1|()|()12(1f x f x a ==+-10)(ⅱ)当213a <…时,(2)0,(0)0f f ><,所以max 1|()|max{(2),()}f x f f x =,因为21()(2)12(1312(1(32)f x f a a a a -=+-+=--=,此时320a ->,当213a <<时,34a -是大于零还是小于零不确定,所以 ① 当2334a <<时,340a->,所以1()|(2)|f x f >,所以此时max 1|()|()12(1f x f x a ==+-(步骤11) ② 当314a <…时,340a-<,所以1()|(2)|f x f …,所以此时m a x|()|(2)31f x f a ==-(步骤12)综上所述:max 33,(0)3|()|12(1)4331,()4a a f x a a a a ⎧-⎪⎪=+-<<⎨⎪⎪-⎩…….(步骤13)。

2013年浙江省高考理科数学试卷及答案(word解析版)

2013年浙江省高考理科数学试卷及答案(word解析版)

浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分. 1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则( R S )∪T =A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞) 【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为( R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以( R S )∪T =(−∞,1]. 3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg(xy )=2lg x ∙ 2lg y【命题意图】本题考查指数和对数的运算性质,属于容易题 【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A .a =4B .a =5C .a =6D .a =7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A 6.已知α∈R ,sin α+2cos α=102,则tan2α= A .43B .34C .−34D .−43【命题意图】本题考查三角公式的应用,解法多样,属于中档题(第5题图)【答案解析】C 由(sin α+2cos α)2=⎝⎛⎭⎫1022可得sin 2α+4cos 2α+4sin αcos α sin 22=104,进一步整理可得3tan 2α−8tan α−3=0,解得tan α=3或tan α=−13,于是tan2α=2tan α1−tan 2α=−34.7.设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于AB 上任一点P ,恒有→PB ∙→PC ≥→P 0B∙→P 0C ,则A .∠ABC =90︒B .∠BAC =90︒ C .AB =ACD .AC =BC 【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设|→AB |=4,则|→P 0B |=1,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设HP 0=a ,则由数量积的几何意义可得,→PB ∙→PC =|→PH ||→PB |=(|→PB |−(a +1))|→PB |,→P 0B ∙→P 0C =−|→P 0H ||→P 0B |=−a ,于是→PB ∙→PC ≥→P 0B ∙→P 0C恒成立,相当于(|→PB |−(a +1))|→PB |≥−a 恒成立,整理得|→PB|2−(a +1)|→PB |+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC 8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则 A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。

2013年浙江省高考数学试卷及答案(理科)word版

2013年浙江省高考数学试卷及答案(理科)word版

2013年浙江省高考数学试卷及答案(理科)word版绝密★考试结束前2013 年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共 5 页,选择题部分1至3页,非选择题部分4至5页。

满分150 分,考试时间120 分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50 分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件A,B互斥,那么P(A B) P(A) P(B)如果事件A,B相互独立,那么P(A?B) P(A)?P(B)如果事件A在一次试验中发生的概率为P,那么n次独立重复试验中事件A恰好发生k次的概率第2页共17页k k n k巳(k) C n P (1 p) (k 0,1,2,..., n)台体的体积公式V |h(S1..SS;S2)其中S1,S2分别表示台体的上、下面积,h表示台体的高柱体体积公式V Sh其中s表示柱体的底面积,h表示柱体的高锥体的体积公式V ^Sh其中S表示锥体的底面积,h表示锥体的高球的表面积公式S 4 R;球的体积公式V R3其中R表示球的半径3选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •已知i是虚数单位,则(1 i)(2 i)( )A. 3 iB. 1 3 C . 3 3i D . 1 i2.设集合S {x|x 2},T{x|x2 3x 40},则(C R S) T( )A .( 2,1]B.(,4]c.(,1]D . [1 ,)3.已知x,y为正实数, 则()A . 2gx C2l g xl g y24 .已知函数f (x) Acos( 则“(x)是奇函数”是“—2A .充分不必要条件 要不充分条件 C •充分必要条件 不充分也不必要条件5•某程序框图如图所示,若该程序运行后 输出的值是5,则5B・47 .设ABC , P °是边AB 上一定点,满足P °B ^AB ,且对于边ABuu uujr uur uur上任一点P ,恒有PB PC P oB F 0C .贝VA . ABC 90B . BAC 30 C . AB ACD . AC BC8 .已知e 为自然对数的底数,设函数f(x) (e x 1)(x 1)k (k 1,2),则A .当k 1时,f(x)在x 1处取到极小值B .当k 1时,f(x)在x 1处取到极大值B 2g% y) D 2lg(xy)Igy2|gx 2(gygxlgyo lgx)(A 0,”勺(B .6 •已知sin2cosC . a 6-2°,则 tan2(第5题图)C .当k 2时,f(x)在x 1处取到极小值D .当k 2时,f(x)在x 1处取到极大值、 » . 29.如图,R , F 2是椭圆C i:Yy 2 1与双曲线C24的公共焦点,A ,B 分别是C i, 四象限的公共点•若四边形 形,则C 2的离心率是() A • 2 B • 3C •10 •在空间中,过点A 作平面的垂线,垂直为B ,记 B f(A) •设,是两个不同的平面,对空间任意一点 P , Q f [f (P)], Q 2f[f (P)],恒有 PQ iPQ 2,贝V ()A •平面与平面垂直B ・平面与平面所成的 (锐)二面角为45C •平面 与平面 平行D •平面 与平面 所成的 (锐)二面角为60分,共28分。

