论高层结构的水平位移控制

合集下载

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,-1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求-2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性-3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层-4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响-6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆-位移比(层间位移比):-1.1 名词释义:-(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

-(2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

-其中:-最大水平位移:墙顶、柱顶节点的最大水平位移。

-平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

-层间位移角:墙、柱层间位移与层高的比值。

-最大层间位移角:墙、柱层间位移角的最大值。

-平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

-1.3 控制目的: -高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:-1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

-2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

-3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-1.2 相关规范条文的控制:-[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

高层结构设计中位移比、周期比、刚度比的控制与调整

高层结构设计中位移比、周期比、刚度比的控制与调整

高层结构设计中位移比、周期比、刚度比的控制与调整作者:李柏涛许东来源:《科学与财富》2012年第07期摘要:随着城市的发展和科学技术的进步,高层建筑的应用日益广泛, 由于高层建筑相对较柔,水平荷载作用效应明显,在满足使用条件下如何才能达到既安全又经济的设计要求。

笔者认为,对于高层结构设计来说,位移比、周期比、刚度比是保证结构规则、安全、经济的极其重要的参数。

本文仅以我国目前较为权威且应用最为广泛的PKPM软件中的SATWE程序的电算结果,结合规范条文的要求,谈谈如何对电算结果进行判读、控制与调整。

关键词:高层建筑,位移比,周期比,刚度比,名词释义,控制与调整1. 位移比(层间位移比):1.1 名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

1.2 相关规范条文的控制:[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

[高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

[高规]4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/10001.3 电算结果的判别与调整要点:PKPM软件中的SATWE程序对每一楼层计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,详位移输出文件WDISP.OUT。

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。

第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。

近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。

因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。

关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。

因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。

2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。

特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。

其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。

②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。

而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。

2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。

但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。

高层建筑的施工特点及控制措施

高层建筑的施工特点及控制措施

1、地基基础塌陷专项稳控方案一、风险评估 1、高层建造结构特点与要求〔1〕强度地层、多层建造的结构受力主要考虑垂直的荷载,包括结构自重和活荷载、雪荷载等。

高层建造的结构受力,除了要考虑垂直荷载作用外,还要考虑由风力或者地震力引起的水平荷载。

垂直荷载使建造物受压,其压力的大小与建造物高度成正比,由墙体和柱子来共同承受。

受水平荷载作用的建造物,可以视为悬臂梁,水平力对建造物主要产生弯矩,弯矩与房屋高度的平方成正比,即垂直压力。

弯矩对结构产生拉力和压力,建造物超过肯定的高度,由水平荷载产生的拉力就会超过由垂直荷载或者地震力的作2、用而处于周期性的受啦和受压状态。

对于不对称及冗杂体型的高层建造还需要考虑结构的受扭。

因此,高层建造必需充分考虑结构的各种受力状况,保证结构有足够的强度。

〔2〕刚度高层建造要保证结构刚度和稳定性,掌握结构水平位移。

由于水平荷载产生的楼层水平位移,与建造物高度的四次方成正比。

随着高度的增加,高层建筑的水平位移增大较强度增大更快速。

过大的水平位移会使人产生不舒适感,影响生活、工作;会使电梯轨道变形;会使填充墙或者建造装修开裂、剥落;会使主体结构浮现裂缝;水平位移再进一步扩大,就会导致房屋的各个部件产生附加内力,引起整个3、房屋的严重破坏,甚至崩塌。

必需掌握水平位移,包括相邻两层的层间位移和全楼的顶点位移。

建造物层间相对位移与层高之比为 A/H,依据不同的结构类型和不同的水平荷载,应掌握在 1/400~1/1200。

〔3〕延性有抗震设防要求的高层建造还必需具有肯定的延性,使结构在强震作用下,当一部份进入屈服阶段后,还具有塑性变形的能力,通过结构的塑性吸收地震力所产生的能量,使结构可维持肯定的承载力。

〔4〕耐久性对高层建造的耐久性要求较高,从《民用建造设计通则〔JGJ37-87〕》第 1.0.4 条将建造耐久年限分为四级,一级耐久年限为 104、0 年以上,合用于重要的建造和高层建造。

