2019-2020学年浙江省温州市八年级(下)期末数学试卷(含答案解析)

合集下载

八年级下期末考试数学试卷四套试卷(含答案)

八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。

2019-2020学年浙江省温州外国语学校八年级(下)期中数学试卷

2019-2020学年浙江省温州外国语学校八年级(下)期中数学试卷

2019-2020学年浙江省温州外国语学校八年级(下)期中数学试卷一、选择题:本大题共30个小题,每小题2分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)(2020春•鹿城区校级期中)在下列代数式中,属于二次根式的是()A.2a B.C.D.a2+12.(2分)(1998•宣武区)的化简结果为()A.25B.5C.﹣5D.﹣253.(2分)(2020春•鹿城区校级期中)电动伸缩门是依据平行四边形的()A.中心对称性B.轴对称性C.稳定性D.不稳定性4.(2分)(2020•武汉模拟)若有意义,则x的取值范围是()A.x>﹣1B.x≥0C.x≥﹣1D.任意实数5.(2分)(2020秋•南宁期末)下列方程是一元二次方程的是()A.2x+1=0B.x2﹣3x+1=0C.x2+y=1D.6.(2分)(2016秋•溧水区期末)方程x(x﹣1)=0的解是()A.0B.1C.0或1D.0或﹣17.(2分)(2020春•鹿城区校级期中)从十二边形的一个顶点出发,可引出对角线()条.A.9条B.10条C.11条D.12条8.(2分)(2020•东莞市校级一模)下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.9.(2分)(2020春•鹿城区校级期中)某篮球运动员在连续7场比赛中的得分依次为23,22,20,20,20,25,18(单位:分),则这组数据的中位数是()A.22.5分B.18分C.22分D.20分10.(2分)(2019秋•唐县期末)用配方法将方程x2﹣4x﹣1=0变形为(x﹣2)2=m,则m的值是()A.4B.5C.6D.711.(2分)(2019秋•肥城市期末)x=是下列哪个一元二次方程的根()A.3x2+2x﹣1=0B.2x2+4x﹣1=0C.﹣x2﹣2x+3=0D.3x2﹣2x﹣1=0 12.(2分)(2019秋•乐亭县期末)已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定13.(2分)(2020春•鹿城区校级期中)某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=1000014.(2分)(2020春•慈溪市期末)图中信息是小明和小华射箭的成绩,两人都射了10箭,则射箭成绩的方差较大的是()A.小明B.小华C.两人一样D.无法确定15.(2分)(2020•鼓楼区校级模拟)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.916.(2分)(2020春•鹿城区校级期中)如图,三角形ABC中,点D、E分别是AB、AC的中点,DE=4,则BC=()A.2B.4C.8D.1617.(2分)(2020春•鹿城区校级期中)如图,在矩形ABCD中,AO=5,CD=6,则AD =()A.5B.6C.7D.818.(2分)(2020春•鹿城区校级期中)如图,在正方形OABC中,点A的坐标是(﹣3,1),则C点的坐标是()A.(1,3)B.(2,3)C.(3,2)D.(3,1)19.(2分)(2020春•临泉县期末)已知平行四边形ABCD中,∠A+∠C=70°,则∠B的度数为()A.125°B.135°C.145°D.155°20.(2分)(2020春•鹿城区校级期中)如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分21.(2分)(2020春•青川县期末)如图,平行四边形ABCD中,AC和BD交于点O,若AC=8,BD=6,则边AD长的取值范围是()A.1<AD<7B.5<AD<11C.6<AD<8D.3<AD<4 22.(2分)(2020秋•越城区期中)用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角23.(2分)(2020春•庆云县期末)从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④24.(2分)(2020•香坊区模拟)在菱形ABCD中,对角线BD=4,∠BAD=120°,则菱形ABCD的周长是()A.15B.16C.18D.2025.(2分)(2015•郑州二模)如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.2C.D.26.(2分)(2020春•鹿城区校级期中)平行四边形的两条相邻的边长为a、b,且满足a2﹣ab=ab﹣b2,则此四边形一定是()A.矩形B.正方形C.菱形D.无法确定27.(2分)(2020春•鹿城区校级期中)一元二次方程2(x﹣2)2+7(x﹣2)+6=0的解为()A.x1=﹣1,x2=1B.x1=4,x2=C.x1=0,x2=D.无实数解28.(2分)(2020春•鹿城区校级期中)已知a=3﹣,b=2+,则代数式(a2﹣6a+9)(b2﹣4b+4)的值是()A.20B.16C.8D.429.(2分)(2020春•鹿城区校级期中)有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为()A.25B.30C.35D.4030.(2分)(2020春•鹿城区校级期中)如图,在菱形ABCD中,AB=2,E,F分别是AB,BC的中点,将△CDF沿着DF折叠得到△DFC',若C'恰好落在EF上,则菱形ABCD的面积为()A.2B.C.D.2二、填空题(每题2分,满分38分,将答案填在答题纸上)31.(2分)(2020春•鹿城区校级期中)将二次根式化为最简二次根式.32.(2分)(2020春•临泉县期末)计算的结果为.33.(2分)(2020•河北模拟)计算×﹣的结果是.34.(2分)(2020春•鹿城区校级期中)若x=﹣1,则的值为.35.(2分)(2011•南宁)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.36.(2分)(2020春•鹿城区校级期中)某学生数学学科课堂表现为80分,平时作业为90分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是分.37.(2分)(2020春•鹿城区校级期中)如图,在宽为4、长为6的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15,设铺设的石子路的宽为x,依题意可列方程.38.(2分)(2020春•鹿城区校级期中)如图,河坝横断面迎水坡AB的坡比是1:,坝高BC=2m,则坡面AB的长度是m.39.(2分)(2020春•柯桥区期中)如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1S2.40.(2分)(2020•武汉模拟)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为.41.(2分)(2020春•鹿城区校级期中)代数式2x2﹣4x+1的最小值为.42.(2分)(2020•武汉模拟)如果关于x的一元二次方程mx2+4x﹣1=0没有实数根,那么m的取值范围是.43.(2分)(2020春•鹿城区校级期中)已知一组数据x1,x2,…x n的方差是2,则另一组数据2x1﹣5,2x2﹣5,…2x n﹣5的方差是.44.(2分)(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB =7,BE=5,则MN=.45.(2分)(2020春•曲阜市期末)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.46.(2分)(2020春•柯桥区期中)如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B落在点M处;将△CEF沿EF 折叠,点C落在点N处.当AB的长度为时,点M与点N能重合时.47.(2分)(2020•凉山州一模)已知m、n是关于x的一元二次方程x2+px+q=0的两个不相等的实数根,且m2+mn+n2=3,则q的取值范围是.48.(2分)(2020春•鹿城区校级期中)如图,将一个长方形ABCD分成4个长方形,其中②与③的大小形状都相同,已知大长方形ABCD的边BC=5,则①与④两个小长方形的周长之和为.49.(2分)(2020春•鹿城区校级期中)学习新知:如图1、图2,P是矩形ABCD所在平面内任意一点,则有以下重要结论:AP2+CP2=BP2+DP2.该结论的证明不难,同学们通过勾股定理即可证明.