2013年高考数学试题及答案word版

2013年高考数学试题及答案word版

2013年高考数学试题及答案word版一、选择题(每题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 1在区间[0,1]上的最大值是:A. 0B. 1C. 2D. 3答案:C2. 已知向量a = (3, -1),b = (2, 4),向量a与向量b的夹角的余弦值为:A. 1/5B. 3/5C. -1/5D. -3/5答案:B3. 圆x^2 + y^2 - 6x - 8y + 25 = 0的圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:A4. 已知等比数列{an}的首项为1,公比为2,求前5项的和S5:A. 31B. 15C. 33D. 63答案:A5. 函数y = ln(x+√(x^2+1))的导数为:A. 1/(x+√(x^2+1))B. 1/(x-√(x^2+1))C. 1/(x+1)D. 1/(x-1)答案:A6. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,求a和b的关系:A. a = 2bB. a = b/2C. b = 2aD. b = a/2答案:C7. 已知三角形ABC的内角A、B、C满足A+B=2C,且sinA+sinB=sinC,求角C的大小:A. π/3B. π/4C. π/6D. π/2答案:A8. 已知函数f(x) = x^2 - 4x + m在区间[2, +∞)上单调递增,求m的取值范围:A. m ≥ -4B. m > -4C. m ≤ -4D. m < -4答案:A9. 已知等差数列{an}的前n项和为Sn,若S5 = 40,S10 - S5 = 40,求S15 - S10的值:A. 60B. 40C. 20D. 0答案:A10. 已知函数f(x) = ax^3 + bx^2 + cx + d,其中a、b、c、d均为实数,且f(0) = 0,f'(0) = 0,f''(0) = 0,求f(1)的值:A. 1B. 2C. 3D. 4答案:A二、填空题(每题5分,共30分)11. 已知直线l的方程为y = 2x + 3,求直线l与x轴的交点坐标。

2013年高考数学理(浙江卷)WORD版有答案

2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。

不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh = n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n k k k n n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式 其中12,S S 分别表示台体的上底、下底面积, 34π3V R = h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1, 已知i 是虚数单位,则()()12i i -+-=2, A ,3i -+ B ,13i -+ C ,33i -+ D ,1i -+3, 设集合{}{}22,340S x x T x x x =>-=+-≤,则()R C S T =U A ,(]2,1- B ,(],4-∞- C ,(],1-∞ D ,[)1,+∞3,已知,x y 为正实数,则A ,lg lg lg lg 222x y x y +=+ B ,()lg lg lg 222x y x y +=g C ,lg lg lg lg 222x yx y =+g D ,()lg lg lg 222xy x y =g 4,已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的A ,充分不必要条件B ,必要不充分条件C ,充分必要条件D ,既不充分也不必要条件5,某程序框图如图所示,若该程序运行后输出的值是95,则 A ,4a = B ,5a = C ,6a = D ,7a =6,已知,sin 2cos R ααα∈+=,则tan 2α= A ,43 B ,34 C ,34- D ,43- 7,设ABC V ,0P 是边AB 上一定点,满足014P B AB =,且对于边 AB 上任一点,恒有00PB PC P B PC ≥uu r uu u r uuu r uuu r g g ,则 A ,90ABC ∠=o B ,90BAC ∠=o C ,AB AC = D ,AC BC =8,已知e 为自然对数的底数,设函数()()()()111,2k x f x e x k =--=,则A ,当1k =时,()f x 在1x =处取到极小值B ,当1k =时,()f x 在1x =处取到极大值C ,当2k =时,()f x 在1x =处取到极小值D ,当2k =时,()f x 在1x =处取到极大值9,如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是A B C ,32 D ,210,在空间中,过点A 作平面π的垂线,垂足为B ,记().B f A π=设,αβ是两个不同的平面,对空间任意一点P ,()()12,Q f f P Q f f P βααβ⎡⎤==⎡⎤⎣⎦⎣⎦,恒有12PQ PQ =,则A ,平面α与平面β垂直B ,平面α与平面β所成的(锐)二面角为45oC ,平面α与平面β平行D ,平面α与平面β所成的(锐)二面角为60o2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.11,设二项式5的展开式中常数项为A ,则A = 12,某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm13,设z k x y =+,其中,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k =14,将,,,,,A B C D E F六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种(用数字作答)15,设F 为抛物线2:4C y x =的焦点,过点()1,0P -的直线l 交抛物线C 于,A B 两点,点Q 为线段AB 的中点,若2FQ =,则直线l 的斜率等于 16,在ABC V 中,90C ∠=o ,M 是BC 的中点。

