圆锥曲线的焦点弦公式及应用(难)
圆锥曲线焦半径公式及其应用(解析版)

圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF a ex +0,=2PF a ex -0,②当点P 在左支上时,=1PF a ex --0,=2PF a ex +-0,记忆方式:长加短减(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF a ey +0,=2PF a ey -0,②当点P 在下支上时,=1PF a ey --0,=2PF a ey +-0,记忆方式:长加短减(3)若弦AB 过左焦点,则=AB a x x e 2)(21-+-;若弦AB 过右焦点,则=AB ax x e 2)(21-+3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF 20p x +(2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF 20p x +-(3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF 20p y +(4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 20p y +-例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6解法1:(基本不等式)由题意知621=+MF MF ,所以21MF MF ⋅9)2(221=+≤MF MF 当且仅当321==MF MF 时等号成立,所以21MF MF ⋅的最大值为9,故选C 解法2:(焦半径公式)设点),(00y x M ,则由题意知355,2,3=====a c e c b a ,所以9959)353)(353(200021≤-=-+=⋅x x x MF MF ,当且仅当00=x 时等号成立所以21MF MF ⋅的最大值为9,故选C例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为解析:设点),(00y x M ,则由题意知211F F MF =,所以⇒=+c ex a 203832600=⇒=+x x 所以点M 的坐标为)15,3(例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x 解析:由题意知3,6,24,2====e c b a ,222300002=⇒=-=-=x x x a ex PF 例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解法1:51651645tan 0221=⇒⨯===∆P P F PF y y b S ,即点P 到x 轴的距离为516解法2:设点),(00y x P ,不妨设点P 在右支上,则由21PF PF ⊥得2212221F F PF PF =+25269100)335()335(202020=⇒=-++⇒x x x ,所以25256)14(322020=-=x y 5160=⇒y 即点P 到x 轴的距离为516例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47解析:设点),(),,(2211y x B y x A ,线段AB 的中点),(00y x M ,则25341412121=+⇒=+++=+x x x x BF AF ,从而452210=+=x x x ,故选C 例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=解法1:设点),(00y x M ,则255200p x p x MF -=⇒=+=,即),25(0y pM -,MF 的中点为)2,25(0y B ,以MF 为直径的圆过点)2,0(,所以MF AB 21=,所以4425)22(425020=⇒=-+y y ,又点M 在抛物线上,所以2)25(216=⇒-=p p p 或8所以抛物线的方程是x y 42=或x y 162=,故选C解法2:设点),(00y x M ,因为以焦半径为直径的圆与y 轴相切,所以MF 的中点的纵坐标为2,所以40=y ,所以p p x 82160==,所以2528=⇒=+=p pp MF 或8所以抛物线的方程是x y 42=或x y 162=,故选C 注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;焦点弦长=AB θ2222cos 2c a ab -;(2)设过椭圆)0(12222>>=+b a b x a y 的焦点F 的弦AB 的倾斜角为θ,则=AF θsin 2c a b -;=BF θsin 2c a b +;焦点弦长=AB θ2222sin 2c a ab -;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF θcos 2c a b -;=BF θcos 2c a b +;=AB α2222cos 2c a ab -,弦AB 在双曲线一支上时,焦点弦最短为通径(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF a c b -θcos 2;=BF ac b +θcos 2;=AB 2222cos 2a c ab -α,弦AB 交双曲线两支上时,焦点弦最短为实轴长a23.