应用新知:如图3,在△ABC中,CA=4,CB=6,D是△ABC内一点,且CD=2,∠ADB=90°,则AB的最小值为.2019-2020学年浙江省温州外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共30个小题,每小题2分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A.2a是整式,不符合题意;B.由a2+1>0知是二次根式,符合题意;C.是整式,不符合题意;D.a2+1是整式,不符合题意;故选:B.2.【解答】解:=5.故选:B.3.【解答】解:平行四边形具有不稳定性,故选:D.4.【解答】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.5.【解答】解:A、2x+1=0是一元一次方程,不符合题意;B、x2﹣3x+1=0是一元二次方程,符合题意;C、x2+y=1是二元二次方程,不符合题意;D、=1是分式方程,不符合题意.故选:B.6.【解答】解:x=0或x﹣1=0,所以x1=0,x2=1.故选:C.7.【解答】解:12﹣3=9,十二边形从一个顶点出发可引出9条对角线.故选:A.8.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.9.【解答】解:将这组数据从小到大的顺序排列为:18,20,20,20,22,23,25,处于中间位置的那个数是20,则中位数是20分.故选:D.10.【解答】解:x2﹣4x﹣1=0,移项得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,所以m=5.故选:B.11.【解答】解:A、3x2+2x﹣1=0中,x=,不合题意;B、2x2+4x﹣1=0中,x=,不合题意;C、﹣x2﹣2x+3=0中,x=,不合题意;D、3x2﹣2x﹣1=0中,x=,符合题意;故选:D.12.【解答】解:∵a===2﹣,∴a=b.故选:B.13.【解答】解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.14.【解答】解:根据图中的信息可知,小华的成绩波动性大,故射箭成绩的方差较大的是小华.故选:B.15.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.16.【解答】解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=8,故选:C.17.【解答】解:∵四边形ABCD是矩形,AO=5,∴∠ADC=90°,AC=2AO=10,在Rt△ADC中,由勾股定理得:AD===8,故选:D.18.【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,则∠AEO=∠ODC=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),故选:A.19.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∵∠A+∠C=70°,∴∠A=∠C=35°,∴∠B=180°﹣∠A=145°.故选:C.20.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.21.【解答】解:∵四边形ABCD是平行四边形,∴AO=AC,DO=BD,∵AC=8,BD=6,∴AO=4,DO=3,∴4﹣3<AD<4+3,解得:1<AD<7,故选:A.22.【解答】解:用反证法证明“一个三角形中不能有两个角是直角”,应先假设这个三角形中有两个角是直角.故选:A.23.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:D.24.【解答】解:如图,连接AC、BD,在菱形ABCD中,AC⊥BD,OB=BD=×4=2,∵∠BAD=120°,∴∠BAO=60°,在Rt△AOB中,AB=OB÷=2÷=4,所以,菱形ABCD的周长=4×4=16.故选:B.25.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5cm,==×6×8=24,∴S菱形ABCD∵S=BC×AE,菱形ABCD∴BC×AE=24,∴AE==,故选:D.26.【解答】解:由a2﹣ab=ab﹣b2,得(a﹣b)2=0,则a=b.根据邻边相等的平行四边形是菱形得到:此四边形一定是菱形.故选:C.27.【解答】解:设x﹣2=y,则原方程化为2y2+7y+6=0,∵△=72﹣4×2×6=1>0,解得y1=﹣2,y2=﹣,∴x﹣2=﹣2或x﹣2=﹣,∴x1=0,x2=原方程无实数根,故选:C.28.【解答】解:(a2﹣6a+9)(b2﹣4b+4)=(a﹣3)2(b﹣2)2=[(a﹣3)(b﹣2)]2当a=3﹣,b=2+时,原式=[(3﹣﹣3)(2+﹣2)]2=(﹣2)2=4.故选:D.29.【解答】解:∵11个正整数,平均数是10,∴和为110,∵中位数是9,众数只有一个8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35.故选:C.30.【解答】解:如图,连接AC,BD交于点O,延长FE交DA的延长线于H.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=2,∴∠ADF=∠DFC,∵∠DFC=∠DFE,∴∠HDF=∠HFD,∴HD=HF,∵∠H=∠EFB,AE=EB,∠AEH=∠BEF,∴△EAH≌△EBF(AAS),∴AH=BF=CF=1,HE=EF,∴HF=HD=3,∴EF=,∵BE=EA,BF=FC,∴AC=2EF=3,∴OA=OC=,∴OB===,∴BD=,∴S=•BD•AC=×3×=,菱形ABCD故选:B.二、填空题(每题2分,满分38分,将答案填在答题纸上)31.【解答】解:,故答案为:2.32.【解答】解:===.故答案为:.33.【解答】解:原式=﹣2=5﹣2=3.故答案为3.34.【解答】解:把x=﹣1代入得===.故答案为:.35.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).36.【解答】解:根据题意得:80×30%+90×30%+90×40%=87(分),答:该学生数学学科总评成绩是87分;故答案为:87.37.【解答】解:设铺设的石子路的宽应为x米,由题意得:(4﹣x)(6﹣x)=15,故答案为:(4﹣x)(6﹣x)=15.38.【解答】解:∵AB的坡比是1:,即BC:AC=1:,∵坝高BC=2m,∴AC=2m,∴AB==2(m).答:坡面AB的长度是2m.故答案为:2.39.【解答】解:S1与S2的大小关系为相等,理由如下:∵四边形ABCD和四边形ACEF都是平行四边形,∴平行四边形ABCD的面积=2倍的△ABC的面积,平行四边形ACEF=2倍的△ADC 的面积,=S△ADC,∵S△ABC∴S1=S2,故答案为:=.40.【解答】解:设进馆人次的月平均增长率为x,则由题意得:200+200(1+x)+200(1+x)2=872,故答案为:200+200(1+x)+200(1+x)2=872.41.【解答】解:2x2﹣4x+1=2(x2﹣2x+1)﹣2+1=2(x﹣1)2﹣1,∵2(x﹣1)2≥0,∴2x2﹣4x+1的最小值是﹣1,故答案为:﹣1.42.【解答】解:根据题意得m≠0且△=42﹣4m×(﹣1)<0,解得m<﹣4.故答案为:m<﹣4.43.【解答】解:∵数据x1,x2,…x n的方差是2,∴数据2x1﹣5,2x2﹣5,…2x n﹣5的方差是22×2=8;故答案为:8.44.【解答】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴=13.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.45.【解答】解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.46.【解答】解:如图,设AB=CD=2m.由题意:BE=EM=EC=2,CF=DF=FM=m,AN=AM=2m,∴AF=3m,∵四边形ABCD是矩形,∴AD=BC=4,在Rt△ADF中,∵AD2+DF2=AF2,∴42+m2=(3m)2,解得m=或﹣(舍弃),∴AB=2m=2,故答案为2.47.【解答】解:∵m、n是关于x的一元二次方程x2+px+q=0的两个不相等的实数根,∴m+n=﹣p,mn=q,∵m2+mn+n2=3,∴(m+n)2﹣mn=3,则(﹣p)2﹣q=3,即p2﹣q=3,∴p2=q+3,又△=p2﹣4q>0,∴q+3﹣4q>0,解得q<1,又p2=q+3≥0,∴q≥﹣3,故答案为:﹣3≤q<1.48.【解答】解:设②和③宽为x,长为y,根据题意得,①的周长为:2x+2(5﹣y),④的周长为:2y+2(5﹣x),所以,①与④两个小长方形的周长之和为:2x+2(5﹣y)+2y+2(5﹣x)=2x+10﹣2y+2y+10﹣2x=20.故答案为:20.49.【解答】解:以AD、BD为边作矩形ADBE,连接CE、DE,如图所示:则AB=DE,由题意得:CD2+CE2=CA2+CB2,即22+CE2=42+62,解得:CE=4,当C、D、E三点共线时,DE最小,∴AB的最小值=DE的最小值=CE﹣CD=4﹣2;故答案为:4﹣2.。