2013年高考(新课标全国二卷)理科数学高清修正word版

绝密★启用前2013年普通高等学校招生全国统一考(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合}3,2,1,0,1{},,4)1({2-=∈<-=N R x x x M ,则=N M ( )(A)}2,1,0{ (B)}2,1,0,1{- (C)}3,2,0,1{- (D)}3,2,1,0{(2)设复数z 满足i z i 2)1(=-,则z =( )(A)i +-1 (B)i --1 (C)i +1 (D)i -1(3)等比数列}{n a 的前n 项和为n S ,已知,95=a ,则=1a ( ) (A)31 (B)31- (C)91 (D)91- (4)已知n m ,为异面直线,α⊥m ,β⊥n 。

直线l 满足l ⊥m ,βα⊄⊄⊥l l n l ,,,则( )(A)βα//且α//l (B)βα⊥且β⊥l(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的10=N ,那么输出的=s ( ) (A)10131211++++(B)!101!31!211++++ (C)11131211++++ (D)!111!31!211++++(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是)1,0,1(,)0,1,1(, )1,1,1(,)0,0,0(画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设6log 3=a ,10log 5=b ,14log 7=c 则( )(A)a b c >> (B)a c b >> (C)b c a >> (D)c b a >>(9)已知y x a ,,0>满足条件⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=2的最小值为1,则=a ( ) (A)41 (B)21 (C)1 (D)2(10)已知函数c bx ax x x f +++=23)(,则下列结论中错误的是( )(A)0)(,00=∈∃x f R x(B)函数)(x f y =的图像是中心对称图形(C)若0x 是)(x f 的极小值点,则)(x f 在区间),(0x -∞单调递减 (D)若0x 是)(x f 的极值点,则0)(0='x f(11)设抛物线C px y 32=,)0(>p 的焦点为F ,点M 在C 上,5=MF 若以MF 为 直径的园过点)3,0(,则C 的方程为( )(A)x y 42=或x y 82= (B)x y 22=或x y 82=(C)x y 42=或x y 162= (D x y 22=或x y 162=(12)已知点)1,0(),0,1(),0,1(C B A -,直线)0(>+=a b ax y 将ABC ∆分割为面积相 等的两部分,则b 的取值范围是( )(A))1,0( (B))21,221(- (C))31,221(- (D))21,31[第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考全国Ⅰ理科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013年浙江省高考数学(理科)试题(教师版含解析)