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF θcos 1-p ;=BF θcos 1+p;=AB θ2sin 2p (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF θsin 1-p ;=BF θsin 1+p ;=AB θ2cos 2p例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF 解法1:(设线韦达定理)略解法2:(点差法)略解法3:(角度形式的焦半径公式)设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以θθθ2cos 412cos 23cos 23-=++-=+=BF AF AB θθθθ2cos 43cos 2cos 2cos -=-=+-==BF AF BFAF AF NF MF ,所以=AB MF 41例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ解析:设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以=λ3411=+BF AF例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为解析:设直线AC 的倾斜角为θ,则θθθ222222cos 334cos 3232cos 2-=-⨯⨯=-=c a ab AC θθ202sin 334)90(cos 334-=+-=BD 所以)sin 3)(cos 3(242122θθ--=⋅=BD AC S ABCD 2596)2sin 3cos 3(24222=-+-≥θθ,所以四边形ABCD 的面积的最小值为2596例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 解析:设θ=∠AFO ,则a b a c a c b a c b AF 2cos 222=+⋅=+=θ所以222sin b a AF a ==θ,又c b=θsin ,所以c b b a =22⇒=-⇒=⇒232234)1(2e e c a b 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程解析:设AB 的倾斜角为θ,则77216cos 25942cos 222222=-⨯⨯=-=θθa c ab AB 53cos ±=⇒θ所以34tan ±=θ,所以直线AB :)5(34+±=x y 即02034=+-y x 或02034=++y x例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为解析:设AB 的倾斜角为θ,则θθ22sin 4sin 2==p AB ,所以θθ202cos 4)90(sin 2=+=p DE 所以16)11(4)cos )(sin cos 1sin 1(4)cos 1sin 1(42222222=+⨯≥++=+=+θθθθθθDE AB 当且仅当4πθ=时等号成立,所以16)(min =+DE AB 三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e 11+-λλ;=e 21k+11+-λλ(2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则11sin +-=λλθe ;=e 211k +11+-λλ例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为解析:32121260cos 0=⇒+-=e e 例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为解析:设BD 的倾斜角为θ,则311212cos =+-=θe ,又e a c ==θcos ,所以33312=⇒=e e 例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2解析:33cos 211313cos 2311cos =⇒=+-=⇒+-=θθλλθe ,所以2tan ==θk例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为解析:由题意知a b ab MF 44222=⇒==--------------------------------------①由N F MF N F MN 11145=⇒=,所以531414cos =+-=θe ,又2422cos 121-=-==a c a c MF F F θ,所以532=-⋅a c a c -------------------------------------------------------------------------②联立①②得72,7==b a ,所以椭圆的方程为1284922=+y x。