高层建筑结构

高层建筑结构

(2)风压高度变化系数uz
4.3.2风荷载
b.位于山区的高层建筑,其风压高度变化系数按照平坦 地面的粗糙度类别由于表 4-6确定外,尚应按照现行国 家标准《荷载规范》的有关规定,考虑地形条件加以修 正。
(3)风荷载体形系数us
风荷载体型系数是指建筑物表面实际风压与基本风压的比 值,它表不同体型建 筑物表面风力的大小。当风流经过建 筑物时,通常在迎风由产生压力(此时风荷载体型 系数用+表 示),在侧风面及背风面产生吸力(此时风荷载体型系数用-表 示)。风压值 沿建筑物表面的分布并不均匀,迎风面的风压 力在建筑物的中部最大,侧风向和背风面 的风吸力在建筑 物的角区最大。风荷载体型系数与高层建筑的体型、平面尺 寸、表面状 况和房屋高宽比等因素有关。
4.3.3地震作用
4.3.3地震作用
4.3.3地震作用
二、设计反应谱
工程抗震设计是针对未来可能遭遇 的地震设防的,因此, 由过去某次已经发 生的地震动记录得出的反应谱实际意义 不大。国家组织专家经过对我国历史上的所有 地震资料的 专题研究,提出能利用抗震计算、曲线形状又相对简单的反 应谱曲线,这就 是设计反应谱。图4-7是我国《抗震规范》 以地震影响系数形式给出的设计反应谱。 也称为《抗震规 范》反应谱曲线。
4.1.1高层建筑结构受力特点
4.1.2正常使用条件下水平位移的限制
在正常使用条件下,应使高层建筑处于弹性状态。《高层 规程》对楼层层间最大位移与层高之比Δu /h小作出了以 下规定: (1)高度不大于150 m的高层建筑,其楼层层间最大位移与 层高之比Δu /h,不宜大 于表4-1中的数值。
4.1.2正常使用条件下水平位移的限制
钢筋混凝土筒体结构体系中的筒体主要有核心筒和框筒。 1、核心筒 核心筒一般由布置在电梯间、楼梯间及没备管线井道四周的 钢筋混凝土墙所组成。 为底端固定、顶端自由、竖向放置 的薄壁筒状结构,其水平截面为单孔或多孔的箱形截 面, 如图4-3所示。

超高层建筑设计过程变形控制

超高层建筑设计过程变形控制

超高层建筑变形控制1.竖向变形控制一般的多层利高层建筑相比,超高层结构的设计除了需要在结构体系选择、抗震设计、抗风设计等方面有更高的要求之外,还需要考虑非荷载作用下的结构变形和内力分析。

非荷载作用主要包括温度作用和混凝土的收缩、徐变以及地基的不均匀沉降等。

由于超高层结构高度可能在两三百米以上,以及不同竖向构件在压应力水平、材料等方面存在明显差异,还有混凝土材料的徐变、收缩等非荷载作用时,因此超高层结构必然产生不可忽视的竖向变形及差异。

在国外,二十世纪七十年代以后,高层建筑的竖向变形筹问题逐渐引起人们的注意。

美国的Russell H G等人对两幢钢筋混凝十高层建筑竖向变形进行了跟踪测试,其中高197m的Lake Point Tower,经过3年后柱的最大轴向变形超过了200mm;高262m的Water Tower Place经过五年后柱与墙的轴向变形差超过23mm,虽然该建筑在层13~14设有刚性转换层,第32层为刚度很大的设备层,但竖向构件间的轴向变形差异依然很明显。

这些与时间和环境相关的超高层结构竖向构件变形及差异,将使相邻的结构构件及非结构构件产生附加应力,还可能影响设备的安装使用。

国内外的研究者对结构的竖向变形及著异问题进行了分析和探讨。

杨丽、郭忠恭研究了钢筋泓凝土构件徐变和收缩的有关理论和公式,得竖向构件由于徐变和收缩产生的非弹性缩短,认为超过lOOm 的高层混凝十结构应该考虑徐变和收缩的影响。