2013年普通高等学校招生全国统一考试(浙江卷)数 学(理)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则(1i)(2i)-+-=( ).A .3i -+ B. 13i -+ C. 33i -+ D. 1i -+ 分析 直接利用复数的乘法法则运算求解.解析 ()()21i 2i 23i i 13i -+-=-+-=-+.故选B .2.设集合{}{}2|2,|340S x x T x x x =>-=+-,则()C S T =R ( ).A. ]1,2(-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞ 分析 先求出集合S 的补集,同时把集合T 化简,再求它们的并集. 解析 因为{}2S x x =-,所以{}2S x x =-R ≤,而{}41T x x =-≤≤,所以(){}{}{}2411S T x x x x x x =--=R≤≤≤≤.故选C.3.已知y x ,为正实数,则( ).A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x yx y ⋅=+ D.lg()lg lg 222xy x y =⋅分析 利用指数幂及对数的运算性质逐项验证. 解析 A 项,lg lg lg lg 222x yx y +=⋅,故错误;B 项,()()lg lg lg lg lg lg 22222x y x y x y x y ⋅++⋅==≠,故错误;C 项,()lg lg lg lg 22yx yx ⋅=,故错误;D 项,()lg lg lg lg lg 2222xy x y x y +==⋅,正确. 故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件分析 先判断由()f x 是奇函数能否推出ϕπ=2,再判断由ϕπ=2能否推出()f x 是奇函数. 解析 若()f x 是奇函数,则()00f =,所以cos 0ϕ=,所以()k k ϕπ=+π∈2Z ,故ϕπ=2不成立;开始结束若ϕπ=2,则()()cos sin 2f x A x A x ωωπ⎛⎫=+=- ⎪⎝⎭,()f x 是奇函数.所以()f x 是奇函数ϕπ=2必要不充分条件.故B.5.某程序框图如图所示,若该程序运行后输出的值是59,则( ). A.4=a B.5=a C. 6=a D.7=a分析 可依次求出1,2,3,k =时S 的值进行验证,也可以先求出S 的表达式,通过解方程求出k 的值.解析 (方法一)由程序框图及最后输出的值是95可知:当1k =时, 1,S ka =不成立,故131,2122S k a =+==⨯不成立,故315,32233S k a =+==⨯不成立,故517,43344S k a =+==⨯不成立,故719,4455S =+=⨯此时5k a =成立,所以4a =.(方法二)由程序框图可知:()111111111111111212231223111S k k k k k k =++++=+-+-++-=+-=-⨯⨯++++, 由95S =,得19215k -=+,解得4k =,故由程序框图可知4k a =不成立,5k a =成立,所以4a =.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ). A.34 B. 43 C. 43- D. 34- 分析 先利用条件求出tan α,再利用倍角公式求tan 2α.解析 把条件中的式子两边平方,得225sin 4sin cos 4cos 2αααα++=,即233cos 4sin cos 2ααα+=,所以2223cos 4sin cos 3cos sin 2ααααα+=+,所以234tan 31tan 2αα+=+,即23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,所以22tan 3tan 2tan 4ααα==--.故选C. 7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅.则( ). A.90ABC ∠= B. 90BAC ∠= C. AC AB = D.BC AC =分析 根据向量投影的概念,对选项逐一验证排除不符合的选项.不妨设4AB =,则01P B =,03P A =.设点C 在直线AB 上的投影为点C '.解析 A 项,若90ABC ∠=︒,如图(1)所示,则2cos PB PC PB PC BPC PB ⋅=⋅∠=,2000P B P C P B ⋅=. 当点P 落在点0P 的右侧时,220PBP B ,即00PB PCP B PC ⋅⋅,不符合; B 项,若90BAC ∠=︒,如图(2)所示,则cos PB PC PB PC BPC PB PA ⋅=⋅∠=-,00003P B P A P B P A ⋅=-=-.当P 为AB 的中点时,4PB PC ⋅=-,00PB PCP B P C ⋅,不符合;C 项,若AB AC =,假设120BAC ∠=︒,如图(3)所示,则2AC '=,PB PC PB PC ⋅=⋅cos BPC PB PC ∠=-,0000000cos 5P B P C P B P C BP C P B P C ⋅=∠=-=-.当P 落在A 点时,8PB PC -=-,所以00PB PCP B PC ⋅⋅,不符合,故选D. 8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)xkf x x k =--=,则( ).A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值分析 分别求出1,2k =时函数的导数,再判断()0f x '=是否成立及1x =两侧导数的符号, 进而确定极值.解析 当1k =时,()()()e 11x f x x =--,则()()()e 1e 1e 1x x xf x x x '=-+-=-,所以()1e 10f '=-≠,所以()1f 不是极值.图(1)P 0PB (C')CA图(2)BC A (C')P P 0A P 0(P )C'CB图(3)当2k =时,()()()2e 11x f x x =--,则()()()()2e 12e 11x xf x x x '=-+--= ()()()()2e 1211e 12x xx x x x ⎡⎤---=-+-⎣⎦,所以()10f '=,且当1x 时,()10f ';在1x =附近的左侧,()0f x ',所以()1f 是极小值.故选C.9. 如图所示,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( A.2 B. 3C. 23D.26分析 由椭圆可求出12AF AF +,由矩阵求出2212AF AF +,再求出21AF AF -即可求出双曲线方程中的a ,进而求得双曲线的离心率.解析 由椭圆可知124AF AF +=,12FF =因为四边形12AF BF 为矩形, 所以222121212AF AF F F +==,所以()()222121212216124AF AF AF AF AF AF =+-+=-=,所以()22221121221248AF AF AF AF AF AF -=+-=-=,所以21AF AF -=a =c =所以2C的离心率c e a ==.故选D. 10. 在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,[]12(),()Q f f P Q f f P βααβ⎡⎤==⎣⎦,恒有21PQ PQ =,则( ).A. 平面α与平面β垂直B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D. 平面α与平面β所成的(锐)二面角为60 分析 根据新定义及线面垂直知识进行推理.解析 设()1P f P α=,()2P f P β=,则1PP α⊥,11PQ β⊥,2PP β⊥,22P Q α⊥. 若//αβ,则1P 与2Q 重合、2P 与1Q 重合,所以12PQ PQ ≠,所以α与β相交.设al β=,由俯视图侧视图122//PP P Q ,所以122,,,P P P Q 四点共面.同理121,,,P P P Q 四点共面.所以1212,,,,P P P Q Q 五点共面.且α与β的交线l 垂直于此平面.又因为12PQ PQ =,所以12,Q Q 重合且在l 上,四边形112PPQ P 为矩形.那么112PQ P π∠=2为二面角--l αβ的平面角,所以αβ⊥.故选A . 二.填空题11.设二项式5的展开式中常数项为A ,则=A ________.分析 写出二项展开式的通项1r T +,令通项中x 的指数为零,求出r ,即可求出A . 