初一数学复习提纲
七年级上册数学总结归纳提纲

七年级上册数学总结归纳提纲复习数学的时候,应加强各学问板块的综合。
对于重点学问的交叉点和结合点,以下是我给大家整理的七年级上册数学〔总结〕归纳提纲,希望对大家有所关怀,欢迎阅读!七年级上册数学总结归纳提纲1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不愿定是负数,+a也不愿定是正数;?不是有理数;(2)有理数的分类:① ②(3)留意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数?0和正整数;a0?a是正数;a0?a是负数;a≥0?a是正数或0?a是非负数;a≤0?a是负数或0?a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0?a+b=0?a、b互为相反数.(4)相反数的商为-1.(5)相反数的确定值相等4.确定值:(1)正数的确定值等于它本身,0的确定值是0,负数的确定值等于它的相反数;留意:确定值的意义是数轴上表示某数的点离开原点的距离;(2)确定值可表示为:或;(3) ; ;(4)|a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永久比0大,负数永久比0小;(2)正数大于一切负数;(3)两个负数比较,确定值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,确定值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1确定值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把确定值相加;(2)异号两数相加,取确定值较大加数的符号,并用较大的确定值减去较小的确定值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把确定值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数确定.奇数个负数为负,偶数个负数为正。
初一数学上册期末复习提纲

七年级数学上册期末复习提纲第一章有理数一、正数和负数1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;2、表示相反意义的量:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等3、正、负数所表示的实际意义:例题:北京冬季里某天的温度为—3°C~3°C,它的确切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最高峰珠穆朗玛海拔8848.13米二、有理数2.2 数轴1、定义:用一条直线上的点表示数,这条直线就叫做数轴。
2、满足的条件:(1)在直线上取一个点表示数0,这个点叫做原点;(2)通常规定直线从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
2.3相反数定义:只有符号不相同的两个数叫做相反数一般地:a和互为相反数,0的相反数仍然是0。
在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。
2.4绝对值1、定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣由定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(1)当a是正数时,∣a∣= ;(2)当a是负数时,∣a∣= ;(3)当a=0时,∣a∣= 。
2.5比较两个数的大小(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
三、有理数的加减法1、加法法则:(1)同号两数相加:取相同的符号,并把绝对值相加;(2)异号两数相加:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数和零相加:任何数和零相加都等于它本身。
2、加法交换律、结合律(1)有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a(2)有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)3、有理数的减法法则:减去一个数,等于加上这个数的相反数:a-b=a+(-b)四、有理数的乘除法有理数的乘法法则:1.两数相乘,同号得正,异号得负,并把它们的绝对值相乘。
2021七年级上册数学复习提纲

2021七年级上册数学复习提纲良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
下面小编给大家分享一些七年级上册数学复习提纲_七年级上册数学知识点,希望能够帮助大家,欢迎阅读!七年级上册数学复习提纲正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
初一数学第五章知识点

初一数学第五章知识点代数初步知识1.代数式:用运算符号+ -连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写;(2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ; a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2 .一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax = b (a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2.设:设未知数(可分直接设法,间接设法)3.列:根据题意列方程.4.解:解出所列方程.5.检:检验所求的解是否符合题意.6.答:写出答案(有单位要注明答案)如何整理数学学科课堂笔记一、内容提纲。
初中数学知识点总结

初中数学知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.七年级数学(下)知识点人教版七年级数学第二册主要包括交线与平行线、平面直角坐标系、三角形、二元一次方程、不等式与不等式组、数据收集、整理与表达六个章节。
八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和代数表达式的乘除分解因子五章。
八年级数学(下)知识点人教版八年级下册主要包括分数、反比例函数、勾股定理、四边形、数据分析五章。
九年级数学(上)知识点人教版九年级数学上册主要包括二次方根、二元一次方程、旋转、圆、概率五章。
九年级数学(下)知识点人教版九年级数学下册主要包括二次函数、相似、锐角三角形、投影、视图四章。
编辑:唐广庶史君臣特别推荐语文新教材必背古诗135首,寒假必备!值得收藏!初中政治15种主观题答题技巧,高分必备!初中数学99个易错知识点解析必收!2018年政治中考时政热点整理初中地理中考总复习提纲2018中考生物知识点总结(图文并茂)初中地理的知识点全部转移给这20组思维导图上的孩子!初中政治高频考点归纳:考前将它背会,中考稳稳提升30+分地理结业法宝:这般“诗意”,中学课本一天就背完!超级详细!初中地理知识都整理好了,初一初二一定要看!中小学生标点符号使用儿歌+方法大全人教版初中生物基础知识点归纳填空版中考地理复习提纲//人教版初中地理知识点都在这了,收藏了!中考数学几何题,就考这140多条公式定理!中考746分:熬夜没用,成绩肯定不是时间堆出来的!期末一定要总结初中化学的重要规律,赶紧收藏起来!初中地理必考知识点汇总,收藏!初中毕业考试肯定能派上用场!中考结业生物考试识图题全汇总, 让孩子学完, 轻松提高20分!11个表格,帮你记住初中必修的、易混淆的历史事件!中考考20分不是问题。
初一下数学第7章复习提纲

第7章平面图形的认识(二)
7.1 探索直线平行的条件
同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
7.2 探索平行线的性质
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角相等。
7.3 图形的平移
在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
平移不改变图形的形状和大小。
一个图形和它经过平移得到的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
7.4 认识三角形
三角形的任意两边之和大于第三边。
在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。
在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
在三角形中,从一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高线,简称三角形的高。
7.5 多边形的内角和与外角和
三角形的内角和是180°.