高层建筑中,核心筒、角柱、边柱的竖向变形差异来自多个方面。

在竖向荷载作用下,各个部位垂直构件的截面轴向应力有高有低。

在结构施工时,核心筒施工往往先于周边框架柱施工,造成结构各部分受荷时间有先有后。

加上混凝土的弹性压缩、收缩、徐变以及温度变化等因素影响,最终会使得结构构件产生可观的竖向变形及变形差异。

这些变形将给设备安装带来不利影响,同时也会在结构中产生附加力矩。

一般而言,当结构超过30层或总高度大于100m时,在施工中就应当对此进行考虑。

高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整高层住宅设计中广泛采用剪力墙结构,本文给出了剪力墙结构的布置原则及设计时的注意事项;汇总了剪力墙结构计算的各个设计指标以及对应的调整方法。

随着社会进步,科技发展,人们对住宅的功能要求越来越丰富,建筑设计越来越符合功能和审美的要求;为实现建筑的要求,结构选型主要与其使用功能直接相关,同时拟建场地的地理位置,抗震烈度也是影响结构选型的重要因素。

为了进一步提高土地利用率,建设单位倡导建设高层住宅,以满足市场的需求及企业自身经济效益的要求;目前高层住宅成为人们的主要居住形式,高层住宅主要的结构形式多为剪力墙结构。

1剪力墙结构的特点剪力墙结构是由竖向剪力墙和水平楼面梁板组成的结构。

剪力墙既作为承受水平和竖向作用的构件,又有分隔房间的作用。

其布置原则除了应满足建筑使用要求,对结构受力是否合理至关重要,剪力墙布置是否合理进一步决定了该建筑的建设费用,所以更多的建设单位在前期建筑方案及与相应的结构选型上尽量优化,而达到节省造价的目的。

2建模时的注意事项(1)剪力墙:目前结构常用计算软件:中国建筑科学研究院开发的软件PKPM,北京盈建科软件XXXX有限公司编制的软件YJK,均可进行剪力墙结构的计算。

(2)剪力墙平面布置原则:依据建筑平面图:①外墙可布置为剪力墙,增加建筑平面的抗扭刚度。

②内墙布置时,平面均匀对称布置,竖向连续,避免楼层错洞保证剪力墙边缘构件上下连续贯通,同时避免墙肢开洞过大形成抗震性能较差的短肢墙(短肢剪力墙指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙)。

③剪力墙的截面厚度及构造配筋应当依据实际工程剪力墙部位及抗震等级,参见《高层建筑混凝土结构技术规程(JGJ3-2010)》7.2.1,10.4.6,《建筑抗震设计规范(GB52022-0510)》(以下简称抗规)6.4.1,6.4.3条。

④内墙长度除应满足建筑条件,还要考虑墙下桩最小桩间距的要求,例如:常规设计时,桩直径700mm,桩间距不小于3倍桩径,加上0.5倍的桩径,建议上部剪力墙的长度为2500mm,上部如有结构洞口,宜尽量使洞口避开桩位。

关于高层剪力墙结构层间位移角调整的几点建议

关于高层剪力墙结构层间位移角调整的几点建议

关于高层剪力墙结构层间位移角调整的几点建议摘要:高层建筑一定程度上解决了人口增加与住房紧张的矛盾,并由此得到社会各界关注,高层建筑结构较为实用的为剪力墙结构,当建筑达到一定高度后,墙体刚性主要受风荷载影响。

通过对层间墙体的设计、数量及原料改进等方法,可调整层间位移,从而改变墙体的刚性,在调整过程中要注意X向和Y向墙体层间位移角尽量接近。

关键词:高层建筑;剪力墙;层间位移;风荷载社会人口的增加与居住面积之间矛盾的加剧,致使高层建筑逐渐受到社会各界的关注。

我国高层住宅建筑的结构体系可分为钢筋混凝土框架结构、钢筋混凝土剪力墙结构和钢筋混凝土框架-剪力墙结构三种类型。

其中剪力墙结构具有刚度大、抗震性好、塑性变形能力和侧向变形能力强、结构高的优点,满足了住宅建筑的需求,且能充分利用土地资源,因此备受青睐。

一、高层建筑结构设计要求高层建筑的结构功能是建筑体量组成和结构艺术的表达基础,再设计过程中不能离开实践的基础而仅进行单纯的理论计算或推理。

建筑设计概念主要由建筑工程师决定,设计者应具有准确的判断力,在实践基础上对建筑结构做出科学、严谨、规范的计算及分析,从而解决高层建筑设计中可能涉及的各类基础性问题,例如水平荷载对于建筑结构的影响及其解决措施、建筑墙体刚性的相关问题及其解决措施等。