解析()55526155C C 1rrrr rr r T x --+⎛==- ⎝,令55026r -=,得3r =,所以35C 10A =-=-. 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm .分析 根据三视图还原出几何体,再根据几何体的具体形状及尺寸求体积.解析 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥, 如图所示.三棱术的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积()31134530cm 2V =⨯⨯⨯=,小三棱锥的底面与三棱柱的上底面相同, 高为3,故其体积()32113436cm 32V =⨯⨯⨯⨯=,所以所求几何体的体积为()330624cm -=.13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩,若z 的最大值为12,则实数=k ________.分析 画出可行域,分类讨论确定出最优解,代入最大值即可求出k 的值. 解析 作出可行域如图阴影部分所示:由图可知当102k-≤时, 直线y kx z =-+经过点()4,4M 时z 最大,所以4412k +=,解得2k =(舍去);当12k -≥时,直线y kx z =-+经过点()0,2时z 最大,此时z 的最大值为2,不合题意;当0k-时,直线y kx z=-+x 4MBCA经过点()4,4M 时z 最大,所以4412k +=,解得2k =,符合题意.综上可知,2k =.14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)分析 按C 的位置分类计算.解析 ①当C 在第一或第六位时,有55A 120=(种)排法;②当C 在第二或第五位时,有2343A A 72=(种)排法; ③当C 在第三或第四位时,有23232333A A A A 48+=(种)排法.所以共有()21207248480⨯++=(种)排法.15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 答案:1±(特别说明:根据已公布答案,斜率等于1±代入题干可得抛物线C 与直线l 相切,与题干中“直线l 交抛物线C 于,A B 两点”矛盾.——编者注)16.ABC △中,90C ∠=,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 分析 画出图形,确定已知量和待求量所在的三角形,利用正弦定理求解. 解析 因为1sin 3BAM ∠=,所以cos 3BAM ∠=.如图所示,在ABM △中,利用正弦定理,得sin sin BM AM BAM B =∠,所以sin sin BM BAM AM B ∠=113sin 3cos B BAC==∠. 在Rt ACM △中,有()sin sin CMCAM BAC BAM AM=∠=∠-∠.由题意知BM CM =,所以()1sin 3cos BAC BAM BAC=∠-∠∠.化简,得2cos cos 1BAC BAC BAC ∠∠-∠=.所以211tan 1BAC BAC ∠-=∠+,解得tan BAC ∠=. 再结合22sin cos 1BAC BAC ∠+∠=,BAC ∠为锐角可解得sin 3BAC ∠=.17. 设12,e e 为单位向量,非零向量12,,x y x y =+∈R b e e ,若12,e e 的夹角为π6, 则||||x b 的最大值等于________. 分析 为了便于计算可先求2x ⎛⎫ ⎪ ⎪⎝⎭b 的范围,再求xb 的最值.解析 根据题意,得()()()1222222212122x x x x y xy x y ⎛⎫=== ⎪ ⎪++⋅+⎝⎭b e e e e e e22222cos 6x x y xy =π++2114y x ==⎛+ ⎝⎭⎝⎭.因为211244y x ⎛++ ⎝⎭≥,所以204x ⎛⎫⎪ ⎪⎝⎭≤b ,所以02x ≤b.故x b的最大值为2.18.在公差为d 的等差数列{}n a 中,已知101=a ,且123,22,5a a a +成等比数列. (1)求,n d a ;(2)若0<d ,求.||||||||321n a a a a ++++分析 (1)用1,a d 把23,a a 表示出来,利用123,22,5a a a +成等比数列列方程即可解出d ,进而根据等差数列的通项公式写出n a .(2)根据(1)及0d确定数列的通项公式,确定n a 的符号,以去掉绝对值符号,这需要对n 的取值范围进行分类讨论.解析(1)由题意得,()2132522a a a ⋅=+,由110a =,{}n a 为公差为d 的等差数列得,2340d d --=,解得1d =-或4d =.所以()*11n a n n =-+∈N 或()*46n a n n =+∈N .设数列{}n a 的前n 项和为n S . 因为0d,由(1)得1d =-,11n a n =-+,所以当11n ≤时,123n a a a a ++++=212122n S n n =-+;当12n ≥时,212311121211022n n a a a a S S n n ++++=-+=-+.综上所述,123n a a a a ++++ 22121,11,22121110,12.22n n n n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩≤≥ 19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分, 取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a分析(1)对取出球的颜色进行分类以确定得分值,进而确定随机变量ξ的取值,计算相应的概率,再列出分布列;(2)先用,,a b c 表示出随机事件的概率,列出随机变量η的分布列,求出数学期望和方差,再把条件代入,列方程组求出,,a b c 的关系.解析(1)由题意得2,3,4,5,6ξ=.故()33124P ξ⨯===6⨯6, ()232133P ξ⨯⨯===6⨯6,()231225418P ξ⨯⨯+⨯===6⨯6,()221159P ξ⨯⨯===6⨯6,()111636P ξ⨯===6⨯6.所以ξ的分布列为(2QPMDBA所以2353a b c E a b c a b c a b c η=++=++++++,22255551233339a b c D a b c a b c a b c η⎛⎫⎛⎫⎛⎫=-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得3a c =,2b c =,故::3:2:1a b c =.20. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.分析 立体几何题目一般有两种思路:传统法和向量法.传统法是借助立体几何中的相关定义、定理,通过逻辑推理证明来完成.(1)要证明线面平行,根据判定定理可通过证明线线平行来实现;(2)求二面角要先找到或作出二面角的平面角,再通过解三角形求解.向量法则是通过建立空间直角坐标系,求出相关的坐标,利用向量的计算完成证明或求解.直线一般求其方向向量,平面一般求其法向量.(1)只要说明直线的方向向量与对应平面的法向量垂直即可;(2)二面角的大小即为两个平面的法向量的夹角或其补角. 解析 方法一:(1)如图(1)所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接,,OP OF FQ .因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为,O P 分别为,BD BM 的中点,所以OP 是BDM △的中位线,所以//,OP DM 且12OP DM =.又点M 为AD 的中点,所以//OP AD ,且14OP AD =.从而//OP FQ ,且OP FQ =,所以四边形OPQF 为平行四边形,故//PQ OF .又PQ BCD ⊄平面,OF BCD ⊂平面,所以//PQ BCD 平面.(2)如图(1)所示,作CG BD ⊥于点G ,作GH BM ⊥于点H ,连接CH . 因为AD BCD ⊥平面,CG BCD ⊂平面,所以AD CG ⊥.又CG BD ⊥,AD BD D =,故CG ABD ⊥平面.又BM ABD ⊂平面,所以CG BM ⊥.又,GH BM CG GH G ⊥=,故BM CGH ⊥,所以,GH BM CH BM ⊥⊥.O图(1)QGMH PF DC BAx图(2)所以CHG ∠为二面角--C BM D 的平面角,即60CHG ∠=︒.