2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷 解析版

2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷  解析版

2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷一.选择题(共10小题)1.以下四个商标中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.下列等式中,成立的是()A.()2=5B.=﹣3C.4﹣3=1D.+=3.若一个多边形的内角和等于1800度,则这个多边形是()A.十二边形B.十边形C.九边形D.八边形4.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=2606.在四边形ABCD中,AB∥CD,再添加下列其中一个条件后,四边形ABCD不一定是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C7.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y18.如图,DE、NM分别是△ABC、△ADE的中位线,NM的延长线交BC于点F,则S△DMN:S四边形MFCE等于()A.1:5B.1:4C.2:5D.2:79.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是()A.a2B.a2C.a2D.a210.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线12,上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)二.填空题(共6小题)11.代数式有意义时,x应满足的条件是.12.已知一组数据5,4,x,3,9的平均数为5,则x的值是.13.已知x=1是方程x2+mx﹣3=0的一个根,则m的值为.14.已知反比例函数y=,是当y<2时,x的取值范围是.15.如图,在平面直角坐标系中,点O为坐标原点,等边△ABO的边OB和菱形CDEO的边EO均在x轴上,点C在AO上,S△ABD=4,反比例函数y=(k>0)的图象经过A点,则k的值为.16.在矩形ABCD中,AB=2,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=.(2)延长AF交直线CD于点P,若PD=CD,则AD的值为.三.解答题(共8小题)17.二次根式计算(1)2+(﹣).(2)(1﹣)2+÷.18.解下列一元二次方程(1)x2﹣25=0.(2)x2﹣4x﹣5=0.19.如图,在5×5的方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.请回答下列问题:(1)求AC的长;(2)在图中找一格点D,使得A,B,C,D四点构成的四边形是平行四边形.20.如图,在矩形ABCD中,过对角线BD的中点O作垂线EF,与边AD,BC分别交于点E,F,连接BE,DF.(1)求证:四边形EBFD是菱形;(2)若AD=8,AB=4,求四边形EBFD的周长.21.在推进湖州市新冠疫情防控活动中,某社区为了了解居民掌握新冠防控知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.179277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩达到优秀的人数.(3)请选择2个合适的统计量,分析A,B哪个小区的居民对新冠防控知识掌握得更好.22.如图,一轮船以40km/h的速度由西向东航行,在途中点C处接到台风警报,台风中心点B正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km.(假定轮船不改变航向).(1)如果这艘轮船不改变航向,经过11小时,轮船与台风中心相距多远?此时,轮船是否受到台风影响?(2)如果这艘轮船受到台风影响,请求出轮船受到台风影响一共经历了多少小时?23.已知,在等腰直角三角形ABC中,BA=AC,∠BAC=90°,点D为BC边上一动点,点E,F分别为AB、BC边上的动点,且BE=AF.(1)如图1,当点D为BC中点时,试说明DE和DF的关系,并说明理由;(2)在(1)的条件下,如图2,当点E为AB中点时,判断四边形AEDF的形状,并说明理由;(3)如图3,过点A作BC的平行线,交DF的延长线于点G,且满足AG=BC=4.若D点从B点出发,以1个单位长度每秒的速度向终点C运动,连结AD.设点D的运动时间为t秒(0≤t≤4),在点D的运动过程中,图中能否出现全等三角形?若能,请直接写出整数t的值和对应全等三角形的对数;若不能,请说明理由.24.已知反比例函数y1=(m>0,x>0)和y2=﹣(x<0),过点P(0,1)作x轴的平行线1与函数y1,y2的图象相交于点B,C.(1)如图1,若m=6时,求点B,C的坐标;(2)如图2,一次函数y3=kx﹣交l于点D.①若k=5,B、C、D三点恰好满足其中一点为另外两点连线的中点,求m的值;②过点B作y轴的平行线与函数y3的图象相交于点E.当m值取不大于的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.以下四个商标中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、不是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:D.2.下列等式中,成立的是()A.()2=5B.=﹣3C.4﹣3=1D.+=【分析】根据二次根式的性质对A、B进行判断;利用二次根式的加减法对C、D进行判断.【解答】解:A、原式=5,所以A选项的计算正确;B、原式=3,所以B选项的计算错误;C、原式=,所以C选项的计算错误;D、与不能合并,所以D选项的计算错误.故选:A.3.若一个多边形的内角和等于1800度,则这个多边形是()A.十二边形B.十边形C.九边形D.八边形【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180=1800,解得n=12,所以这个多边形是十二边形.故选:A.4.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵2.50>1.56>0.60>0.40,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.5.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=260【分析】根据该企业元月份及经过两个月降低后的生产总值,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:300(1﹣x)2=260.故选:D.6.在四边形ABCD中,AB∥CD,再添加下列其中一个条件后,四边形ABCD不一定是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C【分析】根据平行四边形的判定定理判断即可.【解答】解:A、∵AB∥CD,若AB=CD,则四边形ABCD是平行四边形,故A选项不符合题意;B、∵AB∥CD,若AD=BC,则四边形ABCD可能是等腰梯形,不一定是平行四边形,故B选项符合题意;C、∵AB∥CD,若AD∥BC,则四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,若∠A=∠C,则四边形ABCD是平行四边形,故D选项不符合题意;故选:B.7.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=﹣=1;当x=﹣2时,y2=﹣=;当x=1时,y3=﹣=﹣3,所以y3<y1<y2.故选:B.8.如图,DE、NM分别是△ABC、△ADE的中位线,NM的延长线交BC于点F,则S△DMN:S四边形MFCE等于()A.1:5B.1:4C.2:5D.2:7【分析】过N作NH⊥DE于H,过A作AP⊥BC于P交DE于G,得到NM∥AG,根据三角形中位线定理得到DE∥BC,得到AG=PG,求得NM=AG=PG,根据三角形和平行四边形的面积即可得到结论.【解答】解:过N作NH⊥DE于H,过A作AP⊥BC于P交DE于G,∴NM∥AG,∵DE是△ABC的中位线,∴DE∥BC,∴AG=PG,∵M是DE的中点,∴DM=ME=DE,∵NM∥AG,AN=DN,∴==,∴NM=AG=PG,∵DM=ME,∴S△DMN:S四边形MFCE===1:4.故选:B.9.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是()A.a2B.a2C.a2D.a2【分析】由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=a,可证△BEF是等边三角形,△GDH是等边三角形,四边形AEPG是平行四边形,可得AG=EP=a,即可求DG的长,由面积和差关系可求解.【解答】解:如图,连接AC,∵四边形ABCD是菱形,∠ABC=60°,AE=2BE,∴AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,∴AC=AB=BC=a,BD=a,∵将菱形ABCD沿EF,GH折叠,∴EF⊥BP,∠BEF=∠PEF,BE=EP=a,∴EF∥AC,∴,∴BE=BF,∴△BEF是等边三角形,∴∠BEF=60°=∠PEF,∴∠BEP=∠BAD=120°,∴EH∥AD,同理可得:△GDH是等边三角形,GP∥AB,∴四边形AEPG是平行四边形,∴AG=EP=a,∴DG=a,∴六边形AEFCHG面积=S菱形ABCD﹣S△BEF﹣S△GDH=•a•a﹣×(a)2﹣×(a)2=a2,故选:C.10.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线12,上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°,∴l1与12所夹锐角为45°,12与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.二.填空题(共6小题)11.代数式有意义时,x应满足的条件是x≥﹣8.【分析】根据二次根式的被开方数是非负数得到x+8≥0.【解答】解:由题意,得x+8≥0,解得x≥﹣8.故答案是:x≥﹣8.12.已知一组数据5,4,x,3,9的平均数为5,则x的值是4.【分析】根据算术平均数的定义先列出算式,再进行求解即可.【解答】解:∵5,4,x,3,9的平均数为5,∴(5+4+x+3+9)÷5=5,解得:x=4,则x的值是4;故答案为:4.13.已知x=1是方程x2+mx﹣3=0的一个根,则m的值为2.【分析】将x=1,代入方程x2+mx﹣3=0得到有关m的方程,求出m的值即可.【解答】解:∵x=1是方程x2+mx﹣3=0的一个根,∴将x=1,代入方程x2+mx﹣3=0得:1+m﹣3=0,∴m=2,故答案为:2.14.已知反比例函数y=,是当y<2时,x的取值范围是x>3或x<0.【分析】根据题目中的函数解析式和反比例函数的性质,可以得到当y<2时,x的取值范围.【解答】解:∵反比例函数y=,∴当y<2时,x>3或x<0,故答案为:x>3或x<0.15.如图,在平面直角坐标系中,点O为坐标原点,等边△ABO的边OB和菱形CDEO的边EO均在x轴上,点C在AO上,S△ABD=4,反比例函数y=(k>0)的图象经过A点,则k的值为4.