N边形的内角和等于(n-2)×180°.
多边形的外角和等于360°.。
华东师大七年级上册数学知识点
华师大版七年级数学〔上〕期末复习提纲----学问点总结及单章练习题第一章略第二章有理数1.负数:像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数;正数:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数.留意:0既不是正数,也不是负数.2.正整数、零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.3.数轴:规定了原点、正方向和单位长度的直线叫做数轴.4.在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数.5.相反数:只有正负号不同的两个数称互为相反数;在数轴上表示互为相反数的两数的点分别位于原点的两旁,且及原点的间隔相等;规定:0的相反数是0;我们通常把在一个数前面添上“-〞号,表示这个数的相反数;在一个数前面添上“+〞号,表示这个数本身.6.肯定值:数轴上表示数a的点及原点的间隔叫做数a|a|;一个正数的肯定值是它本身;0的肯定值是0;一个负数的肯定值是它的相反数;随意有理数a,总有|a|≥0.7.两个负数,肯定值大的反而小.8.有理数的加法法那么:1〕同号两数相加,取一样的正负号,并把肯定值相加;2〕肯定值不等的异号两数相加,取肯定值较大加数的正负号,并用较大的肯定值减去较小的肯定值;3〕互为相反数的两个数相加得0;4〕一个数同0相加,仍得这个数.留意一个有理数由正负号和肯定值两部分组成,所以进展加法运算时,应留意确定和的正负号及肯定值.9.加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.( a + b )+ c = a + ( b + c ).10.有理数减法法那么:减去一个数,等于加上这个数的相反数.11.有理数乘法法那么:两数相乘,同号得正,异号得负,并把肯定植相乘.任何数同0相乘,都得0.12.乘法交换律:两个数相乘,交换因数的位置,积不变.ab=ba.乘法结合律:三个数相乘,先把前两个数相积乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).安排律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.几个不等于0的数相乘,积的正负号由负因数的个数确定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一个因数为0,积就为0.13.倒数:乘积是1的两个数互为倒数;除以一个数等于乘上这个数的倒数.留意:0不能作除数.有理数的除法法那么:两数相除,同号得正,异号得负,并把肯定值相除.0除以任何一个不等于0的数,都得0.14.a n中,a叫作底数,n叫做指数,a n读作a的n次方,a n看作是a 的n次方的结果时,也可读作a的n次幂.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.16.有理数混合运算的运算依次规定如下:1〕先算乘方,再算乘除,最终算加减;2〕同级运算,依据从左至右的依次进展;3〕假如有括号,就先算小括号里的,再算中括号里的,最终算大括号里的.17.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数起,到精确到的数位止,全部的数字都叫做这个数的有效数字.18.小结一、学问构造二、概括1.数轴是理解有理数概念及运算的重要工具,学习本章要擅长结合数轴理解有理数的有关概念(如相反、肯定值),会利用数轴比较两个有理数的大小.2.在有理数的运算中,要特殊留意符号问题,进步运算的正确性,还要擅长敏捷运用运算律简化运算.3.在实际运算中常常会遇到近似数,要留意按要求的精确度进展计算和保存结果.对较大的数用科学记数法表示既便利,又简洁表达对有效数字的要求.第三章整式的加减1.代数式:数和字母用运算符号连结所成的式子,称为代数式.留意:1)代数式中出现的乘号,通常写作“·〞或省略不写,如6×b常写作6·b或6b;2)数字及字母相乘时,数字写在字母前面,如6b一般不写作b6;3)除法运算写成分数形式;4)数及字母相乘,带分数要化假分数;5)括号及括号相乘可省略括号.2.列代数式:把问题中及数量有关的词语用代数式表示出来,即列出代数式.3.代数式的值:用数值代替代数式里的字母,依据代数式中的运算计算得出的结果,叫做代数式的值.4.单项式:由数及字母的乘积组成的代数式叫做单项式;单独一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数.一个单项式中,全部字母的指数的和叫做这个单项式的次数.留意:1〕当一个单项式的系数是1或-1时,“1〞通常省略不写;2〕单项式的系数是带分数时,通常写成假分数.5.多项式:几个单项式的和叫做多项式.在多项式中,项:每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.留意:1〕多项式的次数不是全部项的次数之和;2〕多项式的每一项都包括它前面的正负号.6.单项式及多项式统称整式.7.降幂排列:按某一字母的指数从大到小的依次排列,叫做这个多项式按该字母的降幂排列.