设BDC θ∠=,在Rt BCD △中,cos ,sin sin CD BD CG CD θθθθθ====,2sin ,sin BC BD BG BC θθθθ====.在BGM △中,BG DM HG BM ⋅==.因为CG ABD ⊥平面,GH ABD ⊂平面,所以CG GH ⊥. 在Rt CHG △中,3cos tan sin CG CHG HG θθ∠===.所以tan θ=.从而60θ=︒.即60BDC ∠=︒.方法二:(1)如图(2)所示,取BD 的中点O ,以O 为原点,,OD OP 所在的射线为,y z 轴的正半轴,建立空间直角坐标系-O xyz .由题意知()()(),0,,A B D . 设点C 的坐标为()00,,0x y ,因为3AQ QC =,所以0031,42Q x y ⎛⎫+⎪ ⎪⎝⎭. 因为点M 为AD的中点,故()M .又点P 为BM 的中点,故10,0,2P ⎛⎫ ⎪⎝⎭,所以0033,,0444PQ x y ⎛⎫=+⎪ ⎪⎝⎭.又平面BCD 的一个法向量为()0,0,1=a ,故0PQ ⋅=a .又PQ BCD ⊄平面,所示//PQ BCD 平面.(2)设(),,x y z =m 为平面BMC 的一个法向量.由()()00,2,1,0,2CMx y BM =--=,知)000,0.x x y y z z ⎧-++=⎪⎨⎪+=⎩取1y =-,得00,1,y m x ⎛=- ⎝.又平面BDM 的一个法向量为()1,0,0=n ,于是1cos ,2⋅===m nm n m n,即2003y x ⎛+= ⎝⎭. ①又BC CD ⊥,所以0CB CD ⋅=,故()()0000,,0,00x y x y -⋅-=,即22002x y +=. ②联立①②,解得000,x y=⎧⎪⎨=⎪⎩002x y ⎧=⎪⎪⎨⎪=⎪⎩所以tan BDC ∠==又BDC ∠是锐角,所以60BDC ∠=︒.21. 如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.12,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求ABD ∆面积取最大值时直线1l 的方程.分析(1)根据椭圆的几何性质易求出,a b 的值,从而写出椭圆的方程;(2)要求ABD △的面积,需要求出,AB PD 的长,AB 是圆的弦,考虑用圆的知识来求,PD 应当考虑用椭圆的相当知识来求.求出,AB PD 的长后,表示出ABD △的面积,再根据式子的形式选择适当的方法求最值.解析(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为2214x y +=. (2)设()11,A x y ,()22,B x y ,()00,D x y .由题意知直线1l 的斜率存在,不妨设其为k ,则直线1l的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l的距离d =,所以AB ==又21l l ⊥,故直线2l 的方程为0x kx k ++=. 由220,44x ky k x y ++=⎧⎨+=⎩消去y ,整理得()22480k x kx ++=,故0284kx k =-+,所以24PD k =+.设ABD △的面积为S,则2124S AB PD k=⋅=+,所以3213S ==当且仅当2k =±时取等号.所以所求直线1l的方程为12y x =±-. 22. 已知a ∈R ,函数.3333)(23+-+-=a ax x x x f (1)求曲线)(x f y =在点()1,(1)f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值.分析 (1)切点处的导数值即为切线的斜率,求导后计算出斜率,写出切线方程即可;(2)要确定()f x 的最大值,首先要确定()f x 的最值. ()f x 的最值又是由其单调性决定的,所以要先利用导数确定()f x 的单调性,在确定函数单调性时,要注意考虑极值点是否在所给区间内,不确定时需要分类讨论.解析 (1)由题意()2363f x x x a '=-+,故()133f a '=-.又()11f =,所以所求的切线方程为()3334y a x a =--+.(2)由于()()()23131,02f x x a x '=-+-≤≤,故①当0a ≤时,有()0f x '≤,此时()f x 在[]0,2上单调递减,故()()(){}max max 0,233f x f f a ==-.②当1a ≥时,有()0f x '≥,此时()f x 在[]0,2上单调递增, 故()()(){}maxmax 0,231f x f f a ==-.③当01a 时,设11x =21x =则1202x x ,()()()123f x x x x x '=--.由于()(1121f x a =+-()(2121f x a =--. 故()()1220f x f x +=,()()(12410f x f x a -=-,从而()()12f x f x .所以()()()(){}1maxmax 0,2,f x f f f x =.①当23a时,()()02f f .又()()(()2134021220a a f x f a a--=--=,故()()(1max121f x f x a ==+-.②当213a ≤时,()()22f f =,且()()20f f ≥.又()()(()213422132a a f x f a a --=--=,所以ⅰ.当2334a ≤时,()()12f x f .故()()(1max 121f x f x a ==+-ⅱ.当314a ≤时,()()12f x f ≤.故()()max 231f x f a ==-.综上所述,()(max33,00,31210,4331,.4a f x a aa a ⎧⎪-⎪⎪=+-⎨⎪⎪-⎪⎩≤≥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年浙江省高考数学(理科)试题校对版(word 版)(含答案)数学(理科)试题选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 是虚数单位,则(1)(2)i i -+-=A .3i -+B .13i -+C .33i -+D .1i -+ 2.设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R C S T ⋃= A .(21]-, B .(4]-∞-, C .(1]-∞, D .[1)+∞, 3.已知x ,y 为正实数,则A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y ⋅=+D .lg()lg lg 222xy x y =⋅4.已知函数()cos()(0f x A x A ωϕ=+>,0ω>,)R ϕ∈,则“()f x 是 奇函数”是“2πϕ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是95,则 A .4a = B .5a = C .6a = D .7a = 6.已知R α∈,10sin 2cos αα+=tan 2α= A .43 B .34 C .34- D .43- 7.设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅u u u r u u u r u u u r u u u r.则 A .90ABC ∠=︒ B .30BAC ∠=︒ C .AB AC = D .AC BC =8.已知e 为自然对数的底数,设函数()(1)(1)(12)x kf x e x k =--=,,则 A .当1k =时,()f x 在1x =处取到极小值 B .当1k =时,()f x 在1x =处取到极大值 C .当2k =时,()f x 在1x =处取到极小值 D .当2k =时,()f x 在1x =处取到极大值9.如图,1F ,2F 是椭圆221:14x C y +=与双曲线2C 的公共焦 点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是A 2B 3C .32D 610.在空间中,过点A 作平面π的垂线,垂直为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,1[()]Q f f P βα=,2[()]Q f f P αβ=,恒有12PQ PQ =,则 A .平面α与平面β垂直 B .平面α与平面β所成的(锐)二面角为45︒ C .平面α与平面β平行 D .平面α与平面β所成的(锐)二面角为60︒非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