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠ABO=60°,得到OD∥AB,求得S△BDO=S△BOD,推出S△AOB=S△ABD=4,过A作AH⊥OB于H,由等边三角形的性质得到OH=BH,求得S△OAH=2,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OA,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠ABO=60°,∴OD∥AB,∴S△ADO=S△BOD,∵S四边形ABOD=S△BDO+S△ABD=S△ADO+S△AOB,∴S△AOB=S△ABD=4,过A作AH⊥OB于H,∴OH=BH,∴S△OAH=2,∵反比例函数y=(x>0)的图象经过点B,∴k的值为4,故答案为:4.16.在矩形ABCD中,AB=2,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=4.(2)延长AF交直线CD于点P,若PD=CD,则AD的值为2或2.【分析】(1)由矩形的性质得出AD∥BC,AD=BC,由折叠的性质得出∠BAE=∠F AE,由平行线的性质得出∠F AE=∠BEA,推出∠BAE=∠BEA,得出AB=BE,即可得出结果;(2)①当点F在矩形ABCD内时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE =90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出FP=CP,由PD=CD,可得CP=FP=PD=1,AP=3,由勾股定理即可求出AD;②当点F在矩形ABCD外时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE=90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出CP=PF,由PD=CD,可得PD =1,CP=3=PF,由勾股定理得出AP2﹣PD2=AD2,即(AF+PF)2﹣12=AD2,即可求出AD.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,由折叠的性质可知,∠BAE=∠F AE,如图1所示:∵AD∥BC,∴∠F AE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∵E是BC的中点,∴BC=2AB=4,∴AD=4,故答案为:4;(2)①当点F在矩形ABCD内时,连接EP,如图2所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴FP=CP,∵PD=CD,∴CP=FP=PD=1,AP=AF+FP=1+2=3,∴AD===2;②当点F在矩形ABCD外时,连接EP,如图3所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF=3,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴CP=PF,∵PD=CD,∴PD=1,CP=3=PF,∴AP2﹣PD2=AD2,即:(AF+PF)2﹣12=AD2,(3+2)2﹣1=AD2,解得:AD1=2,AD2=﹣2(不合题意舍去),综上所述,AD=2或2,故答案为:2或2.三.解答题(共8小题)17.二次根式计算(1)2+(﹣).(2)(1﹣)2+÷.【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用乘法公式以及二次根式的混合运算法则计算得出答案.【解答】解:(1)原式=2+﹣3=﹣;(2)原式=1+2﹣2+2=3.18.解下列一元二次方程(1)x2﹣25=0.(2)x2﹣4x﹣5=0.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣25=0,∴x2=25,则x=±5;(2)∵x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x=5或x=﹣1.19.如图,在5×5的方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.请回答下列问题:(1)求AC的长;(2)在图中找一格点D,使得A,B,C,D四点构成的四边形是平行四边形.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.【解答】解:(1)AC==.(2)如图,四边形ABCD即为所求.20.如图,在矩形ABCD中,过对角线BD的中点O作垂线EF,与边AD,BC分别交于点E,F,连接BE,DF.(1)求证:四边形EBFD是菱形;(2)若AD=8,AB=4,求四边形EBFD的周长.【分析】(1)首先判定平行四边形,然后根据对角线互相垂直的平行四边形是菱形进行判定即可;(2)由EF垂直平分BD,得到EB=ED,由AD﹣ED=AE,在直角三角形ABE中,设AE=x,表示出BE,再由AB的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为AE的长.则DE的长也可求出,进而可求出四边形EBFD的周长.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EDO=∠OBF,∵O是BD中点,∴BO=DO,∵∠EOD=∠BOF,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴四边形EBFD是平行四边形,又∵EF⊥BD,∴四边形EBFD是菱形;(2)∵四边形EBFD是菱形,∴ED=EB,设AE=x,则ED=EB=8﹣x,在Rt△ABE中,BE2﹣AB2=AE2,即(8﹣x)2=x2+42,∴x=3,∴AE=3.∴DE=5,∴四边形EBFD的周长=4×5=20.21.在推进湖州市新冠疫情防控活动中,某社区为了了解居民掌握新冠防控知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1757940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩达到优秀的人数.(3)请选择2个合适的统计量,分析A,B哪个小区的居民对新冠防控知识掌握得更好.【分析】(1)根据中位数的求法,分别求出A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数;、(2)A小区抽查的50名居民成绩的优秀率,于是估计总体的优秀率,进而求出总体的优秀人数;(3)从中位数、众数两个方面进行分析解答.【解答】解:(1)A小区从左往右第四组16位居民成绩,从小到大排列后处在第8、9位的两个数的平均数是=80.5,将A小区50名居民成绩从小到大排列后,处在第25、26位的两个数的都是75,因此中位数是75;答:A小区从左往右第四组居民成绩的中位数是80.5,A小区50名居民成绩的中位数是75;(2)500×=200(人),答:A小区500名居民成绩达到优秀的人数为200人(3)从中位数上看,A小区的中位数是75,B小区的中位数是77,B小区的成绩较好;从众数上看,A小区的众数是79,而B小区的众数;是76.A小区的成绩较好.22.如图,一轮船以40km/h的速度由西向东航行,在途中点C处接到台风警报,台风中心点B正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km.(假定轮船不改变航向).(1)如果这艘轮船不改变航向,经过11小时,轮船与台风中心相距多远?此时,轮船是否受到台风影响?(2)如果这艘轮船受到台风影响,请求出轮船受到台风影响一共经历了多少小时?【分析】(1)直接利用勾股定理得出AC的长,进而利用勾股定理求出轮船与台风中心距离;(2)利用勾股定理结合一元二次方程解法得出轮船受到台风影响时间.【解答】解:(1)∵CB=500km,AB=300km,∴AC==400(km),=40(km),∵40<200,∴此时,轮船受到台风影响;(2)由题意得:(400﹣40t)2+(300﹣20t)2=2002,解得:t1=7,t2=15,轮船受到台风影响时间:15﹣7=8(小时),答:轮船受到台风影响一共8小时.23.已知,在等腰直角三角形ABC中,BA=AC,∠BAC=90°,点D为BC边上一动点,点E,F分别为AB、BC边上的动点,且BE=AF.(1)如图1,当点D为BC中点时,试说明DE和DF的关系,并说明理由;(2)在(1)的条件下,如图2,当点E为AB中点时,判断四边形AEDF的形状,并说明理由;(3)如图3,过点A作BC的平行线,交DF的延长线于点G,且满足AG=BC=4.若D点从B点出发,以1个单位长度每秒的速度向终点C运动,连结AD.设点D的运动时间为t秒(0≤t≤4),在点D的运动过程中,图中能否出现全等三角形?若能,请直接写出整数t的值和对应全等三角形的对数;若不能,请说明理由.【分析】(1)连接AD,证明△BDE≌△ADF,得到DE=DF,∠BDE=∠ADF,求出∠EDF=90°,证明结论;(2)根据等腰三角形的性质得到DE⊥AB,根据正方形的判定定理证明;(3)分t=0、t=2、t=4三种情况,根据全等三角形的判定定理解答即可.【解答】解:(1)DE=DF,DE⊥DF,理由如下:如图1,连接AD,∵△ABC为等腰直角三角形,点D为BC中点,∴AD⊥BC,AD=DB,∠B=∠BAD=∠DAC=∠C=45°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF,∵∠ADB=90°,∴∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,∴DE⊥DF,综上所述,DE=DF,DE⊥DF;(2)四边形AEDF为正方形,理由如下:∵DA=DB,点E为AB中点,∴DE⊥AB,∵DE⊥AB,∠BAC=90°,DE⊥DF,∴四边形AEDF为矩形,∵DE=DF,∴四边形AEDF为正方形;(3)当t=0时,△CBF≌△AGF,共1对,当t=2时,△ADE≌△CDF,△BED≌△AFD,△ABD≌△ACD,共3对,当t=4时,△AGC≌△CBA,共1对.24.已知反比例函数y1=(m>0,x>0)和y2=﹣(x<0),过点P(0,1)作x轴的平行线1与函数y1,y2的图象相交于点B,C.(1)如图1,若m=6时,求点B,C的坐标;(2)如图2,一次函数y3=kx﹣交l于点D.①若k=5,B、C、D三点恰好满足其中一点为另外两点连线的中点,求m的值;②过点B作y轴的平行线与函数y3的图象相交于点E.当m值取不大于的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.【分析】(1)将y=1代入y1=和y2=﹣=,即可求解;(2)①分点B是CD的中点、点D为BC中点两种情况,利用中点公式即可求解;②点B(m,1),则点E(m,mk﹣m),则BC=,BE=|mk﹣m﹣1|,d=BC+BE,即可求解.【解答】解:(1)∵m=6,将y=1代入y1==1,解得:x=6,故点B(6,1),将y=1代入y2=﹣==1,解得:x=﹣3,故点C(﹣3,1);(2)①当y=1时,点B、C的坐标分别为:(m,1)、(﹣m,1),当k=5时,y3=kx﹣=5x﹣=1,解得:x=,故点D(,1),当点B是CD的中点时,由中点公式得:=+2m,解得:m=;当点D为BC中点时,同理:m﹣m=2×,解得:m=;综上,m=或;②点B(m,1),则点E(m,mk﹣m),则BC=,BE=|mk﹣m﹣1|,d=BC+BE=+mk﹣m﹣1=(k+1)m﹣1,当k=﹣1时,d=﹣1<0,舍去;d=BC+BE=﹣mk+m+1=(2﹣k)m+1,∵BC+BE为定值,故k=2,此时d=1,故此时k的值为2,定值d为1.。