升幂排列:按某一字母的指数从小到大的依次排列,叫做这个多项式按该字母的升幂排列.留意:1〕重新排列多项式时,每一项肯定要连同它的符号一起挪动;2〕含有两个或两个以上字母的多项式,常常依据其中某一字母升幂排列或降幂排列.8.同类项:所含字母一样,并且一样字母的指数也相等的项叫做同类项.全部的常数项都是同类项.9.合并同类项的法那么:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.10.去括号法那么:括号前面是“+〞号,把括号和它前面的“+〞号去掉,括号里各项都不变更正负号;括号前面是“-〞号,把括号和它前面的“-〞号去掉,括号里各项都变更正负号.11.添括号法那么:所添括号前面是“+〞号,括到括号里的各项都不变更正负号;所添括号前面是“-〞号,括到括号里的各项都变更正负号.12.整式加减的一般步骤是:先去括号,再合并同类项.一、学问构造二、概括1.整式中,只含一项的是单项式,否那么是多项式.分母中含有字母的代数式不是整式,当然也不是单项式或多项式.2.单项式的次数是全部字母的指数之和;多项式的次数是多项式中最高次项的次数.3.单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号.4.去〔添〕括号时,要特殊留意括号前面是“-〞号的情形:去括号时,括号里各项都变更符号;添括号时,括到括号里的各项都变更符号.第四章图形的初步相识1.1〕柱体:圆柱,棱柱〔三棱柱,四棱柱,…〕;2〕锥体:圆锥,棱锥〔三棱锥,四棱锥,…〕;3〕球体.多面体:围成立体图形的面是平的面,像这样的立体图形,又称为多面体.2.视图:从三个不同的方向看一个物体,一般是从正面、上面和侧面,然后描绘三张所看到的图,即视图.从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图〔左视图,右视图〕.3.外表绽开图:多面体是由平面图形围成的立体图形,沿着多面体的棱将它剪开,可以把多面体的外表变成一个平面图形.4.圆是由曲线围成的封闭图形. 多边形是由线段围成的封闭图形.一个n边形至少可以分割成n-2个三角形.5.射线:线段向一方无限延长所形成的图形叫做射线;直线:把线段向两方无限延长所形成的图形就是直线.表示方法:点:用一个大写字母表示;线段:用两个端点的大写字母表示;或用一个小写字母表示;射线:用端点和射线上随意一点的两个大写字母表示;或用一个小写字母表示;直线:用直线上随意两点的大写字母表示;或用一个小写字母表示.公理1:两点之间,直段最短.此时线段的长度,就是这两点间的间隔.公理2:经过两点有一条直线,并且只有一条直线.6.线段的中点:把一条险段分成两条相等线段的点,叫做这条线段的中点.7.角:由两条有公共端点的射线组成的图形.可以看成是由一条射线围着它的端点旋转而成的图形.角的顶点:射线的端点;角的始边:起始位置的射线;角的终边:终止位置的射线.表示方法:〔1〕用两边和顶点的三个大写字母表示〔顶点字母在中间〕;〔2〕用顶点的大写字母表示;〔3〕用阿拉伯数字表示;〔4〕用小写的希腊字母表示.8.平角:围着端点旋转到角的终边和始边成始终线所成的角;周角:围着端点旋转到终边和始边重合所成的角.9.1周角=360°;1平角=180°;1°=60′;1′=60".10.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.11.互余:两个角的和等于90°,就说这两个角互为余角,简称互余.互补:两个角的和等于一平角(180°),就说这两个角互为补角,简称互补.同角〔等角〕的余角相等;同角〔等角〕的补角相等.两直线相交形成了∠1、∠2、∠3和∠4(如图1),我们把其中的∠1和∠3叫做对顶角,∠2和∠4也是图1 对顶角.对顶角相等.12.相互垂直:直线AB及直线CD相交,交点为O,当所构成的四个角中有一个为直角时,其他三个角也都成为直角,此时,直线AB、CD相互垂直,记作“AB⊥CD〞,他们的交点O叫做垂足.在同一平面内,经过直线外或直线上一点,有且只有一条直线及直线垂直.假设线段AB垂直于直线BC,垂足为B.线段AB叫做点A到直线BC的垂线段,它的长度就是点A到直线BC的间隔.直线外一点及直线上各点连结而得到的全部线段中,垂线段最短.13.同位角,内错角,同旁内角〔见教材P164-165〕.14.平行线:在同一平面内不相交的两条直线叫做平行线.在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.经过直线外一点,有且只有一条直线及直线平行.假如两条直线都和第三条直线平行,那么这两条直线也相互平行.15.平行线的断定方法:〔1〕同位角相等,两直线平行;〔2〕内错角相等,两直线平行;〔3〕同旁内角互补,两直线平行.垂直于同一条直线的两条直线相互平行.16.平行线的性质:〔1〕两直线平行,同位角相等;〔2〕两直线平行,内错角相等;〔3〕两直线平行,同旁内角互补.学问框图第五章数据的搜集及表示1.频数:表示每个对象出现的次数,频率:表示每个对象出现的次数及总次数的比值(或者百分比).2.条形统计图是用宽度一样的条形的上下或长短来表示数据特征的统计图,它们可以直观地反映出数据的数量特征。
初一数学上册知识点汇总归纳
Word文档 1 / 3 初一数学上册知识点汇总归纳 学期清静结尾,初中数学可以说是初中学科中比较难的一门课程,要想学好数学,就要做好数学学问点的〔总结〕。下面就让学习啦我给大家共享一些初一数学上册学问点汇总吧,希望能对你有关怀!