圆锥曲线弦长公式的各类表达形式及应用

圆锥曲线弦长公式的各类表达形式及应用
圆锥曲线弦长公式是指一种求解圆锥曲线弦长长度的数学公式。
圆锥曲线是常见的椭圆锥这类参数方程曲线,表示一条从圆柱面出发在四个方向上均呈轻微弯曲,伸展出不同长度的弦曲线,它具有如下表达形式:
X^2 + Y^2 + z^2 / a^2 + 2z / c = 1
其中a为曲线的椭圆截面半径,c为曲线的焦点到原点的距离。
此外,圆锥曲线的弦长公式又有两种表达形式:积分形式和解析形式。
即:
积分形式:l= ∫ a,b √[(dx/dt)^2 + (dy/dt)^2+ (dz/dt)^2] dz
解析形式:l= 2a ∫ 0,π/2 [1+ (z/c)^2] ^1/2 d θ
这两种形式分别由圆锥曲线弦长公式参数方程求得,分别通过积分、解析解轴,分别求得弦长长度。
应用上,圆锥曲线弦长公式有各种广泛的应用。
它被冶金、机械、建筑等工程学科广泛使用,主要处理伸缩性有限的形状问题,满足测量要求及计算曲线的长度的需要。
同时,它还被广泛应用于地球物理学领域,一种可以变成圆锥曲线的小球轨迹,可以用来研究宇宙物质的运动规律。
总而言之,圆锥曲线弦长公式具有可探索性广泛的应用,对于求解圆锥曲线弦长长度具有重要意义。
圆锥曲线焦点弦的一个性质及其应用举例

圆锥曲线焦点弦的一个性质及其应用举例22性质 ⑴过 椭圆 x2 + y2 =1(a >b >0)焦点 F 的直 线交椭圆 于 A 、B 两点 ,设 abAF p, BF =q 。
若 A 、B 两点在双曲线的同一支上(此时称 AB 为双曲线的同支焦点弦)AF p, BF =q , 11 则 + = pq 2a b 2 2 = e 2d 0 ,其中d = b c 2是焦准距,cce= 是离心率。
a⑵过双曲线 22x 2 y 2 122 ab(a > 0,b > 0) 焦点 F 的直线交双曲线于 A 、 B 两点,设1 12 b 2则 + = ,其中 d 0 = 是焦准距; p q ed 0 c若 A 、B 两点分别位于双曲线的左支和右支上 时称 AB 为双曲线的异支焦点弦),则1 - 1pqe 2d 0 ,其中d 0 b 2c 是焦准距, ce= 是离心率。
a(抛物线的类似性质,本文从略) 证明:(只证性质⑴ , 性质⑵的证明从略) 由对称性,不妨取 F 为右焦点。
设右准线 l 与 x 轴交于点 D ,过 A 作 AG ⊥l 于 G ,过 B 作 BH ⊥l 于点 H ,则 AG ∥FD ∥ BH ;且由椭圆的第二定义知, |AG|= AF p,|BH|= BF q。
e e e e令|FE|= m ,|ED|= n ,故由 mq,n = pmnpq p = p+q,q =。
∴e(p q)e e因此, b2 m +n = ? c 2pq b2e(p q) 。
c2∴p q 2c2。
又 ec,从而1 1 p q 2a2= 2 ,其中d0= b就是焦准距。
证毕。
pqeb 2a p q pqb 2ed 0 c[ 说明 ] ①在上述证明过程中出现的“ m = n ”, “即 |FE|=|ED| ”,亦即 E 为线段 FD 的中点(如图 1) 这是椭圆焦点弦的另一条性质。
双曲线与抛物线也则 m +n =|FD|=FEBF,AGBA,BH GB =AB可得:②如图 1,若设∠ AFD =θ,并分别过 A 、F 作 FD 和 BH 的垂线,则可证: p= ba+ ccos θ2ab2; 从 而 得 焦 点 弦 长 公 式 : |AB| = p + q= 2 2 2 q =1 - e cos θa -c cos θ22d0e2,其中d 0 就是焦准距 b。
圆锥曲线二级结论及证明

圆锥曲线二级结论及证明
圆锥曲线的二级结论是指在圆锥曲线中,一些经过推导和证明的特殊性质和定理。
这些结论通常用于简化解题过程和提高解题效率。
以下是一些圆锥曲线的二级结论及证明:
焦点弦长公式:对于过圆锥曲线焦点的直线与圆锥曲线交于两点A和B,有AB=2ex1ex2*sin(θ),其中e为离心率,x1和x2为A、B两点对应的横坐标,θ为直线AB的倾斜角。
证明:设直线AB的方程为x=my+n,联立直线和圆锥曲线方程,得到二次方程。
利用韦达定理得到x1+x2和x1*x2的值,再利用弦长公式得到AB的长度。
切线与法线的关系:对于圆锥曲线上的点P(x0,y0),其切线方程可以表示为y-y0=k(x-x0),其中k为切线的斜率。
同时,该点的法线方程可以表示为y-y0=-1/k(x-x0)。
证明:设点P处的切线斜率为k,则切线方程可以表示为
y-y0=k(x-x0)。
求出该点处的导数即为切线的斜率。