2019-2020学年浙江省温州市瑞安市六校联盟八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市六校联盟八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市六校联盟八年级第二学期期中数学试卷一、选择题1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△FA'B'中,FB'2=FA'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).。

2022-2023学年浙江省温州市八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年浙江省温州市八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年浙江省温州市八年级(上)期末数学试卷1. 下列运动图标中,属于轴对称图形的是( )A. B. C. D.2. 两根木棒的长度分别为5cm ,8cm ,取第三根木棒,使它们首尾顺次相接组成一个三角形,则第三根木棒的长度可以是( )A. 2cmB. 3cmC. 6cmD. 15cm3. 函数中,自变量x 的取值范围是( )A. B. C. D.4. 若,则下列不等式成立的是( )A.B. C. D.5. 下列命题属于假命题的是( )A. 三个角对应相等的两个三角形全等 B. 三边对应相等的两个三角形全等C. 全等三角形的对应边相等D. 全等三角形的面积相等6. 如图是某纸伞截面示意图,伞柄AP 平分两条伞骨所成的角若支杆DF 需要更换,则所换长度应与哪一段长度相等( )A. BEB. AEC. DED. DP7. 如图是画在方格纸上的温州部分旅游景点简图,建立直角坐标系后,狮子岩、永嘉书院与埭头古村的坐标分别是,,,下列地点中离原点最近的是( )A. 狮子岩B. 龙瀑仙洞C. 埭头古村D. 永嘉书院8. 如图,小亮进行以下操作:以点A 为圆心,适当长为半径作圆弧分别交AB ,AC 于点D ,E ;分别以点D ,E 为圆心,大于长为半径作圆弧,两条圆弧交于内一点F ,作射线若,,则等于( )A. B.C. D.9. 已知点,在一次函数的图象上,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图,大正方形ABCD 由四个全等的直角三角形和一个小正方形拼接而成.点E 为小正方形的顶点,延长CE 交AD 于点F ,连结BF 交小正方形的一边于点G ,若为等腰三角形,,则小正方形的面积为( )A. 15B. 16C. 20D. 2511. “a 的3倍与2的差小于9”用不等式表示为______ .12. 点向右平移1个单位后所得点的坐标是______ .13. 一张小凳子的结构如图所示,,,则______14. 三角形三个内角度数之比是1﹕2﹕,则此三角形是______ 三角形.15. 已知一次函数,当时,x 的最大值为______ .16. 某种气体的体积与气体的温度对应值如表,若要使气体的体积至少为106升,则气体的温度不低于______ (01)23…10……100…103…17. 如图,在等腰三角形ABC 中,AD 是底边BC 上的高线,于点E ,交AD 于点F ,若,,则BD 的长为______ .18. 如图1,小明将一张长方形纸片对折,使长方形两边重合,折痕为EF,铺开后沿BC 折叠,使点A与EF上的点D重合.如图2,再将该长方形纸片进行折叠,折痕分别为HG,KL,使长方形的两边均与EF重合;铺开后沿BP折叠,使点A与KL上的点Q重合.分别连结图1中的AD与图2中的AQ,则的值为______ .19. 解一元一次不等式组,并把解表示在数轴上.20. 如图,是等边三角形,将BC向两端延长至点D,E,使,连结AD,AE,求证:21. 在直角坐标系中,我们把横坐标、纵坐标均为整数的点称为整点.如图,直线AB分别与x轴、y轴交于点,请在所给的网格区域含边界作图.画一个等腰三角形ABC,且点C为第一象限内的整点,并写出点C的坐标.画一个,使与重叠部分的面积是面积的一半,且点D为整点,并写出点D的坐标.22. 探究通过维修路段的最短时长.素材1:如图1,某路段段需要维修,临时变成双向交替通行,故在A,D处各设置红绿灯指导交通仅设置红灯与绿灯素材2:甲车先由通行,乙车再由通行,甲车经过AB,BC,CD段的时间分别为10s,10s,8s,它的路程与时间的关系如图2所示;两车经过BC段的速度相等,乙车经过AB段的速度是素材3:红绿灯1,2每114秒一个循环,每个循环内红灯、绿灯的时长如图3,且每次双向红灯时,已经进入AD段的车辆都能及时通过该路段.[任务求段的总路程和甲车经过BC段的速度.[任务在图4中补全乙车通过维修路段时行驶的路程与时间之间的函数图象. [任务丙车沿NM方向行驶,经DA段的车速与乙车经过时的速度相同,在DN段等红灯的车辆开始行驶后速度为,等红灯时车流长度每秒增加2m,问丙车在DN段从开始等待至离开点A至少需要几秒钟?23. 如图,将一块含角的直角三角板AOB放置在直角坐标系中,其直角顶点O与原点重合,点A落在第一象限,点B的坐标为,AB与y轴交于点求点A的坐标.求OC的长.点P在x轴正半轴上,连结当与的一个内角相等时,求所有满足条件的OP的长.答案和解析1.【答案】B【解析】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】C【解析】解:,,第三边,纵观各选项,能组成三角形的第三根木棒的长度是故选:根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.本题考查了三角形的三边关系,熟记关系式求出第三边的取值范围是解题的关键.3.【答案】C【解析】解:根据题意得,,解得故选:根据分母不等于0列式计算即可得解.本题考查了函数自变量的取值范围,用到的知识点为:分式有意义,分母不为4.【答案】D【解析】解:因为,则,所以A选项不符合题意;B.因为,则,所以B选项不符合题意;C.因为,则,所以C选项不符合题意;D.因为,则,所以D选项符合题意.故选:根据不等式的性质3对A选项进行判断;根据不等式的性质1对B选项、C选项进行判断;根据不等式的性质2对D选项进行判断.本题考查了不等式的性质:灵活运用不等式的性质是解决问题的关键.5.【答案】A【解析】解:A、三个角对应相等的两个三角形相似但不一定全等,故原命题错误,是假命题,符合题意;B、三条边对应相等的两个三角形全等,正确,是真命题,不符合题意;C、全等三角形的对应边相等,正确,是真命题,不符合题意;D、全等三角形的面积相等,正确,是真命题,不符合题意;故选:利用全等三角形的性质及判定方法分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解全等三角形的性质及判定方法,难度不大.6.【答案】C【解析】解:平分,在与中,,≌,,即所换长度应与DF的长度相等,故选:根据平分线的定义和全等三角形的判定和性质定理即可得到结论.本题考查了全等三角形的应用,角平分线的定义,熟练掌握全等三角形的判定和性质定理是解题的关键.7.