初一数学上册学问点汇总篇一 代数初步学问 1.代数式:用运算符号+-连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个留意事项: (1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写; (2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a; (5)在代数式中出现除法运算时,一般用〔分数线〕将被除式和除式联系,如3a写成的形式; (6)a与b的差写作a-b,要留意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a. 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2; (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1; (4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2. 有理数 负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 初一数学上册学问点汇总篇二 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不愿定是负数,+a也不愿定是正数;不是有理数; (2)有理数的分类:①② (3)留意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a0a是正数;a0a是负数; a0a是正数或0a是非负数;a0a是负数或0a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0a+b=0a、b互为相反数. 4.确定值: Word文档 2 / 3 (1)正数的确定值是其本身,0的确定值是0,负数的确定值是它的相反数;留意:确定值的意义是数轴上表示某数的点离开原点的距离; (2)确定值可表示为:或;确定值的问题经常分类商议 ; (3);; (4)|a|是重要的非负数,即|a|0;留意:|a||b|=|ab|,. 5.有理数比大小:(1)正数的确定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,确定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0. 6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a0,那么的倒数是;倒数是本身的数是1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数. 初一数学上册学问点汇总篇三 整式的加减 单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中全部字母指数的和,叫单项式的次数. 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中全部字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;留意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:. 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号. 9.整式的加减:整式的加减,事实上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).留意:多项式计算的最终结果一般应当进行升幂(或降幂)排列. 一元一次方程 利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,根据题意画出有关图形,使图形各部分具有特定的含义,填入有关的代数式是获得方程的基础. 1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入! 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. Word文档 3 / 3 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入! 5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0). 8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a0). 9.一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解). 10.列一元一次方程解应用题: (1)读题分析法:多用于和,差,倍,分问题 看了初一数学上册学问点汇总的人还看: 1.人教版七年级数学上册学问点总结 2.七年级数学上册学问点总结范文 3.人教版七年级上册数学复习提纲 4.人教版七年级上册数学复习资料 5.初一上册数学书学问点归纳 6.七年级数学学问点归纳
青岛版初中数学知识点
青岛版初中数学知识点篇一:青岛版七年级数学上册知识点归纳及提纲初一数学上册总复习第一章基本的几何图形一、几何图形1. 基本元素:点、线、面、体。
?点动成线,线动成面,面动成体。
(体是由面围成的;面有平面和曲面)?线与线相交(点)面与面相交(线)棱顶点2. 分类几何图形有平面图形和立体图形(两者之间的转化)几何体:①柱体(圆柱和棱柱)②锥体(圆锥和棱锥)③球④台体?? 3. 正方体的平面展开图有“11种”(至少剪7条棱正方体展成平面图形)“一四一型”(有6种)“二三一型”(有3种)“二二二型”“三三型”(有1种)(有1种)不能出现“田”字、“凹”字和“7”字考点:1.识别常见的几何体①在六角螺母、乒乓球、圆形烟囱、书本、热水瓶胆等物体中,形状类似于棱柱的有_____个,球体有_____个。
②圆锥由____个面围成,其中______个平面,_____个曲面.③将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是().3.正方体的展开与折叠④下列图形中为正方体的平面展开图的是()A.B.C.D.⑤如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()二、线段、射线、直线2.递推①五个人若其中每两个人都握一次手,他们总共握多少次手?②往返于甲、乙两地的火车中途要停靠三个站,则有()种不同的票价(来回票价一样),需准备()种车票.③以图中的点A、B、C、D、E为端点的线段条数为_____3.延长线与反向延长线4.点与直线的位置关系:①点在直线上②点在直线外点P在直线a上(直线a经过点P)点P在直线a外(直线a不经过点P)5.直线的性质:经过两点有且只有一条直线。
即__________________________________画图:6.平面上两条直线的位置关系:_________和_________7.线段的大小比较方法有:①测量法②叠合法③截取法(圆规)8.线段的性质:两点的所有连线中,线段最短。
初一数学 第一学期期末复习提纲(附答案)