高层建筑结构设计需要满足两方面的要求,一是建筑结构承载能力极限状态,二是建筑结构正常使用极限状态,其中后者对结构设计起主要控制作用。

高层建筑在地震或风荷载作用下要满足水平变形的要求,水平变形过大不仅会损坏竖向结构构件,影响结构的承载力;还能影响非结构构件的实用性能,如幕墙、隔墙和填充墙等,进而影响建筑结构的整体稳定性。

高层建筑混凝土结构技术规程中规定高度为150m以下的纯剪力墙结构的高层建筑,其楼层层间最大位移(ui)与层高(hi)之比小于1:1000。

高层建筑弹性层间位移角受地震作用影响较小,主要影响因素为风荷载,尤其是沿海城市风荷载对于层间位移角的影响更为突出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论高层结构的水平位移控制
作者:肖晓芳
来源:《科技风》2016年第05期
摘要:高层建筑的受力特征表现为水平荷载组合起控制作用,即通常所说的地震作用或风荷载组合起控制作用。

在承载能力极限状态下,建筑结构以构件强度破坏或者失稳为判断标准,而正常使用极限状态下,建筑结构或其构件变形超过规定值为控制标准,而本文探讨的正是正常极限状态下高层建筑水平位移及位移比的控制要求。

关键词:高层;位移控制;位移比控制
《民用建筑设计通则》(GB 50352—2005)、《高层民用建筑设计防火规范》(GB 50045-95)将10层及10层以上的住宅建筑和高度超过24m的公共建筑和综合性建筑划称为高层建筑。

一、高层建筑位移控制的必要性
高层建筑在水平地震作用或者风荷载作用下,将产生水平位移和振动。

当水平位移、振动频率及振动周期超过舒适度极限值时,人作为建筑物的使用主体表现的不安和恐慌。

尽管判断舒适度的标准有多种,但目前采用最多的是建筑的最大加速度,风荷载或地震作用的加速度越大,舒适度越低。

根据振动舒适度的烦恼率设计理论研究以及统计分析知,人所受的加速度是有限的,常人在3g的加速度条件下就会产生严重的头晕恶心呕吐症状,在5g条件下心脑血管会严重受损有生命危险。

基于这一舒适度要求,得出对应的加速度和对应的高层最大位移控制要求、最大层间位移比要求和周期比限制。

《混凝土结构设计规范》GB 50010-2010》5.4.1-5.4.2规定,高层建筑在质量或者刚度偏心情况下,应考虑P-Δ效应。

P-Δ效应又称为重力二阶效应是指由于结构的水平变形而引起的重力附加效应,可称之为重力二阶效应,结构在水平力(风荷载或水平地震力)作用下发生发生水平位移,水平位移与重力荷载乘积为倾覆力矩,倾覆力矩越大,水平位移越大,重力二阶效应越显著。

当结构水平位移超过层间位移角限值时,结构可能因重力二阶效应而发生承载能力界限状态下的强度和失稳破坏。

当结构发生水平位移时,建筑物质量中心和刚度中心不重合,若本身自带偏心,此时P-Δ效应加剧。

加剧的P-Δ效应又使得位移增大,而增大的位移又使得P-Δ效应加剧,两者形成恶性循环,可能达到建筑物的承载能力极限状态从而导致强度破坏或者失稳。

二、高层建筑水平位移控制标准及计算原理
在水平荷载作用下,高层建筑应对最大位移进行控制。

多高层建筑结构应具有必要的刚度,在正常使用条件下限制建筑结构层间位移的主要目的有两个:首先保证结构主体构件如剪
力墙、柱、梁板、基础裂缝控制在规范强制性限值内,抗震设防烈度下或者设计风荷载作用下破坏程度为小修或者不修。

第二,保证非结构构件(如门窗、填充墙、玻璃幕墙、局部装饰构件等)在抗震设防烈度下或者设计风荷载作用下破坏可修。

《高层建筑混凝土结构技术规程》JGJ-2010和《建筑抗震设计规范》GB50011-2010均规定,各类结构多遇地震作用标准值产生的楼层内最大的弹性层间位移Δue应不大于弹性层间位移角限值与计算楼层层高之乘积[θe]h,弹性层间位移角限值[θe]见下表。