11.设二项式53x x 的展开式中常数项为A ,则A = . 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等 于 3cm .13.设z kx y =+,其中实数x ,y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k = .14.将A B C D E F ,,,,,六个字母排成一排,且A B ,均在C 的同侧,则不同的排法共有 种(用数字作答).15.设F 为抛物线2:4C y x =的焦点,过点(10)P -,的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||2FQ =,则直线l 的斜率等于 .16.在ABC ∆中,90C ∠=︒,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠= . 17.设12e e u r u u r ,为单位向量,非零向量12b xe ye =+r u r u u r ,x ,y R ∈.若12e e u r u u r ,的夹角为6π,则||||x b 的最大值等于 .三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (Ⅰ)求d ,n a ;(Ⅱ)若0d <,求123||||||||n a a a a ++++L .19.(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个篮球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分.(Ⅰ)当331a b c ===,,时,从该袋子中任任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(Ⅱ)从该袋中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若53E η=,59D η=,求::a b c .20.(本题满分15分)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,22BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.(Ⅰ)证明://PQ 平面BCD ;(Ⅱ)若二面角C BM D --的大小为60︒,求BDC ∠的大小.21.(本题满分15分)如图,点(01)P -,是椭圆22122:1x y C a b+=(0a b >>)的一个顶点,1C 的长轴是圆222:4C x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A ,B 两点,2l 交椭圆1C 于另一点D .(Ⅰ)求椭圆1C 的方程;(Ⅱ)求ABD ∆面积取最大值时直线1l 的方程.22.(本题满分14分)已知a R ∈,函数32()3323f x x x ax a =-+-+. (Ⅰ)求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)当[02]x ∈,时,求|()|f x 的最大值.数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算。