初一数学第一学期期末复习(七册上)北京四中2009.12.28一. 知识网络:第一部分: 有理数有理数概念运算科有学理数数相倒绝比非运记的轴反对较负加减乘除乘算数分数数值大数法法法法方律法小类第二部分: 整式的加减列代数式单项式概念多项式整式的加减整式同类项加减运算第三部分: 一元一次方程等式、等式的性质方程、方程的解、估算方程的解一元一次方程一元一次方程的定义、一般式一元一次方程的解法利用方程解应用问题(注意应用题的类型)1近似数和有效数字第四部分: 图形的认识初步画一条线段等于已知线段(七册上P129) 作图: (尺规)*画一个角等于已知角余角和补角余角和补角的性质方位角角平面图形角的度量及分类角的比较与运算角平分线立体图形点、线、面、体从不同的方向看物体——三视图展开立体图形直线的性质直线、射线、线段线段的有关性质两点之间线段最短线段的中点比较大小几何图形二. 复习建议:1. 认真学习《数学课程标准》, 研究课本;制定出符合学生实际的复习计划和要求(包括具体的落实方案);2. 夯实基础:认真落实基础知识和基本能力(计算能力,审题能力,识图能力,分析能力等);3. 数学思想方法的渗透和培养:方程思想、数形结合、分类讨论、转化思想、函数思想等;4. 对几何图形的认识,渗透图形变换思想(平移、轴对称、旋转);几何语言文、图、式的互译;5. 注意培养学生应用数学的意识(阅读、归纳、应用的能力等)三.练习题:(一)填空题. 1. 12的相反数是__________, 它在数轴上的对应点到原点的距离是________. 72. 将149 500 000 保留三位有效数字为___________________.3. 大于 3.2 且小于1.9的整数是______________________.2x2y4. 单项式的系数是__________, 次数是__________ . 75. 2a2y n 1 与223ay是同类项, 则n = ________ . 36. 若x2y1+ (y +1)2 = 0, 则y x = ____________.7. 已知2a与2 a互为相反数, 则a = _______________. 28. 已知2.4682 = 6.091024, 则24.682 = ____________________.9. 已知关于x的方程ax + 5 = 2 3a与方程x = 10的解相同, 则a = _________.10. 已知数a , b , c 在数轴上的对应点如图所示,化简b + | a+b | | c| | b c | = __________ .11. 57.32 = ______________’ ______ "12. 2714’24" = ____________13. 1740’ 3 =______________.14. 计算: 180 375’ 4 + 93.1 5 = _________________.15. 互余两角的差是18, 其中较大角的补角是16. 一个角的补角和这个角的余角互为补角, 则这个角的一半是__________. ab2417. a,b,c,d为有理数,现规定一种运算:=ad bc,那么当=18时cd(1x)5x的值是.18. 有一个两位数, 个位数字与十位数字的和是9, 如果将个位数字与十位数字对调后所得新数比原数大9, 则原来的两位数是_____________.19. 用“”定义新运算: 对于任意的有理数a、b, 都有a b = b2 +1.例如: 7 4 = 42 +1 = 17. 那么5 3 = ________;当m为有理数时, 则m(m2) = ________.20. 观察下列等式:13 = 12, 13 + 23 = 32, 13 + 23 + 33 = 62, 13 + 23 + 33 + 43 = 102, ……想一想等式左边各项幂的底数与右边幂的底数有什么关系? 猜一猜有什么规律, 并把第n ( n为正整数) 个等式写出来: ____________________________.21. 在什么条件下, 下列等式成立(1) a b a b ___________________.(3) a b a b ___________________.22. 有理数a, b, c在数轴上对应的点如图:(2) a b a b __________________. (4) aa______________________. bb则a ba b acb cc a___________. acc ba c23. 在右边的日历中, 带阴影的方框里有四个数, 随着方框的移动,请你探究这四个数的关系. 设最小的一个数为a, 则这四个数之和为_________ (用含a 的代数式表示).324. 按如图所示的程序计算,若开始输入的x值为14,则第一次得到的结果为7,第2次得到的结果为10,……,请你探索第2009次得到的结果为___________.25. 定义一种对正整数n的“ F ” 运算:①当n为奇数时,结果为3n5;②当n为偶数时,结果为nn(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=26,则:kk2211……若n=449,则第449次“ F ” 运算的结果是________.26. 将正偶数按下表排成五列:第一列第二列第三列4122028 第四列 6 10 22 26 24 第五列8 第一行2 第二行16 14 18 30 第三行第四行32…………………………………………………………根据上面排列规律, 则2010应在第______行,第_________列.27. 在五环图案15米和10米, 那么最高的地方比最低的地方高( ) .(A) 10米(B) 25米(C) 35米(D) 5米2. 下列说法中, 正确的是( )(A) 零除以任何有理数都得零(B) 倒数等于它本身的有理数只有1(C) 绝对值等于它本身的有理数只有1 (D) 相反数等于它本身的有理数只有043. 下面结论中正确的是( )(A) 21比大73(B) 3112的倒数是(C)最小的负整数是 1(D) 0.5 > 2274. 下列各数中, 最小的数是( )23(A) ( 2 3)2 (B) 2(C) 32 (3)2 (D) (1) 4 3 25. 若 1 < x < 0时, 则x, x2, x3 的大小关系是( )(A) x < x2 < x3 (B) x < x3 < x2 (C) x3 < x < x2 (D) x2 < x3 < x6. 下列计算正确的是( )11 (A) 283(B) 1 4 411(C) 28 224(D) 42167. 如果数 a , b, 满足ab<0, a+b>0, 那么下列不等式正确的是( )(A) | a | > | b | (B) | a | < | b | (C) 当a>0, b<0时, | a | > | b |(D) 当a<0, b>0时, | a | > | b |8. 一根1m长的绳子, 第一次剪去一半, 第二次剪去剩下的一半, 如此剪下去, 第六次以后剩下的绳子的长度为( )1(A) m 231(B) m 251(C) m 261(D) m 2129. 9点30分这一时刻, 分针与时针的夹角是( )(A) 75°(B) 105°(C) 90°(D) 125°10. 下列说法正确的是( )(A) 近似数3.5和3.50精确度相同(B) 近似数0.0120有3个有效数字(C) 近似数7.05×104精确到百分位(D) 近似数3千和3000的有效数字都是311. 对方程(A)(C) x3x4 1.6的下列变形中, 正确的是( ) 0.50.3 (B) x3x416 53x3x4 1.6 5310x310x416 5310x4 1.6 3 (D) 2x312. 甲能在11天).(A) 10天(B) 12.1天(C) 9.9天(D) 9天13. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为x cm, 则可列方程( ).(A) x126x 2 (B) x113x 2(C) x126x 2 (D) x1(13x) 214. 