2013年浙江高考理科数学试题及解析
2013年高考理科数学浙江卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+i B.-1+3iC.-3+3i D.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T=().A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg y B.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A .a =4B .a =5C .a =6D .a =7 答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a (+)=2-11a +的值,由已知输出的值为95,可知当a =4时2-11a +=95.故选A .6.(2013浙江,理6)已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=10或10,当cos α=10sin α=10;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C,则( ). A .∠ABC =90° B .∠BAC =90°C .AB =ACD .AC =BC 答案:D解析:设PB =t AB(0≤t ≤1),∴PC =PB +BC =t AB +BC,∴PB ·PC =(t AB )·(t AB +BC )=t 22AB +t AB ·BC .由题意PB ·PC ≥0P B ·0P C, 即t 22AB +t AB ·BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫ ⎪⎝⎭2AB +14AB ·BC ,即当14t =时PB·PC 取得最小值. 由二次函数的性质可知:2142AB BC AB ⋅-=, 即:AB - ·BC=122AB , ∴AB ·12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC=MB +BC =MC ,∴AB ·MC=0,即AB ⊥MC . ∴AC =BC .故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ).A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x -1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H ′(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C .9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF |2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=2e ==,故选D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 答案:-10解析:T r +1=553255C C (1)rr rr r r r x x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3, 所以A =(-1)335C =25C -=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).答案:480解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x 2+2(k 2-2)x+k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k +-=-=-+,1222y y k+=,即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.答案:3解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0),则M ,02a ⎛⎫ ⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭,cos ∠MAB =AB AMAB AM ⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=.∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2,sin ∠CAB3===. 17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2xy .∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯,P (ξ=4)=2312256618⨯⨯+⨯=⨯,P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a a b c a b c a b c ++=++++++,D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (0,2),B (0,0),D (00). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC = ,所以Q 00331,,4442x y ⎛⎫+ ⎪ ⎪⎝⎭.因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,044x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量.由CM =(-x 00y ,1),BM=(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩取y =-1,得m=00,1,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD=0, 故(-x 0,0y ,0)·(-x 00y ,0)=0,即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或0022x y ⎧=±⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=又∠BDC 是锐角,所以∠BDC =60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB==.又l2⊥l1,故直线l2的方程为x+ky+k=0.由220,44,x ky kx y++=⎧⎨+=⎩消去y,整理得(4+k2)x2+8kx=0,故0284kx=-.所以|PD|=24k+.设△ABD的面积为S,则S=12|AB|·|PD|=24k+,所以S=32=当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1-x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于f(故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。
2013年浙江高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则(1i)(2i)-+-= ( ) A .3i -+ B. 13i -+ C. 33i -+ D.1i -+ 【测量目标】复数代数形式的四则运算. 【考查方式】求两个复数相乘的结果 【难易程度】容易 【参考答案】B【试题解析】(-1+i)(2-i)=- 2+i+2i+1=-1+3i ,故选B.2.设集合2{|2},{|340}S x x T x x x =>-=+-…,则()S T =R ð ( ) A .(2,1]- B.]4,(--∞ C.]1,(-∞ D.),1[+∞ 【测量目标】集合的基本运算.【考查方式】用描述法给出两个集合求补集的并. 【难易程度】容易 【参考答案】C【试题解析】∵集合S ={x |x >-2},∴S R ð={x |x …-2},由2x +3x -4…0得:T={x |-4…x …1},故(S R ð) T ={x |x …1},故选C.3.已知y x ,为正实数,则 ( )A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.lg lg lg lg 222x yx y =+ D.lg()lg lg 222xy x y = 【测量目标】指数幂运算.【考查方式】给出指数型的函数,化简函数. 【难易程度】容易 【参考答案】D 【试题解析】因为s ta+=s a ta ,lg(xy )=lg x +lg y (x ,y 为正实数),所以()lg 2xy =lg +lg 2x y=lg 2xlg 2y ,满足上述两个公式,故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( )A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【测量目标】三角函数的性质,三角函数的诱导公式.【考查方式】给出含参量的三角函数表达式,由函数是奇函数判断命题条件. 【难易程度】中等 【参考答案】B【试题解析】若φ=π2,则f (x )=A cos(ωx +π2)⇒f (x )=-A sin(ωx )(A >0,ω>0,x ∈R )是奇函数;若f (x )是奇函数⇒f (0)=0,∴f (0)=A cos(ω×0+φ)=A cos φ=0.∴φ=k π+π2,k ∈Z ,不一定有φ=π2,“f (x )是奇函数”是“φ=π2”必要不充分条件.故选B.5.某程序框图如图所示,若该程序运行后输出的值是59,则 ( )A.4=aB.5=aC. 6=aD.7=a第5题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图的输出值求输入的值. 【难易程度】容易 【参考答案】A【试题解析】由已知可得该程序的功能是:计算并输出S =1+112⨯+…+1(1)a a +=1+1-11a +=2-11a +.若该程序运行后输出的值是95,则2-11a +=95.∴a =4,故选A.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ) A.34 B. 43 C.43- D.34-【测量目标】二倍角,三角函数的诱导公式.【考查方式】给出正弦和余弦的方程求解二倍角的正切. 【难易程度】中等 【参考答案】C【试题解析】∵sin α+2cos α,又2sin α+2cos α=1,联立解得sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩,故tan α=sin cos αα =13-或tan α=3,代入可得tan2α=22tan 1tan αα-=212()311()3⨯---=34-或tan2α=22tan 1tan αα-=22313⨯-=34-.故选C.7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC….则 ( ) A. 90ABC ∠= B. 90BAC ∠=C. AC AB =D.BC AC =【测量目标】平面向量的算量积运算,向量的坐标运算.