圆锥曲线弦长公式

合集下载

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程
=
二.双曲线:
设直线与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
=
三.抛物线:
(1)核心弦:已知抛物线y²=2px,A(x1,y1),B(x2,y2),AB为抛物线的核心弦,则
同理 的核心弦长为
的核心弦长为 ,所以抛物线的核心弦长为
由以上三种情形可知应用直线竖直角求过核心的弦长,异常简略明白,应予以控制.
圆锥曲线的弦长公式
一.椭圆:
设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
则 ,由余弦定理可得 , ,
整顿可得,
是以核心在x轴的核心弦长为
同理可得核心在y轴上的核心弦长公式
个中a为实半轴,b为虚半轴,c为半焦距, 为AB的竖直角.
三. 抛物线的核心弦长
若抛物线 与过核心 的直线 订交于两点 ,若 的竖直角为 ,求弦长|AB|.(图4)
解:过A.B两点分离向x轴作垂线AA1.BB1,A1.B1为垂足, ,则点A的横坐标为 ,点B横坐标为 ,由抛物线定
设双曲线 个中两核心坐标为 ,过F1的直线 的竖直角为 ,交双曲线于两点 求弦长|AB|.
解:(1)当 时,(如图2)
直线 与双曲线的两个交点A.B在统一支上,连 ,设 ,由双曲线界说可得 ,由余弦定理可得
整顿可得 , ,则可求得弦长
(2) ,如图3,
直线 与双曲线交点 在两支上,连F2A,F2B,设
|AB|=x1+x2+p或|AB|=2p/(sin² ){ 为弦AB的竖直角}

高中数学圆锥曲线弦长公式(一)

高中数学圆锥曲线弦长公式(一)

高中数学圆锥曲线弦长公式(一)高中数学圆锥曲线弦长公式1. 椭圆的弦长公式•椭圆是圆锥曲线中的一种•弦是椭圆内部的两点之间的线段•椭圆的弦长可由弦与椭圆的焦点坐标计算得到2. 椭圆弦长公式•假设椭圆的焦点为F1(0, c)和F2(0, -c),椭圆的长轴长度为2a,短轴长度为2b•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•椭圆的弦长公式为:d = 2a * √(1-(Ax-Bx)²/(4a²)) + 2b * √(1-(Ay-By)²/(4b²))举例说明•假设有一个椭圆的长轴长度为6,短轴长度为4,焦点坐标为F1(0, 2)和F2(0, -2)•弦的端点坐标为A(3, -2)和B(-3, 2)•根据椭圆弦长公式:d = 26 √(1-(3+3)²/(46²)) + 24 * √²/(4*4²))•化简得:d = 12 * √(1-36/144) + 8 * √(1-16/64)•继续化简得:d = 12 * √(1-1/4) + 8 * √(1-1/4)•最终结果为:d = 12 * √(3/4) + 8 * √(3/4)•进一步化简得:d = +•因此,该椭圆的弦长为约。

3. 抛物线的弦长公式•抛物线是圆锥曲线中的一种•弦是抛物线内部的两点之间的线段•抛物线的弦长公式可通过两点间的距离计算得到举例说明•假设有一个抛物线的焦点为F(0, p),准线方程为y = -p,焦距为2p•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•则抛物线的弦长公式为:d = √((Ax-Bx)²+(Ay-By)²)4. 双曲线的弦长公式•双曲线是圆锥曲线中的一种•弦是双曲线内部的两点之间的线段•双曲线的弦长公式可通过两点间的距离计算得到举例说明•假设有一个双曲线的焦点为F1(c, 0)和F2(-c, 0),双曲线的长轴长度为2a,短轴长度为2b•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•则双曲线的弦长公式为:d = √((Ax-Bx)²-(Ay-By)²)以上是高中数学中圆锥曲线弦长公式的相关介绍和举例说明。

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

弦长公式二、证明弦长= = 其中为直线斜率,( , ),( , )为直线与曲线的两交点证明方法如下:假设直线为:圆的方程为:,假设相交弦为AB,点A为( , )点B为( , )则有把,分别代入,则有:证明的方法也是一样的证明方法二这是两点间距离公式因为直线所以将其代入得到弦长公式二=2px,过焦点直线交抛物抛物线线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚公式三编辑d = = = = ..........................................................1式关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

d = ......................................................................................2式在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个一元二次方程,其中△为一元二次方程中的b^2-4ac ,a为二次项系数。