每小题5分,满分50分。

1.B 2.C 3.D 4.B 5.A 6.C 7.D 8.C 9.D 10.A 二、填空题:本题考查基本知识和基本运算。

每小题4分,满分28分。

11.-10 12.24 13.2 14.480 15.±1 16617.2 三、解答题:本大题共5小题,共72分。

18.本题主要考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力。

满分14分。

(Ⅰ)由题意得 21325(21)a a a =+即 2340d d --=故 1d =-或4d =所以 11*n a n n N =--∈,或46*n a n n N =+∈, (Ⅱ)设数列{}n a 的前n 项和为n S .因为0d <,由(Ⅰ)得1d =-,11n a n =--.则当11n ≤时,2123121||||||||22n n a a a a S n n ++++==-+L . 当12n ≥时,212311121||||||||211022n n a a a a S S n n ++++=-+=-+L .综上所述,212321211122||||||||1211101222n n n n a a a a n n n ⎧-+≤⎪⎪++++=⎨⎪-+≥⎪⎩L ,,19.本题主要考查随机事件的概率和随机变量的分布列、数学期望、数学方差等概念,同时考查抽象概括、运算求解能力和应用意识。

满分14分。

(Ⅰ)由题意得ξ取2,3,4,5,6. 故331(2)664P ξ⨯===⨯, 2321(3)663P ξ⨯⨯===⨯,231225(4)6618P ξ⨯⨯+⨯===⨯,2211(5)669P ξ⨯⨯===⨯,111(6)6636P ξ⨯===⨯.所以ξ的分布列为(Ⅱ)由题意知η的分布列为所以235()3a b c E a b c a b c a b c η=++=++++++,222552535()(1)(2)(3)3339a b c D a b c a b c a b c η=-⋅+-⋅+-⋅=++++++.解得 3a c =,2b c =,故::3:2:1a b c =20.本题主要考查空间点、线、面位置关系、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。

满分15分。

方法一: (Ⅰ)取BD 中点O ,在线段CD 上取点F ,使得3DF FC =,连结OP ,OF ,FQ因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为O ,P 分别为BD ,SM 的中点,所以OP 是BDM ∆的中位线,所以//OP DM ,且12OP DM =.又点M 是AD 的中点,所以//OP AD ,且14OP AD =.从而//OP FQ ,且OP FQ =.所以四边形OPQF 为平行四边形,故//FQ QF又PQ ⊄平面BCD ,OF ⊂平面BCD ,所以//PQ 平面BCD .(Ⅱ)作CG BD ⊥于点G ,作GH BM ⊥于点H ,连结CH因为AD ⊥平面BCD ,CG ⊂平面BCD ,所以AD CG ⊥, 又CG BD ⊥,AD BD D ⋂=,故CG ⊥平面ABD ,又BM ⊂平面ABD ,所以CG BM ⊥.又GH BM ⊥,CG GH G ⋂=,故BM ⊥平面CGH ,所以GH BM ⊥,CH BM ⊥.所以CHG ∠为二面角C BM D --的平面角,即60CHG ∠=︒. 设BDC θ∠=.在Rt BCD ∆中,cos CD BD θθ==,cos sin CG CD θθθ==,2sin BG BC θθ==.在Rt BDM ∆中,223sin BG DM HG BM θ⋅==.在Rt CHG ∆中,3cos tan 3sin CG CHG HG θθ∠===. 所以tan 3θ=.从而60θ=︒,即60BDC ∠=︒.方法二:(Ⅰ)如图,取BD 中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知(022)A ,,(020)B ,,(020)D ,. 设点C 的坐标为00(0)x y ,,,因为3AQ QC =u u u r u u u r ,所以003231()4442Q x y +,,.因为M 是AD 的中点,故(021)M ,.又P 是BM 的中点,故1(00)2P ,,.所以00323(0)444PQ x y =+u u u r ,,. 又平面BCD 的一个法向量为(001)a =r ,,,故0PQ a ⋅=u u u r r. 又PQ ⊄平面BCD ,所以//PQ 平面BCD .(Ⅱ)设()m x y z =u r,,为平面BMC 的一个法向量. 由00(21)CM x y =-u u u u r ,,,(0221)BM =u u u u r 知002)020x x y y z z ⎧-++=⎪⎨+=⎪⎩, 取1y =-,得002(122)y m x +=-u r ,.又平面BDM 的一个法向量为(100)n =r,,,于是||1|cos<>|=2||||m n m n m n ⋅==u r ru r r u r r ,,即2003y x ⎛= ⎝⎭. (1)又BC CD ⊥,所以0CB CD ⋅=u u u r u u u r,故0000(0)(0)0x y x y -⋅-=,,,即22002x y +=. (2)联立(1),(2),解得000x y =⎧⎪⎨=⎪⎩0x y ⎧=⎪⎪⎨⎪=⎪⎩.所以tan BDC ∠==又BDC ∠是锐角,所以60BDC ∠=︒.21.本题主要考查椭圆的几何性质,直线与圆的位置关系、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。

相关文档
最新文档