【考查方式】在三角形中给出定点在三角形中的位置,求定点与各顶点所成向量数量积的大小.【难易程度】中等 【参考答案】D【试题解析】以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系,设AB =4,C (a ,b ),P (x ,0),则0BP =1,A (-2,0),B (2,0),0P (1,0),∴0P B =(1,0),PB =(2-x ,0),PC =(a -x ,b ),0PC =(a -1,b ),∵恒有PB PC ≥00P B PC ,∴(2-x )(a -x )≥a -1恒成立,整理可得2x - (a +2)x +a +1≥0恒成立,∴Δ=()22a +-4(a +1)≤0,即Δ=2a ≤0,∴a =0,即C 在AB 的垂直平分线上,∴AC =BC ,故△ABC 为等腰三角形,故选D.第7题图8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)x k f x x k =--=,则 ( ) A .当1=k 时,)(x f 在1=x 处取得极小值 B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【测量目标】利用导数求函数的极值.【考查方式】给出含未知量的函数表达式,判断函数何时取得极值. 【难易程度】中等 【参考答案】C【试题解析】当k =2时,函数f (x )=(e x-1)2(1)x -.求导函数可得()f x '=e x 2(1)x -+2(e x -1)(x -1)=(x -1)(x e x +e x -2),∴当x =1,()f x '=0,且当x >1时,()f x '>0,当12<x <1时,()f x '<0,故函数f (x )在(1,+∞)上是增函数;在(12,1)上是减函数,从而函数f (x )在x =1取得极小值.对照选项.故选C.第8题图9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( )第9题图A.2 B.3 C.23 D.26【测量目标】椭圆和双曲线的简单几何性质.【考查方式】椭圆和双曲线相交焦点和交点构成矩形,求双曲线的离心率. 【难易程度】较难 【参考答案】D【试题解析】|1AF |=x ,|2AF |=y ,x y <∵点A 为椭圆1C :24x +2y =1上的点,∴2a =4,b =1,c|1AF |+|2AF |=2a =4,即x +y =4①;又四边形12AF BF 为矩形,∴21AF +22AF =212F F ,即2x +2y =()22c=(2=12②,由①②得:22412x y x y +=⎧⎨+=⎩,解得x =2-y2x y ==-,设双曲线2C 的实轴长为12a ,焦距为12c ,则12a =|2AF |-|1AF |=y -x12c=2C 的离心率e =11c a故选D. 10.在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( ) A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60【测量目标】空间中点、线、面之间的位置关系,二面角. 【考查方式】给出两个平面判断面面之间的位置关系. 【难易程度】较难 【参考答案】A【试题解析】设1P =()f P α,则根据题意,得点1P 是过点P 作平面α垂线的垂足,∵1Q =()[]f f P βα=1()f P β,∴点1Q 是过点1P 作平面β垂线的垂足,同理,若2P =()f P β,得点2P 是过点P 作平面β垂线的垂足,因此2Q =()[]f f P αβ表示点2Q 是过点2P 作平面α垂线的垂足,∵对任意的点P ,恒有1PQ =2PQ ,∴点1Q 与2Q 重合于同一点,由此可得,四边形112PPQ P 为矩形,且∠112PQ P 是二面角α﹣l ﹣β的平面角,∵∠112PQ P 是直角,∴平面α与平面β垂直,故选A.第10 题图二、填空题 11.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【测量目标】二项式定理.【考查方式】给出含根式的二项式,求解展开式中常数项的系数. 【难易程度】容易 【参考答案】-10【试题解析】二项式5的展开式的通项公式为 1r T +=5325C (1)rr r rx x --- =15565(1)C r rr x-- .令1556r-=0,解得r =3,故展开式的常数项为-35C =-10.故答案为-10.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________3cm .第12题图【测量目标】由三视图求几何体的表面积和体积. 【考查方式】给出几何体的三视图,求几何体的体积. 【难易程度】中等 【参考答案】24【试题解析】几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,棱柱的高为5,被截取的棱锥的高为3.如图:V =V 棱柱-V 三棱锥=12×3×4×5-13×12×3×4×3=24(3cm ),故答案为:24.第12题图13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩………,若z 的最大值为12,则实数=k ________.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出可行域的不等式和目标函数的最大值,求目标函数中未知数的值. 【难易程度】中等 【参考答案】2【试题解析】可行域如图:由24=024=0x y x y -+⎧⎨--⎩得:A (4,4),同样地,得B (0,2),(步骤1)①当k >-12时,目标函数z =kx +y 在x =4,y =4时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=4k +4,故k =2. (步骤2) ②当k ≤-12时,目标函数z =kx +y 在x =0,y =2时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=0×k +2,故k 不存在.综上,k =2.故答案为:2. (步骤3)第13题图14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【测量目标】排列组合及其应用.【考查方式】给出六个字母和限定条件求排法的种数. 【难易程度】中等 【参考答案】480【试题解析】按C 的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可. (步骤1)当C 在左边第1个位置时,有55A =120种,当C 在左边第2个位置时2343A A =72种,(步骤2)当C 在左边第3个位置时,有2333A A +2323A A =48种,共为240种,乘以2,得480.则不同的排法共有 480种.故答案为:480. (步骤3)15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程和直线过的定点和直线与抛物线交线的长度求直线斜率. 【难易程度】较难 【参考答案】不存在【试题解析】由题意设直线l 的方程为my =x +1,联立214my x y x=+⎧⎨=⎩得到2y -4my +4=0,(步骤1)Δ=162m -16=16(2m -1)>0.设A (1x ,1y ),B (2x ,2y ),Q (0x ,0y ).∴1y +2y =4m ,∴0y =122y y +=2m ,(步骤2)∴0x =m 0y -1=22m -1.∴Q (22m -1,2m ),(步骤3)由抛物线C :2y =4x 得焦点F (1,0).∵|QF |=2=2,化为2m =1,解得m =±1,不满足Δ>0.故满足条件的直线l 不存在. (步骤4)故答案为不存在. 16.ABC △中,90C ∠= ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 【测量目标】正弦定理和余弦定理解三角形.【考查方式】直角三角形中直角边的中点,求三角形中角的正弦值. 【难易程度】较难【参考答案】3【试题解析】如图,设AC =b ,AB =c ,CM =MB =2a,∠MAC =β,在△ABM 中,由正弦定理可得2sin sin ac BAM AMB=∠∠,代入数据可得21sin 3a c AMB =∠,解得2sin 3c AMB a ∠=,(步骤1)故πcos cos 2AMC β⎛⎫=-∠ ⎪⎝⎭=sin AMC ∠=()2sin πsin 3c AMB AMB a -∠=∠=,而在Rt △ACM 中,cos β=AC AM =23ca =,化简可得a 4-4a 2b 2+4b 4=(a 2-2b 2)=0,解之可得a,(步骤2)再由勾股定理可得a 2+b 2=c 2,联立可得c,故在Rt △ABC 中,sin ∠BAC=BC a AB c ===骤3)第16题图17.设12,e e 为单位向量,非零向量12x y +b =e e ,,x y ∈R ,若12,e e 的夹角为π6,则||||x b 的最大值等于________.【测量目标】向量模的计算,向量的数量积,不等式性质. 【考查方式】给出单位向量和非零向量,求向量模的比值. 【难易程度】较难 【参考答案】2【试题解析】∵12,e e 为单位向量,1e 和2e 的夹角等于30°,(步骤1)∴12 e e =1×1×cos30°=2.∵非零向量12x y +b =e e ,(步骤2)∴===b (步骤3)∴x====b故当x y=x b取得最大值为2,故答案为 2. (步骤4) 三、解答题18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【测量目标】等差数列的通项公式和.【考查方式】给出等比数列的首相和三项成等比数列,求通项公式,和前n 项绝对值和. 【难易程度】容易【试题解析】(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(步骤1)(Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n剟时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--∴++++=++++==…(步骤2)②当12n …时,1231231112132123111230||||||||()11(2111)(21)2ln 2202()()2222n n n n a a a a a a a a a a a a n n n a a a a a a a a ∴++++=++++-+++---+=++++-++++=⨯-=…所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧⎪⎪++++=⎨-+⎪⎪⎩ 剟…;(步骤3)19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a 【测量目标】随机事件与概率,期望和方差.【考查方式】有放回取样的分布列和已知期望和方差求个数比. 