已知:2若1022445533,…,22,332,442,552331515242488bb102符合前面式子的规律,则a b的值为()aa(A) 179 (B) 140 (C) 109 (D) 210515. 一件工作甲独做要a天完成, 乙独做要b天完成, 如果两人合作3天完成此工作的( )1111(A) 3 (a + b) (B) 3 (a b) (C) 3(D) 3ab ab16. 某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他( )(A) 不赚不赔(B) 赚9元(C) 赔18元(D) 赚18元17. 若一个角个角;……若一个角个角18. 如图, 射线OC, OD 将平角∠AOB三等分, OE平分∠AOC, OF平分∠BOD, 则∠EOF为( )F(A) 120(B) 150(C) 90(D) 6019. 甲从O点出发, 沿北偏西30方向走了50米到达A点, 乙也从O点出发, 沿南偏东35方向走了80米到达B点, 则∠AOB = ( )(A) 65 (B) 115 (C) 175(D) 18520. 如图,它们是一个物体的三视图,该物体的形状是( ).主视图左视图(A) (B) (C) (D)俯视图21. 桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()(A) (B) (C) (22. 右图是画有一条对角线的平行四边形纸片ABCD,用A围成一个无上下底面的三棱柱纸筒, 则所围成的三棱柱纸( )A(D)A(D)A(D)A(D)B(C)B(CB(C(C)(A) (B) (C)(D)6 此纸片可以筒可能是23. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()24. 如图所示的是由几个小立方块所搭成的几何体的俯视图,小正方形中的ABC...位置小立方块的个数,请画出相应几何体的主视图和左视图.(三)计算下列各题.①13.742586.3335②54214412 29③252775367 6376④133 12520.533484⑤32162584⑥123234111224 2⑦111 123214 3342(四)解下列方程.①2x3116x②5x8562x7③x x1x 222 5④3x1 13x14x172x1⑤0.2x0.50.030.02xx 50.50.03 2⑥. 32x1 2483x336x9⑦c (d + x) = ab (x c) d (c + d0)7 D3.42数字表示在该21(五)化简求值.1. 3a (a + 4b 1) + 3 (b 2).131 2. 先化简, 再求值a2b a2b3abc a2c4a2c3abc, 其中a = 1, b = 3, c = 1. 2323. 已知2x2 + x 5 = 0, 求代数式6x3 +7x2 13x +11的值.(六)列一元一次方程解下列应用题.1. 用化肥给田施肥, 每亩用3千克还差8.5千克, 每亩用2.5千克还剩1.5千克. 求有多少千克化肥?2. A, B两地的路程为360千米, 甲车从A地出发开往B地, 每小时行驶72千米, 甲车出发25分钟后, 乙车从B地出发开往A地, 每小时行驶48千米, 两车相遇后, 各车仍按原速度原方向继续行驶, 直到两车相距100千米停止. 问: 甲车从出发开始到现在共行驶了多少小时?3. 某商品的价格是商场按获利润25%计算出的, 后因库存积压和急需回收资金, 决定降价出售. 如果每件商品仍能获得10%的利润, 试问应按现售价的几折出售?4. 在社会实践活动中, 某校甲, 乙, 丙三位同学一同调查了高峰时段北京的二环路, 三环路, 四环路的车流量(每小时通过观察点的汽车辆数), 三位同学汇报高峰时段的车流量情况如下:甲同学说: “二环路车流量为每小时10 000辆”;乙同学说: “四环路比三环路车流量每小时多2 000辆”;丙同学说: “三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据它们所提供的信息, 求出高峰时段三环路, 四环路的车流量各是多少?5. 某车间加工A型和B型两种零件, 平均一个工人每小时能加工7个A型零件或3个B型零件. 而且3个A型与2个B型配套, 就可以包装进库房, 剩余不能配套的只能暂时存放起来. 如果B型零件单独存放, 对环境的要求远高于A型零件. 已知该车间原有工人69名.(1) 怎样分配工人工作才能保证生产出的产品及时包装运进库房?(2) 后来因为工作调动, 有4名工人调离了该车间. 那么你认为现在应该怎样分配工人工作最合适呢? 请通过计算说明你的依据.6. 一个两位数, 个位上的数字是十位上的数字的2倍, 先将这两位数的两个数字对调, 得到第二个两位数, 再将第二个两位数的十位数字加上1, 个位数字减去1, 得到的第三个两位数恰好是原两位数的2倍, 求原两位数.7. x表示一个2位数, y表示一个三位数, 若把x放在y的左边组成一个5位数记作M1, 把y放在x的左边组成一个5位数记作M2, 求证: M1 M2 是9的倍数88. (1) 据《北京日报》2000年5月16日报道: 北京市人均水资源占有量只有300立方米, 仅是全国人均占有量的, 世界人均占有量的方米? 世界人均水资源占有量是多少立方米?(2) 北京市一年漏掉的水, 相当于新建一个自来水厂. 据不完全统计, 全市至少有6105个水龙头, 2105个抽水马桶漏水. 如果一个关不紧的水龙头, 一个月能漏掉a立方米水; 一个漏水马桶, 一个月漏掉b立方米水. 那么一年造成的水流失量是多少立方米? (用含a, b的代数式表示);(3) 水源透支令人担忧, 节约用水迫在眉睫. 针对居民用水浪费现象, 北京市将制定居民用水标准, 规定三口之家楼房每月标准用水量, 超标部分加价收费.假设不超标部分每立方米水费1.3元, 超标部分每立方米水费2.9元. 某住楼房的三口之家每月用水12立方米, 交水费22元, 请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米.9.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,20XX年10月11日至20XX年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(七)解答题.1. 已知∠的2倍与∠β的3倍互补, 且∠比∠β小20, 求∠与∠β2. 作线段MN = 10 mm, 向延长MN至P, 使MP = 15 mm, 反向延长MN 至Q, 使MQ =中点, B为NP的中点, 求A, B之间的距离AMNBP 181. 问: 全国人均水资源占有量是多少立321MP. 若A为QM的2求BC的长AD = 11.7 cm. DF 3. 已知A, B, C 三点共线, 且线段AB = 17 cm. 点D为BC中点, 4. 已知: 如图, ∠ABC=∠ADC, DE是∠ADC的平分线, BF是∠ABC的平分线求证: ∠1 = ∠2证明: ∵DE是∠ADC的平分线( )∴∠1 = _________ ( )∵BF是∠ABC的平分线( )∴∠2 = _________ ( )又∵∠ABC = ∠ADC ( )∴∠1 = ∠2 ( )5. 如图所示, ∠AOC = ∠DOB = 90, ∠BOC与∠AOD 的度数之比为3 : 7, 求∠BOC, ∠AOD的度数9DA E B6. 若∠AOB = 170, ∠AOC = 70, ∠BOD = 60, 求∠COD的度数7. 如图, 已知O是直线AC上一点, OB是一条射线,BD1OD平分AOB, OE在BOC BOE=EOC,2 DOE=70°, 求EOC的度数.A O CEOC8. 请将下面的三阶幻方补全,使得处于同一横行、同一竖列、同一斜对角线上的3个数相加都相等.9. a为何值时,3是关于x的方程3|a|-2x=6x+3的解10. 