【答案】B【解析】解:如右图所示,点O到狮子岩的距离为:,点O到龙瀑仙洞的距离为:2,点O到埭头古村的距离为:3,点O到永嘉书院的距离为:,,点O到龙瀑仙洞的距离最近,故选:根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到狮子岩、龙瀑仙洞、埭头古村、永嘉书院的距离,再比较大小即可.本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.8.【答案】D【解析】解:由作图知,AE是的角平分线,,,,在与中,,≌,,,,,,故选:根据角平分线的定义和全等三角形的判定和性质定理以及三角形外角的性质即可得到结论.本题考查了作图-基本作图,全等三角形的判定和性质,三角形外角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质定理是解题的关键.9.【答案】D【解析】解:一次函数中,,随x的增大而增大,点,在一次函数的图象上,且,,,函数的图象经过第一、二、三象限,不经过第四象限,故选:根据一次函数的性质得出,可以求得,即可关键一次函数的性质得出结论.本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的性质是解题的关键.10.【答案】B【解析】解:设小正方形为EHMN,如图,四边形ABCD和四边形EHMN是正方形,,,,为等腰三角形,且,,,在和中,,,,,,,,,,,,,,,在中,,,,,,,,≌,,,,故选:由等腰三角形性质可得出,利用HL可证得,得出,根据余角的性质得出,进而推出,利用面积法求得,再运用勾股定理求得,即可求得答案.本题主要考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定与性质,平行线的性质,勾股定理,三角形面积等,利用面积法求得BN是解题的关键.11.【答案】【解析】解:“a的3倍与2的差小于9”用不等式表示为,故答案为:先表示a的3倍,再表示“差”,最后由“”可得答案.本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于小于、不超过不低于、是正数负数”“至少”、“最多”等等,正确选择不等号.12.【答案】【解析】解:把点向右平移1个单位后所得点的坐标是,即故答案为:根据平移规律:横坐标右移加,左移减;纵坐标上移加,下移减即可得.此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.13.【答案】50【解析】解:,,,,,,故答案为:根据等腰三角形的性质以及三角形的外角等于与它不相邻的两个内角的和求解即可.此题考查了等腰三角形的性质以及三角形的外角性质,熟记三角形的外角等于与它不相邻的两个内角的和是解题的关键.14.【答案】直角【解析】解:设三角形的三个内角分别为k、2k、3k,由题意得,,解得,,此三角形是直角三角形.故答案为:直角.根据比例设三角形的三个内角分别为k、2k、3k,然后根据三角形的内角和等于列出方程求出k,再求出最大的角的度数,即可得解.本题考查了三角形的内角和定理,利用设k法求解更简便.15.【答案】【解析】解:把代入得,,把代入得,,的最大值为,故答案为:把和分别代入,即可得到结论.本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.16.【答案】20【解析】解:设,把代入得,,,,把代入得,,,当气体的体积至少为106升,则气体的温度不低于故答案为:设出一次函数关系式,代入两点解方程组即可.本题考查了函数的表达方式,熟练运用待定系数法是解题关键.17.【答案】3【解析】解:等腰三角形ABC中,AD是底边BC上的高线,,,,,,,,,,,,,在和中,,≌,,,,故答案为:证明≌,根据全等三角形的性质得出,即可求出答案.本题考查了三角形内角和定理,等腰三角形的性质性质,全等三角形的性质和判定和性质,能推出≌是解此题的关键.18.【答案】【解析】解:设,如图1,由折叠得,,EF垂直平分AB,;如图2,由折叠得,,,,,,,垂直平分BE,,,,,故答案为:设,在图1中,可求得,在图2中,由,,根据勾股定理得,,于是求得此题重点考查折对称的性质、线段的垂直平分线的性质、勾股定理的应用等知识,设,根据轴对称的性质和勾股定理推导出用含m的代数式表示AD和AQ的式子是解题的关键.19.【答案】解:,解①得,解②得,所以不等式组的解集为解集在数轴上表示为:【解析】分别解两个不等式得到和,再利用大小小大中间找确定不等式组的解集,然后利用数轴表示它的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.20.【答案】证明:是等边三角形,,,,在和中,,≌,【解析】由等边三角形的性质得,,则,即可根据全等三角形的判定定理“SAS”证明≌,得此题重点考查等边三角形的性质、等角的补角相等、全等三角形的判定与性质等知识,证明及≌是解题的关键.21.【答案】解:如图,,即为所求,,如图,,即为所求,,【解析】根据等腰三角形的定义画出图形即可;利用三角形的中线平分三角形的面积,画出图形即可.本题考查作图-复杂作图,等腰三角形的判定和性质等知识,解题的关键是;理解题意,灵活运用所学知识解决问题.22.【答案】解:【任务1】甲车经过AB,BC,CD段的时间分别为10s,10s,8s,甲车经过段所用时间为,由图2可知,当时,,段的总路程为220m,由图2可知BC段的路程为,甲车通过时间为10s,甲车经过BC段的速度为,段的总路程为220m,甲车经过BC段的速度为;【任务2】由图2可得,BC段的路程为80m,AB段的路程为60m,两车经过BC段的速度相等,乙车经过AB段的速度是乙车经过BC段的速度为,乙车经过BC段的时间为:,乙车经过AB段的时间为:,以此即可补全图象,如图,【任务3】设红绿灯2由绿灯变为红灯后x秒后丙车到达,则丙车需等待秒,记车在DN段等待红灯至离开点A需要y秒,则,随x的增大而减小,,当时,y取得最小值,最小值为,即丙车在DN段从开始等待至离开点A至少需要47秒.【解析】【任务1】根据图2即可得出段的总路程和甲车经过BC段的速度;【任务2】根据图2可求出BC、AB段的路程,结合乙车在该段路程的行驶速度,即可补全图象;【任务2】设红绿灯2由绿灯变为红灯后x秒后丙车到达,则丙车需等待秒,记车在DN 段等待红灯至离开点A需要y秒,根据题意可得到y与x的函数关系式,根据一次函数的性质结合x的取值范围即可解答.本题主要考查一次函数的应用、一次函数的性质,理清题意,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数是解题关键.23.【答案】解:如图1中,过点B作轴于点E,过点A作轴于点,是等腰直角三角形,,,,,≌,,,,,,;设直线AB是解析式为,,,,,直线AB的解析式为,令,得到,,;分三种情形:①,,,≌,②当时,如图2中,则,,过点A作轴于点设,则,,,,③时,则,,综上所述,满足条件的OP的值为5或或【解析】如图1中,过点B作轴于点E,过点A作轴于点证明≌,推出,,可得结论;求出直线AB的解析式,可得点C的坐标,即可解决问题;分三种情形:①,②当时,③时,分别求解即可.本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题.。