【难易程度】中等【试题解析】(Ⅰ)由已知得到:当两次摸到的球分别是红红时2ξ=,此时331(2)664P ξ⨯===⨯;(步骤1)当两次摸到的球分别是黄黄,红蓝,蓝红时4ξ=,此时2231135(4)66666618P ξ⨯⨯⨯==++=⨯⨯⨯;(步骤2)当两次摸到的球分别是红黄,黄红时(3)P ξ=,此时32231(3)66663P ξ⨯⨯==+=⨯⨯;(步骤3)当两次摸到的球分别是黄蓝,蓝黄时(5)P ξ=,此时12211(5)66669P ξ⨯⨯==+=⨯⨯;(步骤4)当两次摸到的球分别是蓝蓝时P (6ξ=),此时111(6)P ξ⨯===;(步骤5)所以ξ的分布列是: 9所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b ca b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以2,3::3:2:1b c a c a b c ==∴=.(步骤6)20.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.第20题图【测量目标】空间直线与平面的位置关系,异面直线成角.【考查方式】给出四面体和直线间的位置和长度关系求解二面角大大小. 【难易程度】中等【试题解析】(Ⅰ)方法一:如图,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以PF BD ;(步骤1)又因为3AQ QC =且3AF FD =,所以QF CD ,所以面PQF 面BDC ,且PQ ⊂面PQF ,所以PQ 面BDC ;(步骤2)第20题图方法二:如图所示,第20题图取BD 中点O ,且P 是BM 中点,所以12PO MD ;取CD 的三等分点H ,使3DH C H =,且3AQ QC =,所以1142QH AD MD,(步骤1)所以PO QH 四边形PQHO 是平行四边形PQ OH ∴ ,且OH BCD ⊂面,所以PQ 面BDC ;(步骤2) (Ⅱ)如图所示,第20题图由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥面,过G 作GH BM ⊥于H ,连结CH ,所以CHG ∠就是C BM D --的二面角;(步骤3)由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在Rt BCG △中,2s i ns i n BG BCG BG BCααα∠=∴=∴=,(步骤4)所以在Rt BHG △中,13HG =∴=,所以在Rt CHG △中tan tan 603CG CHG HG ∠==== (步骤5)tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;(步骤6)21.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程; (2)求ABD △面积取最大值时直线1l 的方程.第21题图【测量目标】直线与椭圆的位置关系,直线与圆的位置关系.【考查方式】给出定点和圆的方程,由直线与椭圆、圆的位置关系求椭圆方程和直线方程. 【难易程度】较难【试题解析】(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(步骤1)(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,0)到直线1:110l yk x k x y =-⇒--=的距离为d =,(步骤2)所以直线1l 被圆224x y +=所截的弦AB ==;(步骤3)由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,(步骤4) 所以228||44D P k x x DP k k +=-∴==++,(步骤5)所以11||||22444313ABDS AB DP k k k ====++++△23232===…(步骤6)当2522k k =⇒=⇒=±时等号成立,此时直线1:1l y x =-(步骤7) 22.已知a ∈R ,函数.3333)(23+-+-=a ax x x x f(1)求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值. 【测量目标】利用导数求函数的最值问题.【考查方式】给出含有未知量的函数求函数的最大值. 【难易程度】较难【试题解析】(Ⅰ)由已知得:2()363(1)33f x x x a f a ''=-+∴=-,且(1)13333f a a =-++-=,所以所求切线方程为:1(33)(1)y a x -=--,即为:3(1)430a x y a --+-=;(步骤1)(Ⅱ)由已知得到:2()3633[(2)]f x x x a x x a '=-+=-+,其中44a ∆=-,当[0,2]x ∈时,(2)0x x -…,(步骤2)(1)当0a …时,()0f x '…,所以()f x 在[0,2]x ∈上递减,所以max |()|max{(0),(2)}f x f f =,(步骤3)因为max (0)3(1),(2)31(2)0(0)|()|(0)33f a f a f f f x f a =-=-∴<<∴==-;(步骤4) (2)当440a ∆=-…,即1a …时,()0f x '…恒成立,所以()f x 在[0,2]x ∈上递增,所以max |()|max{(0),(2)}f x f f =,(步骤5)因为max (0)3(1),(2)31(0)0(2)|()|(2)31f a f a f f f x f a =-=-∴<<∴==-;(步骤6) (3)当440a ∆=->,即01a <<时,212()363011f x x x a x x '=-+=∴==+,且1202x x <<<,即所以12()12(1()12(1f x a f x a =+-=--,且31212()()20,()()14(1)0,f x f x f x f x a ∴+=>=--<12()()4(1f x f x a -=-,所以12()|()|f x f x >,(步骤7)所以max 1|()|max{(0),(2),()}f x f f f x =;(步骤8) 由2(0)(2)3331003f f a a a -=--+>∴<<,所以 (ⅰ)当203a <<时,(0)(2)f f >,所以(,1][,)x a ∈-∞+∞ 时,()y f x =递增,(1,)x a ∈时,()y f x =递减,所以max 1|()|max{(0),()}f x f f x =,(步骤9)因为21()(0)12(1332(1(23f x f a a a a -=+-+=--=,又因为203a <<,所以230,340a a ->->,所以1()(0)0f x f ->,所以m a x 1|()|()12(1f x f x a ==+-10)(ⅱ)当213a <…时,(2)0,(0)0f f ><,所以max 1|()|max{(2),()}f x f f x =,因为21()(2)12(1312(1(32)f x f a a a a -=+-+=--=,此时320a ->,当213a <<时,34a -是大于零还是小于零不确定,所以 ① 当2334a <<时,340a->,所以1()|(2)|f x f >,所以此时max 1|()|()12(1f x f x a ==+-(步骤11) ② 当314a <…时,340a-<,所以1()|(2)|f x f …,所以此时m a x|()|(2)31f x f a ==-(步骤12)综上所述:max 33,(0)3|()|12(1)4331,()4a a f x a a a a ⎧-⎪⎪=+-<<⎨⎪⎪-⎩…….(步骤13)。
2013年浙江省高考数学试卷及答案(理科)word版

2013年浙江省高考数学试卷及答案(理科)word版绝密★考试结束前2013 年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共 5 页,选择题部分1至3页,非选择题部分4至5页。
满分150 分,考试时间120 分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50 分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件A,B互斥,那么P(A B) P(A) P(B)如果事件A,B相互独立,那么P(A?B) P(A)?P(B)如果事件A在一次试验中发生的概率为P,那么n次独立重复试验中事件A恰好发生k次的概率第2页共17页k k n k巳(k) C n P (1 p) (k 0,1,2,..., n)台体的体积公式V |h(S1..SS;S2)其中S1,S2分别表示台体的上、下面积,h表示台体的高柱体体积公式V Sh其中s表示柱体的底面积,h表示柱体的高锥体的体积公式V ^Sh其中S表示锥体的底面积,h表示锥体的高球的表面积公式S 4 R;球的体积公式V R3其中R表示球的半径3选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 •已知i是虚数单位,则(1 i)(2 i)( )A. 3 iB. 1 3 C . 3 3i D . 1 i2.设集合S {x|x 2},T{x|x2 3x 40},则(C R S) T( )A .( 2,1]B.(,4]c.(,1]D . [1 ,)3.已知x,y为正实数, 则()A . 2gx C2l g xl g y24 .已知函数f (x) Acos( 则“(x)是奇函数”是“—2A .充分不必要条件 要不充分条件 C •充分必要条件 不充分也不必要条件5•某程序框图如图所示,若该程序运行后 输出的值是5,则5B・47 .设ABC , P °是边AB 上一定点,满足P °B ^AB ,且对于边ABuu uujr uur uur上任一点P ,恒有PB PC P oB F 0C .贝VA . ABC 90B . BAC 30 C . AB ACD . AC BC8 .已知e 为自然对数的底数,设函数f(x) (e x 1)(x 1)k (k 1,2),则A .当k 1时,f(x)在x 1处取到极小值B .当k 1时,f(x)在x 1处取到极大值B 2g% y) D 2lg(xy)Igy2|gx 2(gygxlgyo lgx)(A 0,”勺(B .6 •已知sin2cosC . a 6-2°,则 tan2(第5题图)C .当k 2时,f(x)在x 1处取到极小值D .当k 2时,f(x)在x 1处取到极大值、 » . 29.如图,R , F 2是椭圆C i:Yy 2 1与双曲线C24的公共焦点,A ,B 分别是C i, 四象限的公共点•若四边形 形,则C 2的离心率是() A • 2 B • 3C •10 •在空间中,过点A 作平面的垂线,垂直为B ,记 B f(A) •设,是两个不同的平面,对空间任意一点 P , Q f [f (P)], Q 2f[f (P)],恒有 PQ iPQ 2,贝V ()A •平面与平面垂直B ・平面与平面所成的 (锐)二面角为45C •平面 与平面 平行D •平面 与平面 所成的 (锐)二面角为60分,共28分。
2013年高考真题——理科数学浙江卷

17.设a∈R,若x0时均有[(a-1)x-1](x2-ax-1)≥0,则a=__________。
【答案解析】
18.(本题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c。已知cosA=,sinB=C。
(1)求tanC的值;
(2)若a=,求△ABC的面积。
【答案解析】
19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和。
【答案解析】480
15.在△ABC中,M是BC的中点,AM=3,BC=10,则=________.