方程x(八)通过阅读, 探索、研究问题的解法. 1. 阅读下列材料: ∵1111111, 1323352 33 a的解是自然数, 其中a 是非负整数. 试求代数式a2 2(a + 1) 的值. 3 111111111, …, . ,5572571719217191111133557171911111111111=12323525721719111111119= =1233557171919解答问题:在和式111中, 第五项为________ , 第n项为________ , 上述求和的想法是: 通过逆133557用________________ 法则, 将和式中各分数转化为两个实数之差, 使得除首末两项外的中间各项可以________________ , 从而达到求和的目的.2. (1) 阅读下面材料:点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时, 不妨设点A在原点, 如图甲, AB=OB=∣b∣=∣a b∣; 当A、B两点都不在原点时,10图乙图甲O (A) AB B①如图乙, 点A、B都在原点的右边, AB = OB OA = | b | | a | = b a = |a b |; ②如图丙, 点A、B都在原点的左边,AB = OB OA = | b | | a | = b (a) = | a b | ; ③如图丁, 点A、B在原点的两边AB = OA + OB = | a | + | b | = a + (b) = | a b |. 综上, 数轴上A、B两点之间的距离AB=∣a b∣.(2) 回答下列问题:①数轴上表示2和5的两点之间的距离是______ , 数轴上表示2和5的两点之间的距离是______ , 数轴上表示1和3的两点之间的距离是______ ;②数轴上表示x和1的两点分别是点A和B,则A、B之间的距离是______ , 如果AB=2, 那么x=________ ;③当代数式∣x +2∣+∣x 5∣取最小值时, 相应的x的取值范围是____________. ④当代数式x x2x5取最小值时, 相应的x的值是_________. ⑤当代数式x5x2取最大值时, 相应的x的取值范围是_________________.11图丁图丙BAO参考答案(若有质疑请发校友录上,以便及时更正)三、练习题:(一)填空题:1.127, 1272.1.50×1083.-3, -2, -1, 0, 14. 27, 35.46.-17.-28.609.10249.3710.b-a11.57°19′12″12.27.2413.5°53′20″14.57°17′12″15.126°16.22.5°17.318.4519.10, 26220.13+23+33+…n3=n(n1)221.(1)a、b同号或一项为0;(2)a、b且a b;(3)a、b为任意实数;(4)b≠0;22.原式=+a b b ca b c b c aa c(1) 1=-1-1+1-1-1=-31223.这四个数分别为:a+(a+1)+(a+7)+(a+8)=4a+1624.8第一次:7;第二次:10;第三次:5;第四次:8;第五次:4;︳第六次:7;… 7,10,5,8,4,︳7,10,5,8,4,︳…2009÷5=401 (4)25.14491352169152181…449,1352,169,152,1,8,︳1,8 …(449-3)÷2=22326.252,427.(二)1.C6.A11.D16.C19.D24.主视图左视图13 F①F②F①F②F①F②F①2.D 7.C 12.A 3.A 8.C 4.C 9.B 5.B 10.B 15.C 18.A 23.D 13.B 14.C 17.3,6,10,20.C (n1)(n2) 221.C 22.D(三)1.x abc d(13.7)(4235)86.335=-13.7+4.4-86.3+3.6 =-(13.6+86.3)+(4.4+3.6) =-100+8=-922.54214(4122)9 =5494( 29) 29=63.25(277)5(3667)37(6) =25(277)5(277)277(6) =277(2556) =27726 =70274.125342310.533(4)8 =122342(532) =12(234645) =10(235644)20 =361205.321625(84) =81615125(32)=50146.12311(24) 23412=12311(24)(24)(24)(24) 23412=12161822 127.11232231411342 =1 123 491 148 =11123 2 =1 16 2 =76(四)1.2x+3=11-6x解:8x=8x=12.5(x+8)-5=6(2x-7)解:5x+40-5=12x-427x=77X=113.x x 122x 25解:10x5x5202x 45x5162x7x11x117154.3x1 13x14x172x1解:132x1133x10132x133x1313230136x5136x 55.0.2x0.50.50.030.02xx 50.03 2 解:2x532xx53 5212x303020x15x75 8x15x75 23x75x75236.382(x1) 243x33(6x9) 解:2x x 124x 64x x18x125x13x1357.c(d x)ab(x c)d (c+d) (c d0)解:cd cx ab dx cd (c d)x abx abc d(五)1.3a (a + 4b 1) + 3 (b 2).=3a a4b +1 + 3b 6=.2a b 5162. 12a2b 32a2b3abc13a2c4a2c3abc = 12a2b(32a2b3abc a2c4a2c)3abc =132a2b2a2b3abc a2c4a2c3abc=2a2b3a2c将a1,b3,c1代入,原式=212(3)3(1)2 1=6+3=9答:代数式的值为9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、常见的几何体及其特点 长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),
正方体是特殊的长方体。 棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。 棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。 圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。 球:由一个面(曲面)围成的几何体 4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。 侧棱:相邻两个侧面的交线叫做侧棱。 n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。 5、正方体的平面展开图:11种 6、截一个正方体: (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
②、长方体、棱柱的截面与正方体的截面有相似之处. (2)用平面截圆柱体,可能出现以下的几种情况. (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究) (4)用平面去截球体,只能出现一种形状的截面——圆. (5)需要记住的要点: 几何体截面形状 正方体三角形、正方形、长方形、梯形、五边形、六边形 圆柱圆、长方形、(正方形)、…… 圆锥圆、三角形、…… 球圆 7、三视图 物体的三视图指主视图、俯视图、左视图。 主视图:从正面看到的图,叫做主视图。 左视图:从左面看到的图,叫做左视图。 俯视图:从上面看到的图,叫做俯视图。 第二章有理数及其运算 1、有理数的概念及分类 ①② 整数和分数统称为有理数。 注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作