2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。

2023-2024学年浙江省温州市八年级下学期月考数学试卷(3月份)(含解析)

2023-2024学年浙江省温州市八年级下学期月考数学试卷(3月份)(含解析)

2024学年温州市八年级(下)(3月份)月考数学试卷测试范围:第1-3章;满分100分一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。

9.三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法,以方程即为例说明,记载的方法是:构造如下图,大正方形的面积是.同时它又等于四个矩形的面积加上中间小正方形的面积,即,因此.则在下面四个构图中(网格中每个小正方形边长为1个单位),能正确说明方程:解法的构图是( )A.B .C .D .10.一元二次方程的两个根为,则的值为( )A .2B .C .4D .二、填空题:本大题有8个小题,每小题3分,共24分。

在数轴上的位置如图所示,化简:如图放置,已知正方形①、②的边长分别是22350x x +-=(2)35x x +=()22x x ++24352⨯+5x =260x x --=2310x x ++=12,x x 21124x x x ++2-4-22(1)|1|()a b a b ++--+=第17题第18题.如图,在平面直角坐标系中,点,点,若动点从坐标原点出发,沿轴正方向匀速运动,运动速度为个单位长度每秒,设点运动时间为秒,当是等腰三角形时,的值为三、解答题:本题有6小题,共46分.解答应写出文字说明、证明过程或演算步骤.(2)解方程:.为了解八年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关()8,8A -P y 1P ABP V t ()233x x x +=+b .平均每天阅读时长在的具体数据如下:根据以上信息,回答下列问题:(1)_______,图中_______;_______;6090x ≤<6060666869697070727373738485n =m =的面积分别是6和12,求四边形2024学年温州市八年级(下)(3月份)月考数学试卷答案解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。

2023—2024学年浙江省温州市八年级上学期期末数学试卷

2023—2024学年浙江省温州市八年级上学期期末数学试卷

2023—2024学年浙江省温州市八年级上学期期末数学试卷一、单选题1. 下列四个图标中,不属于轴对称图形的是()A.B.C.D.2. 下列长度的三条线段,能组成三角形的是()A.3,4,5B.2,5,8C.5,5,10D.1,6,73. 函数的图象经过()A.第一、三象限B.第二、四象限C.第一、二、三象限D.第一、三、四象限4. 如果,那么下列不等式正确的是()A.B.C.D.5. 下列命题为假命题的是()A.全等三角形对应边相等,对应角相等B.全等三角形的周长相等,面积也相等C.三条边对应相等的两个三角形全等D.三个角对应相等的两个三角形全等6. 如图,,点P在上,且,M是上的点,在上找点N,以为直角边,P,M,N为顶点作等腰直角三角形,则的长不可能是()A.B.3C.D.7. 已知点的坐标为,且点到两坐标轴的距离相等,则点的坐标是()D.或A.B.C.8. 如图,在中,分别以点A,B为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线,交于点D,交于点E,连接.若的周长为12,的周长为20,则AE的长为()A.3B.4C.5D.89. 一次函数与的图像如图所示,下列说法:①对于函数来说,y随x的增大而减小;②函数的图像不经过第一象限;③不等式的解集是;④其中正确的有()A.①③B.②③④C.①②④D.②③10. 如图,已知长方形纸板的边长,,在纸板内部画,并分别以三边为边长向外作正方形,当边、和点K、J都恰好在长方形纸板的边上时,则的面积为()A.6B.C.D.二、填空题11. 用不等式表示:x与2的和大于6,则这个不等式是 ________ .12. 若,,且平行于x轴,则a的值是 _______ .13. 若直角三角形斜边上的中线长为5,则此直角三角形斜边长为 ______ .14. 如图,是的角平分线,、分别是和的高.,,的面积是,则 __________________ .15. 若是y关于x的正比例函数,且该函数图象经过第二、四象限,则m的取值范围是 ______ .16. 如图,直线分别与、轴交于、两点,若在轴上存在一点,使是以为底的等腰三角形,则点的坐标是__________ .17. 如图,图是一个儿童滑梯,,,是滑梯的三根加固支架如图,且和都垂直地面,是滑道的中点,小周测得米,米,米,通过计算,他知道了滑道长为 ______ 米.三、解答题18. 如图,折叠等腰三角形纸片,使点C落在边上的点F处,折痕为.(1)已知,则度;(2)如果,则.19. 解不等式组,并将解集在数轴上表示出来.20. 已知:如图,,,,.求证:.21. 在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为3个平方单位的等腰三角形.(画一个即可)(2)请你在图2中画一条以格点为端点,长度为的线段.(画一条即可)(3)请你在图3中画一个以格点为顶点,为直角边的直角三角形.(画一个即可)22. 【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:.其中秤盘质量克,重物质量m克,秤砣质量M克,秤纽与秤盘的水平距离为l厘米,秤纽与零刻线的水平距离为a厘米,秤砣与零刻线的水平距离为y厘米.【方案设计】目标:设计简易杆秤.设定,,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l和a的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l,a的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l,a的方程;(3)根据(1)和(2)所列方程,求出l和a的值.任务二:确定刻线的位置.(4)根据任务一,求y关于m的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.23. 如图1,直线与x轴,y轴分别交于点和.(1)求直线的函数表达式;(2)点是直线上的一个动点(如图2),点的横坐标为,以线段为边,点为直角顶点在y轴右侧作等腰直角,与x轴交于点C.①求证:;②在点的运动过程中,是否存在某个位置,使得为等腰三角形?若存在,请直接写出的值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省温州市八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.2.若代数式√x−42有意义,则实数x的取值范围是()A. x>4B. x≥4C. x≠4D. 0<x<43.下列说法正确的是()A. 为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B. 一组数据1,5,3,2,3,4,8的众数和中位数都是3C. 某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D. 若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定4.已知,如图,平行四边形ABCD中,CE:BE=1:3,且S△EFC=1,那么S△DEC=()A. 3B. 4C. 5D. 95.江堤的横断面如图,堤高BC=10米,迎水坡AB的坡比是1:√3,则堤脚AC的长是()A. 20米B. 20√3米C. 10√33米D. 10√3米6.如图,过x正半轴上任意一点P作y轴的平行线,分别与反比例函数y=4x (x>0),y=−8x(x>0)的图象交于A点和B点,连接OA、OB,则△OAB的面积为()A. 4B. 6C. 8D. 107.如图,∠1=∠2,∠D=50°,则∠B的度数为()A. 50°B. 40°C. 100°D. 130°8.顺次连接对角线互相垂直且相等的四边形各边的中点所得四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形9.自从国家实行“精准扶贫”政策以来,很多贫困人口走上了致富道路,据统计某地区2018年6月份有贫困人口2.85万人,通过社会各界的努力,2020年6月份统计贫困人口减少至0.73万人,若设2018年6月份到2020年6月份该地区贫困人口的年平均下降率为x,则根据题意可列方程为()A. 2.85(1−2x)=0.73B. 0.73(1+x)2=2.85C. 0.73(1+2x)=2.85D. 2.85(1−x)2=0.7310.如图,△ABC中,AB=AC,DE垂直平分AC,交AC于E,交AB于D,连接CD.若∠A=50°,则∠BCD等于()A. 15°B. 30°C. 50°D. 65°二、填空题(本大题共8小题,共24.0分)11.求值:√(√5−3)2=______.12.甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2______S乙2(填>或<)13.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,若其中两块木板的边数均为5,则第三块木板的边数为______ .14.已知分式x−3,当x=2时,分式无意义,则a=______;当a为a<6的一个整数时,使分式x2−5x+a无意义的x的值共有______个.15.如图,已知AB=4,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为______.16.请写出二次项系数为−1,并且以2和3为根的一元二次方程:______17.15、已知如图所示,A、P、Q、B四个点在同一条直线上,矩形ABCD,E、F分别是AC、BD上两点,且EP⊥AB,FQ⊥AB,EP=FQ=1.5,PQ=20,AD=9,则DC=()。