【答案解析】1
16.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______。
(Ⅰ)证明:当0x1时。
(1)函数f(x)的最大值为
(2)f(x)+ +a 0;
(Ⅱ)若-1 f(x) 1对x∈恒成立,求a+b的取值范围。
【答案解析】
A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件
【答案解析】D
4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是
【答案解析】B
5.设a,b是两个非零向量。
A.若|a+b|=|a|-|b|,则a⊥b
【答案解析】C
7.设S。是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是
2013年高考数学理(浙江卷)WORD版有答案

2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh = n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n k k k n n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式 其中12,S S 分别表示台体的上底、下底面积, 34π3V R = h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1, 已知i 是虚数单位,则()()12i i -+-=2, A ,3i -+ B ,13i -+ C ,33i -+ D ,1i -+3, 设集合{}{}22,340S x x T x x x =>-=+-≤,则()R C S T =U A ,(]2,1- B ,(],4-∞- C ,(],1-∞ D ,[)1,+∞3,已知,x y 为正实数,则A ,lg lg lg lg 222x y x y +=+ B ,()lg lg lg 222x y x y +=g C ,lg lg lg lg 222x yx y =+g D ,()lg lg lg 222xy x y =g 4,已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的A ,充分不必要条件B ,必要不充分条件C ,充分必要条件D ,既不充分也不必要条件5,某程序框图如图所示,若该程序运行后输出的值是95,则 A ,4a = B ,5a = C ,6a = D ,7a =6,已知,sin 2cos R ααα∈+=,则tan 2α= A ,43 B ,34 C ,34- D ,43- 7,设ABC V ,0P 是边AB 上一定点,满足014P B AB =,且对于边 AB 上任一点,恒有00PB PC P B PC ≥uu r uu u r uuu r uuu r g g ,则 A ,90ABC ∠=o B ,90BAC ∠=o C ,AB AC = D ,AC BC =8,已知e 为自然对数的底数,设函数()()()()111,2k x f x e x k =--=,则A ,当1k =时,()f x 在1x =处取到极小值B ,当1k =时,()f x 在1x =处取到极大值C ,当2k =时,()f x 在1x =处取到极小值D ,当2k =时,()f x 在1x =处取到极大值9,如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是A B C ,32 D ,210,在空间中,过点A 作平面π的垂线,垂足为B ,记().B f A π=设,αβ是两个不同的平面,对空间任意一点P ,()()12,Q f f P Q f f P βααβ⎡⎤==⎡⎤⎣⎦⎣⎦,恒有12PQ PQ =,则A ,平面α与平面β垂直B ,平面α与平面β所成的(锐)二面角为45oC ,平面α与平面β平行D ,平面α与平面β所成的(锐)二面角为60o2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.11,设二项式5的展开式中常数项为A ,则A = 12,某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm13,设z k x y =+,其中,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k =14,将,,,,,A B C D E F六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种(用数字作答)15,设F 为抛物线2:4C y x =的焦点,过点()1,0P -的直线l 交抛物线C 于,A B 两点,点Q 为线段AB 的中点,若2FQ =,则直线l 的斜率等于 16,在ABC V 中,90C ∠=o ,M 是BC 的中点。
2013年浙江高考理科数学试题及答案解析-(word版)

2013年浙江高考理科数学试题及答案解析-(word版)9.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率为A . 2 B . 3C .32D .6210.在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有 PQ 1= PQ 2,则 A .平面α与平面β垂直 B .平面α与平面β所成的(锐)二面角为45? C .平面α与平面β平行 D .平面α与平面β所成的(锐)二面角为60?16.在△ABC ,∠C =90?,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC = .17.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于. 20.(本题满分15分)如图,在四面体A ?BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(Ⅰ)证明:PQ ∥平面BCD ;(Ⅱ)若二面角C ?BM ?D 的大小为60?,求∠BDC 的大小.21.(本题满分15分)如图,点P (0,?1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(Ⅰ)求椭圆C 1的方程;(Ⅱ)求△ABD 面积取最大值时直线l 1的方程.ABDPQM(第20题图)22.(本题满分14分)已知a ∈R ,函数f (x )=x 3?3x 2+3ax ?3a +3 (Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(Ⅱ)当x ∈[0,2]时,求|f (x )|的最大值.10.已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 11.已知函数f (x )=220ln(1)0.x x x x x ?-+≤?+>?,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列15.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.18.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.20.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为()(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于()15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .19.如图,四棱锥S-ABCD 中,//,AB CD BC CD ⊥,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1. (Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成的角的大小。
2013年浙江省高考数学试卷及答案(理科)word版

绝密★考试结束前20##普通高等学校招生全国统一考试〔##卷〕数学〔理科〕本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分〔共50分〕注意事项:1.答题前,考生务必将自己的##、##号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上. 参考公式如果事件,A B 互斥,那么 如果事件,A B 相互独立,那么如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 台体的体积公式其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径 选择题部分〔共50分〕一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则(1)(2)i i -+-=< >A .3i -+B .13i -+C .33i -+D .1i -+2.设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则=T S C R )( < > A .(21]-, B .(4]-∞-, C .(1]-∞, D .[1)+∞, 3.已知x ,y 为正实数,则< > A .lg lg lg lg 222x yx y +=+ B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x yxy⋅=+ D .lg()lg lg 222xy x y=⋅4.