分数. 2、数轴: 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、相反数: 只有符号不同的两个数叫做互为相反数,零的相反数是零。 注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.
②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。 4、绝对值: (1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
也可表示为: ; 绝对值的问题经常分类讨论; (2)绝对值的有关性质 ①对任意有理数a,都有|a|≥0; ②若|a|=0,则a=0; ③若|a|=|b|,则a=b或a=-b; ④若|a|=b(b>0),则a=±b; ⑤若|a|+|b|=0,则a=0且b=0; ⑥对任意有理数a,都有|a|=|-a|. 5、有理数大小的比较法则: 在数轴上表示的两个数,右边的数总比左边的数大(大数-小数﹥0,即右边的数-左边的数﹥0);
正数都大于0,负数都小于0,正数大于一切负数; 两个负数,绝对值大的反而小 . 6、倒数: 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。
倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为.
7、有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。 ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数同0相加,仍得这个数。 一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。
8、有理数减法法则: 减去一个数,等于加上这个数的相反数。 有理数的加减法混合运算的步骤: ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②可以利用加法则,加法交换律、结合律简化计算。 9、有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。 如果两个数互为倒数,则它们的乘积为1。(如:-2与、…等) 乘法的交换律、结合律、分配律在有理数运算中同样适用。 有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。 10、有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②除以一个数等于乘以这个数的倒数。 0除以任何非0的数都得0。0不可作为除数,否则无意义。 11、乘方的概念 (1)求几个相同因数的积的运算,叫做乘方,即 在中,a叫做底数,n叫做指数,叫做幂. (2)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0; (3)据规律底数的小数点移动一位,平方数的小数点移动二位. 注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
(4)乘方的运算性质: ①正数的任何次幂都是正数; ②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数; ④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任何次幂(除0次)都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1; ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 12、有理数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 运算律 加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 第三章整式的加减 1、代数式 字母可以表示任何数。 用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
规定:单独的一个数字或字母也是代数式。 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号; ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两
边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a; ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略; ⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米
2、单项式 由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。
(1)单项式中的数字因数叫做单项式的系数. (2)如果只是一个数字,系数是本身 (3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 (4)单独一个非零数的次数是零。 3、多项式 几个单项式的和叫做多项式。 在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。
多项式中,次数最高的项的次数,就是这个多项式的次数. 一般说几次几项式。
4、整式 单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。
5、同类项 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系数无关;与字母顺序无关.
3、合并同类项 把几个同类项合并成一项,叫做合并同类项。 合并同类项法则: (1)找同类项 (2)合并①各同类项的系数相加作为新的系数,②字母以及字母的指数不变 (3)不同种的同类项间,用“+”号连接 (4)没有同类项的项,连同前面的符号一起照抄 4、去括号法则 (1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。5、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。 6、代数式求值------------用数值代替字母,按照代数式指明的运算进行计算
化简,求值------------①先化为最简的代数式;②再用数值代替字母,按照代数式指明的运算进行计算
第四章基本平面图形 1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。 2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。 3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。 4、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。