补遗:公式2符合椭圆等圆锥曲线不光是圆。

2式可以由1推出,很简单,由韦达定理,x1+x2=-b/a ,x1x2=c/a 代入再通分即可。

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。

2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。

3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。

4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。

5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。

6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。

7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。

10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。

圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程
|AB|=x1+x2+p或|AB|=2p/(sin² ){ 为弦AB的倾斜角}
(2)设直线与抛物线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
=
时间:二O二一年七月二十九日
一、椭圆的焦点弦长
若椭圆方程为 ,半焦距为c>0,焦点 ,设过 的直线 的倾斜角为 交椭圆于两点 求弦长 .
解:连结 ,设 ,由椭圆界说得 ,由余弦定理得 ,整理可得 ,同理可求得 ,则 ;
同理可求得焦点在y轴上的过焦点弦长为 (a为长半轴,b为短半轴,c为半焦距).
结论:椭圆过焦点弦长公式:
二、双曲线的焦点弦长
同理 的焦点弦长为
的焦点弦长为 ,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握.
圆锥曲线的弦长公式
一、椭圆:
设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
圆锥曲线的弦长公式及其推导过程之阿布丰王创作
时间:二O二一年七月二十九日
关于直线与圆锥曲线相交求弦长,通用方法是将直线 代入曲线方程,化为关于x的一元二次方程,设出交点坐标 利用韦达定理及弦长公式 求出弦长,这种整体代换、设而不求的思想方法对求直线与曲线相交弦长是十分有效的,然而对过焦点的圆锥曲线弦长求解利用这种方法相比力而言有点繁琐,若利用圆锥曲线的界说及有关定理导出各种曲线的焦点弦长公式就更为简捷.
则 ,由余弦定理可得 , ,

圆锥曲线弦长公式精编版

圆锥曲线弦长公式精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯圆锥曲线弦长公式对于直线与圆锥曲线订交求弦长,通用方法是将直线代入曲线方程,化为对于 x 的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这类整体代换,设而不求的思想方法对于求直线与曲线订交弦长是十分有效的,但是对于过焦点的圆锥曲线弦长求解利用这类方法对比较而言有点繁琐,利用圆锥曲线定义及相关定理导出各样曲线的焦点弦长公式就更加简捷。

. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连接,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长同理可求得焦点在y 轴上的过焦点弦长为(a为长半轴, b 为短半轴, c 为半焦距)结论:椭圆过焦点弦长公式:二.双曲线的焦点弦长设双曲线,此中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:( 1)当时,(如图2)直线与双曲线的两个交点 A、B 在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长( 2)当或时,如图3,直线l与双曲线交点A、B 在两支上,连,设,则,,由余弦定理可得,整理可得,则所以焦点在 x 轴的焦点弦长为同理可得焦点在y 轴上的焦点弦长公式三此中 a 为实半轴, b 为虚半轴, c 为半焦距,为 AB的倾斜角。

. 抛物线的焦点弦长若抛物线与过焦点的直线订交于A、B两点,若的倾斜角为,求弦长 |AB| ?(图 4)解:过 A、B两点分别向 x 轴作垂线为垂足,设,,则点 A 的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种状况可知利用直线倾斜角求过焦点的弦长,特别简单明确,应予以掌握。

一。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F ==则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角. 三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线弦长公式
关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式
求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

. 椭圆的焦点弦长若椭圆方程为
,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连结,设,由椭圆定义得,由余弦定理得
,整理可得,同理可求得,则弦长
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b
为短半轴,c为半焦距)
结论:椭圆过焦点弦长公式:

. 双曲线的焦点弦长
设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得
整理可得,同理
,则可求得弦长
(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,
,由余弦定理可得,
整理可得,则
因此焦点在x轴的焦点弦长为
同理可得焦点在y轴上的焦点弦长公式

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。

. 抛物线的焦点弦长
若抛物线与过焦点的直线相交于A、B两点,若的
倾斜角为,求弦长|AB|?(图4)
解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得


同理的焦点弦长为
的焦点弦长为,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。


欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档