已知函数()cos()(0f x A x A ωϕ=+>,0ω>,)R ϕ∈,则"()f x 是奇函数〞是"2πϕ=〞的< >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是95,则 A .4a = B .5a = C .6a = D .7a =6.已知R α∈,sin 2cos αα+=则tan 2α=A .43 B .34 C .34- D .43- 7.设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅.则A .90ABC ∠=︒B .30BAC ∠=︒ C .AB AC =D .AC BC =8.已知e 为自然对数的底数,设函数()(1)(1)(12)x kf x e x k =--=,,则 A .当1k =时,()f x 在1x =处取到极小值 B .当1k =时,()f x 在1x =处取到极大值 C .当2k =时,()f x 在1x =处取到极小值 D .当2k =时,()f x 在1x =处取到极大值9.如图,1F ,2F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是< >〔第5题图〕ABC .32D10.在空间中,过点A 作平面π的垂线,垂直为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,1[()]Q f f P βα=,2[()]Q f f P αβ=,恒有12PQ PQ =,则< >A .平面α与平面β垂直B .平面α与平面β所成的〔锐〕二面角为45︒C .平面α与平面β平行D .平面α与平面β所成的〔锐〕二面角为60︒非选择题部分〔共100分〕二、填空题:本大题共7小题,每小题4分,共28分.11.设二项式5的展开式中常数项为A ,则A =. 12.若某几何体的三视图〔单位:cm 〕如图所示,则此几何体的体积等于3cm .13.设z kx y =+,其中实数x ,y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k =.14.将A B C D E F ,,,,,六个字母排成一排,且A B ,均在C 的同侧,则不同的排法共有种〔用数字作答〕.15.设F 为抛物线2:4C y x =的焦点,过点(10)P -,的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||2FQ =,则直线l 的斜率等于.16.在ABC ∆中,90C ∠=︒,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠=. 17.设1e ,2e 为单位向量,非零向量12b xe ye =+,x ,y R ∈.若1e ,2e的夹角为6π,则||||x b 的最大值等于. 三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.〔本题满分14分〕在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. <I>求d ,n a ;<III>若0d <,求123||||||||n a a a a ++++.19.〔本题满分14分〕设袋子中装有a 个红球,b 个黄球,c 个篮球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分.<I>当331a b c ===,,时,从该袋子中任任取〔有放回,且每球取到的机会均等〕2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;<II>从该袋中任取〔每球取到的机会均等〕1个球,记随机变量η为取出此球所得分数.若53E η=,59D η=,求::a b c . 20.〔本题满分15分〕如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. <I>证明://PQ 平面BCD ;<II>若二面角C BM D --的大小为60︒,求BDC ∠的大小.21.〔本题满分15分〕如图,点(01)P -,是椭圆22122:1x y C a b+=〔0a b >>〕的一个顶点,1C 的长轴是圆222:4C x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A ,B 两点,2l 交椭圆1C 于另一点D .<I>求椭圆1C 的方程;<II>求ABD ∆面积取最大值时直线1l 的方程. 22.〔本题满分14分〕已知a R ∈,函数32()3323f x x x ax a =-+-+.<I>求曲线()y f x =在点(1(1))f ,处的切线方程; <II>当[02]x ∈,时,求|()|f x 的最大值.数学〔理科〕试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.B 2.C 3.D 4.B 5.A 6.C 7.D 8.C 9.D 10.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.-10 12.24 13.2 14.480 15.±1 16.317.2 三、解答题:本大题共5小题,共72分.18.本题主要考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求ABCDPQM〔第20题图〕〔第21题图〕解能力.满分14分.〔Ⅰ〕由题意得21325(21)a a a =+即2340d d --= 故1d =-或4d =所以11*n a n n N =--∈,或46*n a n n N =+∈, 〔Ⅱ〕设数列{}n a 的前n 项和为n S .因为0d <,由〔Ⅰ〕得1d =-,11n a n =--.则 当11n ≤时,2123121||||||||22n n a a a a S n n ++++==-+.当12n ≥时,212311121||||||||211022n n a a a a S S n n ++++=-+=-+.综上所述,19.本题主要考查随机事件的概率和随机变量的分布列、数学期望、数学方差等概念,同时考查抽象概括、运算求解能力和应用意识.满分14分. 〔Ⅰ〕由题意得ξ取2,3,4,5,6. 故331(2)664P ξ⨯===⨯, 2321(3)663P ξ⨯⨯===⨯,231225(4)6618P ξ⨯⨯+⨯===⨯,2211(5)669P ξ⨯⨯===⨯,111(6)6636P ξ⨯===⨯.所以ξ的分布列为〔Ⅱ〕由题意知η的分布列为所以235()3a b c E a b c a b c a b c η=++=++++++,222552535()(1)(2)(3)3339a b c D a b c a b c a b c η=-⋅+-⋅+-⋅=++++++.解得3a c =,2b c =,故20.本题主要考查空间点、线、面位置关系、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力.满分15分. 方法一:〔Ⅰ〕取BD 中点O ,在线段CD 上取点F ,使得3DF FC =,连结OP ,OF ,FQ 因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为O ,P 分别为BD ,SM 的中点,所以OP 是BDM ∆的中位线, 所以//OP DM ,且12OP DM =. 又点M 是AD 的中点,所以//OP AD ,且14OP AD =. 从而//OP FQ ,且OP FQ =.所以四边形OPQF 为平行四边形,故//FQ QF又PQ ⊄平面BCD ,OF ⊂平面BCD ,所以//PQ 平面BCD . 〔Ⅱ〕作CG BD ⊥于点G ,作GH BM ⊥于点H ,连结CH 因为AD ⊥平面BCD ,CG ⊂平面BCD ,所以AD CG ⊥, 又CG BD ⊥,AD BD D ⋂=,故CG ⊥平面ABD , 又BM ⊂平面ABD ,所以CG BM ⊥.又GH BM ⊥,CG GH G ⋂=,故BM ⊥平面CGH ,所以GH BM ⊥,CH BM ⊥. 所以CHG ∠为二面角C BM D --的平面角,即60CHG ∠=︒. 设BDC θ∠=.在Rt BCD ∆中,cos 22CD BD θθ==,cos 22sin CG CD θθθ==, 2sin 22BG BC θθ==.在Rt BDM ∆中,223sin BG DM HG BM θ⋅==.在Rt CHG ∆中,3cos tan 3sin CG CHG HG θθ∠===. 所以tan 3θ=从而60θ=︒,即60BDC ∠=︒. 方法二:〔Ⅰ〕如图,取BD 中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知(022)A ,,(020)B ,,(020)D ,.设点C 的坐标为00(0)x y ,,,因为3AQ QC =,所以00331()442Q x y +,. 因为M 是AD 的中点,故(01)M .又P 是BM 的中点,故1(00)2P ,,.所以0033(0)44PQ x y =+,. 又平面BCD 的一个法向量为(001)a =,,,故0PQ a ⋅=. 又PQ ⊄平面BCD ,所以//PQ 平面BCD .〔Ⅱ〕设()m x y z =,,为平面BMC 的一个法向量.由00(1)CM x y =-,,(01)BM =知00)00x x y y z z ⎧-++=⎪⎨+=⎪⎩, 取1y =-,得00(1y m x =-,. 又平面BDM 的一个法向量为(100)n =,,,于是||1|cos<>|=2||||m n m n m n ⋅==,, 即2003y x ⎛+= ⎝⎭.〔1〕 又BC CD ⊥,所以0CB CD ⋅=,故0000(0)(0)0x y x y -⋅-=,,,,即22002x y +=.