利用点斜式方程得到切线方程,然后利用法线和切线的垂直关系得到法线方程。
离心率与曲线的形状关系:对于椭圆,离心率e越小,曲线越扁;对于双曲线,离心率e越大,曲线越扁。
证明:利用椭圆的焦点距离公式和半轴长公式,可以得到离心率
e与半轴长之间的关系。
对于双曲线,同样利用焦点距离公式和半轴长公式,可以得到离心率e与半轴长之间的关系。
以上是一些圆锥曲线的二级结论及证明,这些结论可以应用于具体的解题过程中,提高解题效率。
圆锥曲线焦点弦长公式(极坐标参数方程)

锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高老命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有老察。
由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。
本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手! ?定理已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴), 焦点为F,设倾斜角为G的直线/经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则(1)当焦点在X轴上时,弦AB的长IABI= —;11 - COS^ a I(2)当焦点在丫轴上叭弦AB的长而推论:(I)B点在X轴上,当ASB在椭圆、抛物线或双曲线的一支上时,IABI= —上一十l-f COSJ a 当AX B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时,<?" COS fc iZ-IHIABI=一 .SiIr a⑵焦点在y轴上,当入B在椭圆、抛物线或双曲线的一支上时9∖AB∖=一竺十1一0°sin" a当A、B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时, L SHr α-lIABl=cos* a典题妙解F面以部分高老题为例说明上述结论在解题中的妙用.例1 (06文第21题)已知椭圆+ * = 抛物线。
-加)2=2Z (P >0), 旦G、G的公共弦AB过椭圆Cl的右焦点.(I)当AB丄X轴时,求p, m的值,并判断抛物线C?的焦点是否在亶线AB上;4(II)若P =-且抛物线G的焦点在直线AB上,求m的值及直线AB的方程・L V*例2 (07全国I文第22题)已知椭圆y + -= 1的左.右焦点分别为耳,过件的直线交椭圆于B. D两点,过耳的直线交椭圆于A・C两点,旦AC丄BD f垂足为P・■ ■⑴ 设P点的坐标为(心,儿),证明:牛+ *^v1.⑵求四边形ABCD的面积的最小值.例3 (08全国I理第21题文第22题)双曲线的中心为原点6 焦点在X上,两条渐近线厶于入B两点.已知IMI、分别为厶、I2,经过右焦点F垂直于片的直线分别交厶、IABk IoRl成等荃数列,且丽与臥同向.(I )求双曲线的离心率;(II)设AB被双曲线所截得的线段的长为4,求双曲线的方程.金指点睛21.已知斜率为1的直线/过椭圆⅛+ A∙2 = 1的上焦点F交椭圆于A. B两点,则4IABl= ___________ .22・过双曲线X--—= 1的左焦点F作倾斜角为7的吉线/交双曲线于AX B两点,则30IABl= __________ .3.已知椭圆x1+2y2-2 = 0,过左焦点F作宜线/交A、B两点,O为坐标原点,求AAOB的最大面积.4.已知抛物线Γ=4∕ΛV (/; >0),弦AB过焦点F,设IABl=加,AAOB的面积为S,求证:存为定值•5. (05全国Il文第22题)F、Q、MX N四点都在椭圆,+冷=1上,F为椭圓在y轴正半轴上的焦点•已知丽与甩共线,丽与丽共线■且亦・MF = O四边形PQMN的面积的最大值和最小值.6. (07文第22题)如图,倾斜角为α的直线经过抛物线y2 = 8.v的焦点F,且与抛物线交于A、B两点.(I )求抛物线的焦点F的坐标及准线/的方程;(Il)若Q为锐角,作线段AB的垂直平分线m交.v轴于点P,证^lFPl-IFPICoS2σ 为定值,并求此定值.iVf ,.专业7•点M与点F(0,2)的距离比它到直线/: y + 3 = 0的距离小1.(1)求点M的轨迹方程;⑵ 经过点F且互相垂直的两条亶线与轨迹相交于Aj B; CX D.求四边形ACBD的最小面积・8.已知双曲线的左右焦点F I、F2与椭圆y+y2 =1的焦点相同,且以抛物线V2= -2Λ∙的准线为其中一条准线.(1)求双曲线的方程;(2)若经过焦点F2且互相垂直的两条直线与双曲线相交于A、B; C、D.求四边形ACBD 的面积的最小值•参考答案:Y e- Oik- C 证明:设双曲线方程为庐"。
圆锥曲线焦点弦长的公式求法

1= f =“ n :2 ・ 誓 l+ a 。一=一 + =一j l, 一+ “ “ a l )
:
手= ,
故综上所述 : : 述 = I
9时 魁 。 0也
= =
( 其中。 :=a —b) i 2
.