第i层的Δu/h指第i层和第i-1层在楼层平面各处位移差Δu不扣除整体弯曲变形。

由于多高层建筑结构在水平力(水平地震作用或风荷载)作用下几乎都会产生扭转,所以Δu的最大值一般在结构单元的边角部位。

高层建筑结构的水平地震作用下最大位移,应在单向水平地震作用时不考虑偶然偏心的影响,采用考虑扭转藕联振动影响的振型分解反应谱法进行计算,并应采用刚性楼板假定。

风荷载作用下,荷载分布呈倒三角形。

风荷载具有静力和动力作用的双重特点,其静力部分称为稳定风,动力部分称为脉动风。

脉动风的作用会引起高层建筑的振动(简称风振)这在高层建筑结构抗风设计中必须加以考虑的。

风载的大小的影响因素:主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。

地震作用下,建筑变形以剪切变形为主(如多层框架结构)时,水平地震作用计算近似采用底部剪力法。

此时每层楼集中看作一个质点,地震作用按质点分配。

以弯曲和剪切变形为主的结构,应采用振型分解反应谱法或者弹性时程分析法计算,此时建筑物每个楼层质点的未知量变为x,y,z三个,三者应进行振型分解组合,或输入地震动曲线进行动力时程分析。

三、影响高层建筑最大位移的因素
1.建筑平面布局的规则性。

建筑平面布置越规则,质量中心与刚度中心越靠近甚至重合,水平荷载作用下,偏心矩越小,倾覆力矩越大,水平位移越大。

建筑平面不规则包括平面布局不规则和刚度分布不规则,建筑平面不宜有较大开洞,开洞率应控制在一定范围内。

2.楼层高度。

高层建筑物风荷载组合通常起控制作用。

风荷载的竖向分布呈倒三角形风荷载标准值随着楼层的高度增加而增大,楼层越高,风荷载标准值越大。

楼层越高,风荷载产生的晃动和水平位移越大,故应控制建筑总高,若总高超过规范要求,应采取风洞试验和抗风防风设计。

3.结构形式。

高层建筑结构形式有框架结构、剪力墙结构、框架剪力墙结构、框架核心筒结构、框支剪力墙结构、筒中筒结构等形式。

结构越柔,位移越大,结构越刚,位移越小。

如:相同建筑总高情况下,框架结构位移大于剪力墙结构。

随着建筑物总高的增加,应增加剪力墙截面和数量,超高层结构宜选择筒中筒结构。

4.地震作用大小。

地震作用分为水平地震作用和竖向地震作用,竖向地震作用通常在长悬臂构件或者高烈度地区参与内力组合,且竖向地震产生的位移为竖向位移。

大多数情况仅需考虑水平地震作用组合即可满足设计要求。

水平地震作用产生水平位移,震源越浅,震中距越小,地震作用越大,产生的位移越大。

所以,水平地震作用下的高层建筑最大水平位移大小抗震设防烈度有关。

综上所述,控制高层建筑水平位移的大小,同一地区抗震设防烈度相同的情况下,应谨慎选择楼层总高和结构形式,建筑平面宜对称规则,减少偏心。

若应建筑设计需求不能达到上述要求时,应采取措施保证结构位移值控制在规范强制性规定值范围内,以满足正常使用极限状态下人对建筑物舒适度的要求。

参考文献:
[1]高立人,方鄂华,钱稼茹. 高层建筑结构概念设计[M].北京:中国计划出版社,2005.
[2]魏琏,王森. 论高层建筑结构层间位移角限值的控制[J]. 建筑结构,2006,36(S1):(1-49)-(1-55).
[3]项海帆,瞿伟廉;高层建筑风振控制基于规范的实用设计方法[J].振动工程学报;2013年02期
[4]中华人民共和国住房和城乡建设部;《高层建筑混凝土结构技术规程》JGJ3-2010;中国建筑工业出版社。

[5]中华人民共和国住房和城乡建设部;《建筑抗震设计规范》GB50011-2010;中国建筑工业出版社。

作者简介:肖晓芳,女,工学学士,助教,国家二级注册结构工程师,2006年毕业于广西工学院(现广西科技大学)土木工程专业,现就职于重庆应用技术职业学院建筑工程系。

相关文档
最新文档