〔2〕联立〔1〕,〔2〕,解得000x y =⎧⎪⎨=⎪⎩002x y ⎧=⎪⎪⎨⎪=⎪⎩.所以tan BDC ∠==.又BDC ∠是锐角,所以60BDC ∠=︒.21.本题主要考查椭圆的几何性质,直线与圆的位置关系、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.满分15分. 〔Ⅰ〕由题意得12b a =⎧⎨=⎩所以椭圆1C 的方程为2214x y +=. 〔Ⅱ〕设11()A x y ,,22()B x y ,,00()D x y ,.由题意知直线1l 的斜率存在,不妨设为k ,则直线1l 的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l的距离d =所以||AB == 又12l l ⊥,故直线2l 的方程为0x ky k ++=.由22044x ky k x y ++=⎧⎨+=⎩消去y ,整理得22(4)80k x kx ++=, 故0284kx k-=+.所以||PD =设ABD ∆的面积为S ,则1||||2S AB PD =⋅=,所以3213S ==≤=当且仅当2k =±时取等号. 所以直线1l的方程为12y x =±-. 22.本题主要考查导数的几何意义、导数应用等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力.〔Ⅰ〕由题意2'()363f x x x a =-+,故'(1)33f a =- 又(1)1f =,所以所求的切线方程为(33)34y a x a =--+.〔Ⅱ〕由于2'()3(1)3(1)02f x x a x =-+-≤≤,.故 <i>当0a ≤时,有'()0f x ≤,此时()f x 在[02],上单调递减,故{}max ()max (0)(2)33f x f f a ==-,.<ii>当1a ≥时,有'()0f x ≥,此时()f x 在[02],上单调递增,故{}max ()max (0)(2)31f x f f a ==-,.<iii>当01a <<时,设11x =21x =则1202x x <<<,12'()3()()f x x x x x =--.由于1()12(1f x a =+-2()12(1f x a =--故12()()20f x f x +=>,12()()4(10f x f x a -=->. 从而12()()f x f x >, 所以{}1max ()max (0)(2)()f x f f f x =,,. 〔1〕当203a <<时,(0)(2)f f >.又21()(0)2(1(23)0f x f a a -=--=>,故1max ()()12(1f x f x a ==+- 〔2〕当213a ≤<时,(2)(2)f f =,且(2)(0)f f ≥.又21()(2)2(1(32)f x f a a -=--=,所以①当2433a ≤<时,1()(2)f x f >.故max 1()()12(1f x f x a ==+-②当413a ≤<时,1()(2)f x f ≤.故 max ()(2)31f x f a ==-.综上所述,max3303()12(1043314a a f x a a a a ⎧⎪-≤⎪⎪=+-<<⎨⎪⎪-≥⎪⎩,,。
2013年浙江省高考理科数学试卷及参考答案(名师精校版)

绝密★考试结束前2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式11221()3V h S S S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则(1)(2)i i -+-=.A 3i -+ .B 13i -+ .C 33i -+ .D 1i -+2.设集合2{|2},{|340},(S)R S x x T x x x C T =>-=+-≤=U 则.A (2,1)- .B (,4]-∞- .C (,1]-∞ .D [1,)+∞ 3.已知,x y 为正实数,则.A lg lg lg lgy 222x y x +=+ .C lg()lg lg 222x y x y +=⋅ .C lg lg lg lg 2222x y x y ⋅=+ .D lg()lg lg 222xy x y =⋅4.已知函数()cos()(0,0,),f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数” 是“2πϕ=”的.A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是95,则 .A 4a = .B 5a = .C 6a = .D 7a =6.已知10,sin 2cos ,tan 22a R ααα∈+==则 .A 43 .B 34 .C 34- .D 43- 7.设0,ABC P ∆是边AB 上一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有PB PC ⋅≥u u u r u u u r 00P B PC ⋅u u u r u u u r则有 .A 90ABC ∠=o .B 90BAC ∠=o .C ,AB AC = .D AC BC = 8.已知e 为自然对数的底数,设函数()(1)(1)(1,2),xkf x e x k =--=则.A 当1,()1k f x x ==时在处取到极小值 .B 当1,()1k f x x ==时在处取到极大值 .C 当2,()1k f x x ==时在处取到极小值 .D 当2,()1k f x x ==时在处取到极大值3.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别 是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是(第12题图)俯视图23324 .A 2 .B 3 .C 32.D 610. 在空间中,过A 点作平面π的垂线,垂足为B ,记()B f A π=.设,αβ是两个不同的平面,对空间任一点P ,12[()],[()],Q f f P Q f f P βααβ== 恒有12PQ PQ =则.A 平面α与平面β垂直 .B 平面α与平面β所成(锐)二面角为45o .C 平面α与平面β平行 .D 平面α与平面β所成(锐)二面角为60o二.填空题:本大题共7小题,每小题4分,共28分.11.设二项式53x x的展开式中常数项为A ,则A = . 12.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm 3.13.设,z kx y =+其中实数,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k = .14.将,,,,,A B C D E F 六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种(用数字作答).15.设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线C 于,A B 两点,点Q 为线段AB的中点,若||2,FQ =则直线l 的斜率等于 .16.在ABC ∆中,90,C M BC ∠=o是的中点,若1sin ,sin 3BAM BAC ∠=∠=则 . 17.设12,e e u r u u r 为单位向量,非零向量1212,,,,b xe ye x y R e e =+∈r u r u u r u r u u r 若的夹角为6π,则||||x b 的最大值等于.三.解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列.(Ⅰ)求d ,n a ;ⅠⅠ()120,|||||.n d a a a <+++L 若求|(第20题图)QP MABCD19.(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (Ⅰ)当3,2,1a b c ===时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;ⅠⅠ()从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若55,,39E D ηη==求::a b c .20.(本题满分15分)如图,在四面体A BCD -中,,AD BCD ⊥平面 ,2,BC CD AD ⊥=22,BD M AD =是的中点,P BM 是的中点,点Q 在线段AC 上,且3AQ QC =. (Ⅰ)证明:PQ BCD //平面; ⅠⅠ()若二面角C BMD --的大小为60o ,求BDC ∠的大小.21.(本题满分15分)如图,点(0,1)P -是椭圆22122:1(0)x y C a b a b +=>> 的一个顶点,1C 的长轴是圆222:4C x y +=的直径,12,l l 是过点P 且互相垂直的两条直线,其中1l 交2C 于,A B 两点,2l 交1C 于另一点D .(Ⅰ)求椭圆1C 的方程;ⅠⅠ()求ABD ∆面积取最大值时直线1l 的方程.22.(本题满分14分)已知,a R ∈函数32()333 3.f x x x ax a =-+-+(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; ⅠⅠ()当[0,2]x ∈时,求|()|f x 的最大值.l 1l 2(第21题图)ABP OxyD2005年浙江高考数学(理科)试题参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分50分.题号 1 2 3 4 5 6 7 8 9 10 答案BCDBACDCDA二.填空题:本题考查基本知识和基本运算.每小题4分,满分28分.11.10- 12.24 13.2 14.480 15.1± 16.6317.2. 三.解答题:本大题共5小题,共72分.18.