当直线A 的倾斜角为 0 0 9‘ ,由 k t O B 且 ≠ 0时 =a 及三角公式 s n i0 n
当直线A 的倾斜角为 0时 ,同公式I B 的证法 ,也
=
情况2 当直线A 与双曲线的两交点 ) , B (,) I I ( y) , 均在 同一支上时 ,不失 一般性 ,如图二 一 2 所示,不妨设都在左支上 , 直线A 过双曲线的 且 B 左焦点 , -. (c ),仍 由 曲线 的焦半径公式 , 0 双 得
线的焦半径公式,得 l 一 a,l “: a 卅= “ — 丑 = +
’
/。一√ \
H ' 于, Y J;
由 般 弦 公 : 一 的 长 式I 叫
解 ( 解 )求 七后结双线程把 ; 二公 法 :得值 ,合曲方 , = 式 ,
2 l ( )( +1 × × : ) 3 。
关键词 圆锥 曲线 焦点 弦 长 焦点 弦 长公 式
求直线被 二次曲线截得的弦长 ,通常是将直线与二次曲线方 程联 立 ,得到关于 或 Y 的一元二次方程 ,然后利用韦达定理 及弦长公式
求解。 过圆锥曲线焦点的弦长问题不 同于一般的弦长计算 , 根据 圆锥 曲 线的定义和几 何性质 ,可得出求过 圆锥 曲线焦点的弦长计算公式 ,即 焦点弦长公式 。 设A 为圆锥 曲线C B 的一条焦点弦 ,直线A 的斜 率为 k。倾斜角 B 为 2 公式1若曲线C 为椭 圆, =(> > ) I b 0,则 a
圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。
圆锥曲线焦点弦的公式及应用

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。
圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。
定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。
(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。
证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。
由圆锥曲线的统一定义得,,又,所以。
(1)当焦点内分弦时。
如图1,,所以。
图1(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。
过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。
例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。
例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。
圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。
定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。
(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。
证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。
由圆锥曲线的统一定义得,,又,所以。
(1)当焦点内分弦时。
如图1,,所以。
图1
(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2
评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()
解这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心
率为。
过右焦点且斜率为的直线于相交于两点,若,则()
解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。
例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为
的直线,与抛物线交于两点(点在轴左侧),则有____
图3
解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,
设,又,代入公式得,解得,所以。
例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
例5(自编题)已知双曲线的离心率为,过左焦点
且斜率为的直线交的两支于两点。
若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。
定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。
过点的弦与曲线的焦点所在的轴的夹角为
,则有。
证明设点在准线上的射影分别为,过点作轴的垂线交直线于点,交直线于点。
由圆锥曲线的统一定义得,,所以。
图4
(1)当焦点内分弦时。
如图4,,。
,所以较长焦半径,较短焦半径。
所以。
(2)当焦点外分弦时(此时曲线为双曲线)。
图5
如图5,,。
所以,
所以较长焦半径,较短焦半径。
所以。
综合(1)(2)知,较长焦半径,较短焦半径。
焦点弦的弦长公式为。
特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径,较短焦半径,焦点弦的弦长公式为。
当曲线为有心曲线即为椭圆或双曲线时,焦准距为。
注由上可得,当焦点内分弦时,有。
当焦点外分弦时,有。
例6 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___
解由抛物线焦点弦的弦长公式为得,,解得。
例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。
(1)求椭圆的离心率;(2)若,求椭圆方程。
解(1)这里,,由定理1的公式得,解得。
(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,
代入①得,所以,所以,故所求椭圆方程为。
例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。
由焦半径公式得,。
例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为
的直线,交双曲线于两点,则的值为___
解因为,离心率,点准距,因倾斜角为,所以。
注意到分别在双曲线的两支上,由焦半径公式得,。
例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,
过的直线交椭圆于两点,过的直线交椭圆于两点,且。
求四边形面积的最小值。
图6
解由方程可知,,则。
设直线与轴的夹角为,因为,所以直线与轴
的夹角为。
代入弦长公式得,
,。
故四边形的面积为,。
所以四边形面积的最小值为。