18.如图,E是▱ABCD的边AD上一点,AE=12ED,CE与BD相交于点F,BD=10,那么DF=______.三、解答题(本大题共6小题,共46.0分)19.解方程:(1)2x +xx+1=1;(2)(x−2)2=6−3x.20.在数轴上作出−√8所对应的点.21.在“五四青年节”来临之际,某校举办了以“我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级:A:优秀,B:良好,C:一般,D:较差),并制作了如图统计图表(部分信息未给出):等级人数A mB20C nD10请根据统计图表中的信息解答下列问题:(1)这次共抽取了______名参加演讲比赛的学生,统计图中a=______,b=______;(2)求扇形统计图中演讲成绩等级为“一般”所对应扇形的圆心角的度数;(3)若该校学生共有2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的有多少人?(4)若演讲比赛成绩为A等级的学生中恰好有2名女生,其余的学生为男生,从A等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求恰好抽中一名男生和一名女生的概率.22. 如图,矩形OABC放置在平面直角坐标系上,点A,C分别在x轴,y轴的正半轴上,点B的坐标是(4,m),其中m>4.反比例函数y=16(x>0)的图象交AB交于点D.x(1)BD=______(用m的代数式表示).(2)设点P为该反比例函数图象上的动点,且它的横坐标恰好等于m,连结PB,PD.①若△PBD的面积比矩形OABC面积多8,求m的值.②现将点D绕点P逆时针旋转90°得到点E,若点E恰好落在x轴上,直接写出m的值.23. 奈曼旗某中学要组织一次篮球赛,赛制为双循环形式(每两队之间赛两场),计划安排12场比赛,应邀请多少支球队参加比赛?24. 如图,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E 点停止,设点P经过的路程为x,△APE的面积为y.(1)求当x=2时,x=5时,对应y的值;(2)当4<x<10时,写出y与x之间的关系式;(3)当P在线段BC上运动时,是否存在点P使得△APE的周长最小,若存在,求出△APE的周长的最小值,并求出此时∠PAD的度数,若不存在,请说明理由.【答案与解析】1.答案:C解析:解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,也是中心对称图形,故本选项不符合题意;C、是轴对称图形,但不是中心对称图形,故本选项符合题意;D、不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:B解析:解:由题意可知:x−4≥0,∴x≥4故选:B.根据二次根式有意义的条件即可求出答案.本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.3.答案:B解析:解:A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;C、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意;D、若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则甲组数据比乙组数据稳定,不符合题意;故选:B.利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.此题考查了概率的意义,全面调查与抽样调查,中位数,众数,以及方差,熟练掌握各自的定义是解本题的关键.4.答案:C解析:解:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴△AFD∽△CFE,∵CE:BE=1:3,∴CE:BC=CE:AD=1:4,∴S△AFD:S△CFE=16:1,∵S△EFC=1,∴S△AFD=16,∵EF:FD=1:4,∴S△EFC:S△DFC=1:4,∴S△DFC=4,∴S△DEC=5.故选:C.证明△AFD∽△CFE,利用相似的性质可求出△AFD的面积,再根据高相等的三角形面积之比等于底之比可求出△DFC的面积,进而可求出△ACD的面积,又因为△ABC的面积等于△ADC的面积,问题得解.本题考查了平行四边形的性质、相似三角形的判定和性质,解题的关键是熟知高相等的三角形面积之比等于底之比.5.答案:D解析:解:根据题意得:BCAC=1:√3,解得:AC=√3BC=10√3(米).故选D.在Rt△ABC中,已知了坡面AB的坡比是铅直高度BC和水平宽度AC的比值,据此即可求解.本题考查了坡比的定义,理解定义是关键.6.答案:B解析:解:∵AB⊥x轴,根据k的函数意义,S△AOP=12×4=2,S△BOP=12×|−8|=4,∴S△AOB=S△AOP+S△BOP=2+4=6.故选:B.根据反比例函数系数k的几何意义得出S△AOP=12×4=2,S△BOP=12×|−8|=4,则S△AOB=S△AOP+S△BOP,求出即可.此题考查了反比例函数系数k的几何意义,关键是掌握y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.7.答案:D解析:解:如图所示:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB//CD,∴∠B+∠D=180°,又∵∠D=50°,∴∠B=130°,故选:D.本题由对顶角相等得∠1=∠3,等量代换得∠2=∠3,根据同位角相等,判定AB//CD,其性质得∠B+∠D=180°,最后由角的和差计算得∠B=130°.本题综合考查了平行线的判定与性质,对顶角的性质,角的和差等相关知识,重点掌握平行线的判定与性质;难点是一题多解几种方法证明两直线平行.8.答案:D解析:解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH//BD//FG,EF//AC//HG,EF=12AC,FG=12BD,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其必为平行四边形,加上邻边互相垂直且相等,那么所得四边形是正方形.本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.9.答案:D解析:解:依题意得:2.85(1−x)2=0.73.故选:D.根据该地区2018年6月及2020年6月统计的贫困人口数量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.答案:A解析:解:∵AB=AC,∠A=50°,∴∠B=∠ACB=180°−∠A2=65°,∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD =∠ABC −∠ACD =65°−50°=15°.故选:A .由△ABC 中,AB =AC ,∠A =50°,即可求得∠ACB 的度数,又由DE 垂直平分AC ,根据线段垂直平分线的性质,即可求得∠ACD 的度数,继而求得∠BCD 的度数.此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.答案:3−√5解析:解:∵√5<3,∴√5−3<0,∴√(√5−3)2=|√5−3|=3−√5.故答案为:3−√5.由二次根式的性质,即可得√(√5−3)2=|√5−3|,继而求得答案.此题考查了二次根式的化简与性质以及绝对值的性质.注意:√a 2={a (a >0)0 (a =0)−a (a <0).12.答案:>解析:解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S 甲2>S 乙2.故答案为:>.根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小. 本题考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 13.答案:10解析:解:正五边形每个内角是180°−360°÷5=108°,顶点处已经有2个内角,度数之和为:108×2=216°,那么另一个多边形的内角度数为:360°−216°=144°,相邻的外角为:180°−144°=36°,∴边数为:360°÷36°=10.先求出正五边形的每个内角的度数,再根据镶嵌的条件即可求出答案.。

相关文档
最新文档