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列.(Ⅰ)求d ,n a ;ⅠⅠ()120,|||||.n d a a a <+++L 若求| (Ⅰ) 解;:由题意得223125(22)34014a a a d d d d ⋅=+⇒--=⇒=-=或所以 11,*46,*.n n a n n N a n n N =-∈=+∈或ⅠⅠ()设数列{}n a 的前n 项和为n S ,因为0,d <由(Ⅰ)得1,11,n d a n =-=-则当11n ≤时,212121||||||.22n n a a a S n n +++==-+L 当12n ≥时,21211121||||||2110.22n n a a a S S n n +++=-+=-+L综上即得212212111,22||||||12111012.22n n n n a a a n n n ⎧-+≤⎪⎪+++=⎨⎪-+≥⎪⎩L19.(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (Ⅰ)当3,2,1a b c ===时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;ⅠⅠ()从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若55,,39E D ηη==求::a b c .(Ⅰ)解:由题意得2,3,4,5,6.ξ=故 3312321231225(2),(3),(4),6646636618P P P ξξξ⋅⋅⋅⋅⋅+⋅=========⋅⋅⋅ 2211111(5),(6).6696636P P ξξ⋅⋅⋅======⋅⋅所以ξ的分布列为ξ2 3 4 5 6P14 13 518 19 136ⅠⅠ()由题意知η的分布列为η1 2 3Pa abc ++ b a b c ++ ca b c ++所以 (),3E a b c a b c a b c η=++=++++++ ①2225555()(1)(2)(3).3339a b c D a b c a b c a b c η=-⋅+-⋅+-⋅=++++++ ②由①②化简得2403::3:2:1.41102a b c a ca b c a b c b c--==⎧⎧⇒⇒=⎨⎨+-==⎩⎩20.(本题满分15分)如图,在四面体A BCD -中,,AD BCD ⊥平面 ,2,BC CD AD ⊥=22,BD M AD =是的中点,P BM 是的中点,点Q 在线段AC 上,且3AQ QC =. (Ⅰ)证明:PQ BCD //平面; ⅠⅠ()若二面角C BMD --的大小为60o ,求BDC ∠的大小.方法一:(Ⅰ)取BD 的中点O ,在线段CD 上取点F ,使得3DFFC =,连结,,.OP OF FQ因为3AQ QC =,所以1,.4QF AD QF AD =//且 因为,O P 分别是,BD BM 的中点,所以OP BDM ∆是的中位线, 所以 1,.2OP DM OP DM =//且(第20题图)FOQPMBC DGHO QPC 1CBADyzx又点M 为AD 的中点,所以 1,.4OP AD OP AD =//且 从而 .OP FQ OP FQ =//且 所以四边形OPQF 为平行四边形,故 ,PQ OF // 又,,PQ BCD OF BCD ⊄⊂平面平面所以.PQ BCD //平面 ⅠⅠ()作CG BD ⊥于点G ,作GHBM ⊥于点H ,连结CH .因为,,AD BCD CG BCD ⊥⊂平面平面所以AD CG ⊥. 又,,CG BD AD BD D CG ABD ⊥=⊥I 故平面. 又,.BM ABD CG BM ⊂⊥平面所以由,,,,.GH BM CG GH G BM CGH GH BM CH BM ⊥=⊥⊥⊥I 故平面所以所以CGH ∠为二面角C BM D --的平面角,即60.CGH ∠=o设,BDC θ∠= 在Rt BCD ∆中,2cos 22,sin 22sin ,sin 2sin .CD BD CG CD BG BC θθθθθθθ======在Rt BDM ∆中 222sin 3BG DM HG BM θ⋅==在Rt CHG ∆中,3cos tan 3.sin CG CHG HG θθ∠===即tan 3,θ= 而BDC θ∠=是三角形的一个内角所以60.BDC ∠=o方法二:(Ⅰ)如图,取BD 中点O ,以O 为原点,,OD OP 所在射线为,y z 轴的正半轴,建立空间直角坐标系.Oxyz 由题意知2,2),(0,2,0),2,0).A B D设点00(,,0),C x y 因为3AQ QC =u u u r u u u r,所以003231(,,).4442Q x y + 因为M 为AD 的中点,故2,1)M .又P 为BM 的中点,故1(0,0,).2P所以 00323(,,0).444PQ x y =+u u u r 又平面BCD 的法向量为(0,0,1),u =r 故0.PQ u ⋅=u u u r r又,PQ BCD ⊄平面所以 PQ BCD //平面ⅠⅠ()设(,,)m x y z =u r为平面BMC 的一个法向量,由0000(2)0(2,1),(0,22,1)220x x y y z CM x y BM z ⎧-++=⎪=-=⇒⎨+=⎪⎩u u u u r u u u u r取1,y =-得 002(,1,22).y m x =-u r又平面BDM 的一个法向量为(1,0,0),n =r于是020002002|2||1|cos ,|(32||||29()y y m n m n x m n y x +⋅〈〉===⇒=++u r ru r r u r r ① 又,0,BC CD CB CD ⊥⋅=u u u r u u u r所以故22000000(,2,0)(2,0)02x y x y x y --⋅-=⇒+= ②联立①②解得000060),222x x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎩⎪=⎪⎩舍去或所以 0tan ||32x BDC y ∠==- 因为BDC ∠是三角形的一个内角,所以60.BDC ∠=o.21.(本题满分15分)如图,点(0,1)P -是椭圆22122:1(0)x y C a b a b+=>>的一个顶点,1C 的长轴是圆222:4C x y +=的直径,12,l l 是过点P且互相垂直的两条直线,其中1l 交2C 于,A B 两点,2l 交1C 于另一点D . (Ⅰ)求椭圆1C 的方程;ⅠⅠ()求ABD ∆面积取最大值时直线1l 的方程.(Ⅰ)解:依题意得21a b =⎧⎨=⎩ ,所以椭圆C 的方程为22 1.4x y += ⅠⅠ()设112200(,),(,),(,),A x y B x y D x y 由题意知直线1l 的斜率存在,不妨设为k ,则1l 的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l 的距离21d k =+l 1l 2(第21题图)ABP OxyD所以22243||2421k AB d k +=-=+ 又12l l ⊥,故直线2l 的方程为0x ky k ++=故028.4kx k =-+所以221||4k PD k +=+ 设ABD ∆的面积为S ,则221843||||24k S AB PD k +=⋅=+所以222232161313131343434343S k k k k =≤=++⋅++ 当且仅当102k =±时取等号. 所求直线1l 的方程为1012y x =±-. 22.(本题满分14分)已知,a R ∈函数32()333 3.f x x x ax a =-+-+(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; ⅠⅠ()当[0,2]x ∈时,求|()|f x 的最大值.(Ⅰ)解:由题意2()363(1)33f x x x a f a ''=--⇒=-因为(1)1,f =故所求切线方程为(33)34y a x a =--+ ⅠⅠ()由于2()3(1)3(1),02f x x a x '=-+-≤≤故⑴当0a ≤时,有()0f x '≤,此时()f x 在[0,2]上单调递减,故 max |()|max{|(0)|,|(2)|}33.f x f f a ==-⑵当1,()0,a f x '≥≥时有此时()f x 在[0,2]上单调递增,故 max |()|max{|(0)|,|(2)|}31f x f f a ==- ⑶当01a <<时,设1211,11x a x a =-=- 121202,()3()().x x f x x x x x '<<<=-- 列表如下:x 01(0,)x 1x 12(,)x x 2x 2(,2)x2()f x '+-+()f x 33a - 单调递增极大值1()f x单调递减极小值2()f x 单调递增31a -由于 12()12(1)1,()12(1)1f x a a f x a a =+--=---故 1212()()20,()()4(1)1.f x f x f x f x a a +=>-=-- 从而 12()|()|.f x f x >所以 max 2|()|max{(0),(2),()}.f x f f f x = (i)当203a <<时,(0)|(2)|f f > 又 21()(0)2(1)1(23)0,2(1)123f x f a a a a a a-=---=>--+-故 max 1|()|()12(1)1.f x f x a a ==+--(ii)当21,|(2)|(2),(2)(0).3a f f f f ≤<=≥时且 又 21()(2)2(1)1(32)2(1)132f x f a a a a a a -=---=--+-所以①1max 123,()(2),()()12(1)134a f x f f x f x a a ≤<>==+--时故②1max 1,()|(2)|,()|(2)|3 1.4a f x f f x f a ≤<≤==-时故 综上所述 max 3303|()|12(1)1043314a a f x a aa a a ⎧⎪-≤⎪⎪=+--<<⎨⎪⎪-≥⎪⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)一、选择题:每小题5分,共50分. 1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则( R S )∪T =A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞) 【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为( R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以( R S )∪T =(−∞,1]. 3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg(xy )=2lg x ∙ 2lg y【命题意图】本题考查指数和对数的运算性质,属于容易题 【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A .a =4B .a =5C .a =6D .a =7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A 6.已知α∈R ,sin α+2cos α=102,则tan2α= A .43B .34(第5题图)C .−34D .−43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=⎝⎛⎭⎫1022可得sin 2α+4cos 2α+4sin αcos α sin 2α+cos 2α=104,进一步整理可得3tan 2α−8tan α−3=0,解得tan α=3或tan α=−13,于是tan2α=2tan α1−tan 2α=−34.7.设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于AB 上任一点P ,恒有→PB ∙→PC ≥→P 0B∙→P 0C ,则A .∠ABC =90︒B .∠BAC =90︒ C .AB =ACD .AC =BC 【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设|→AB |=4,则|→P 0B |=1,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设HP 0=a ,则由数量积的几何意义可得,→PB ∙→PC =|→PH ||→PB |=(|→PB |−(a +1))|→PB |,→P 0B ∙→P 0C =−|→P 0H ||→P 0B |=−a ,于是→PB ∙→PC ≥→P 0B ∙→P 0C恒成立,相当于(|→PB |−(a +1))|→PB |≥−a 恒成立,整理得|→PB|2−(a +1)|→PB |+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC 8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则 A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。
9.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率为 A . 2 B . 3C .32D .62【命题意图】本题考查椭圆和双曲线的定义和几何性质,属于中档题【答案解析】D 由题意,c =3,|AF 2|+|AF 1|=4……①,|AF 2|−|AF 1|=2a ……②,①+②得|AF 2|=2+a ,①−②得|AF 1|=2−a ,又|AF 1|2+|AF 2|2=| F 1F 2|2,所以a =2,于是e =c a =62.10.在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有 PQ 1= PQ 2,则 A .平面α与平面β垂直 B .平面α与平面β所成的(锐)二面角为45︒ C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60︒【命题意图】本题考查新定义问题的解决,重在知识的迁移,属于较难题 【答案解析】A 用特殊法立即可知选项A 正确非选择题部分(共100分)二、填空题:每小题4分,共28分. 11.设二项式⎝⎛⎭⎪⎫x −13x 5的展开式中常数项为A ,则A= .【命题意图】考查二项式定理,属于容易题 【答案解析】−1012.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于cm 3.【命题意图】本题考查三视图和体积计算,属于容易题【答案解析】24 由题意,该几何体为一个直三棱柱截去一个 三棱锥所得13.设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y −2≥0,x −2y +4≥0,2x −y −4≤0.若z 的最大值为12,则实数k = .【命题意图】本题考查线性规划,属于容易题【答案解析】2 作出平面区域即可 14.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法有 种(用数字作答).【命题意图】本题考查排列组合,属于中档题【答案解析】480 第一类,字母C 排在左边第一个位置,有A 55种;第二类,字母C 排在左边第二个位置,有A 24A 33种;第三类,字母C 排在左边第三个位置,有A 22A 33+ A 23A 33种,由对称性可知共有2⨯( A 55+ A 24A 33+ A 22A 33+ A 23A 33)=480种。
15.设F 为抛物线C :y 2=4x 的焦点,过点F (−1,0)的直线l 交抛物线C 于A ,B 两点,点Q为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于 .【命题意图】本题考查直线与抛物线的位置关系,属于中档题【答案解析】±1 设直线l 的方程为y =k (x +1),联立⎩⎨⎧y =k (x +1),y 2=4x .消去y 得k 2x 2+(2k 2−4)x +k 2=0,由韦达定理,x A + x B =−2k 2−4 k 2,于是x Q =x A + x B 2=2k 2−1,把x Q 带入y =k (x +1),得到y Q =2k,根据|FQ |=⎝⎛⎭⎫2k 2−22+⎝⎛⎭⎫2k 2=2,解出k =±1. 16.在△ABC ,∠C =90︒,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC = .【命题意图】本题考查解三角形,属于中档题【答案解析】63 设BC =2a ,AC =b ,则AM =a 2+b 2,AB =4a 2+b 2,sin ∠ABM= sin ∠ABC =ACAB=b 4a 2+b 2,在△ABM 中,由正弦定理BM sin ∠BAM =AM sin ∠ABM ,即a 13=a 2+b 2b 4a 2+b 2,解得2a 2=b 2,于是sin ∠BAC =BC AB =2a 4a 2+b 2=63. 17.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于 .【命题意图】本题以向量为依托考查最值问题,属于较难题【答案解析】2 |x ||b |=|x |(x e 1+y e 2)2=|x |x 2+y 2+3xy =1x 2+y 2+3xy x 2=1⎝⎛⎭⎫y x 2+3y x+1=1⎝⎛⎭⎫y x − 3 22+14,所以|x ||b |的最大值为2 三、解答题:本大题共5小题,共72分.18.(本小题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列(Ⅰ)求d ,a n ;(Ⅱ)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【命题意图】本题考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力。
【答案解析】(Ⅰ)由题意5a 3⋅ a 1=(2a 2+2)2,即d 2−3d −4=0.故d =−1或d =4.所以a n =−n +11,n ∈N *或a n =4n +6,n ∈N *(Ⅱ)设数列{a n }的前n 项和为S n .因为d <0,由(Ⅰ)得d =−1,a n =−n +11.则 当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =−12n 2+212n当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=−S n +2S 11=12n 2−212n +110综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧−12n 2+212n , n ≤11,12n 2−212n +110,n ≥12.19.(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(Ⅰ)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(Ⅱ)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若 E η=53,D η=59,求a ∶b ∶c .【命题意图】本题考查随机事件的概率和随机变量的分布列、数学期望、数学方差等概念,同时考查抽象概括、运算求解能力和应用意识。