人教版九年级上第22章《二次函数》过关测试(含答案)
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
人教版数学九年级上册第二十二章 二次函数达标测试卷(含答案)

二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。
2020-2021学年度人教版九年级上册数学第二十二章《二次函数》综合过关测试卷(含答案)

流落地点 B 离墙距离 OB 是 ( )
第 6 题图
第 8 题图
第 10 题图
A.2m
B.3m
C.4m
D.5m
7.在同一平面直角坐标系中,函数 y=ax2+bx 与 y=bx+a 的图象可能是( )
8.如图,在平面直角坐标系中,抛物线所表示的函数表达式为 y=-2(x-h)2+k,则
下列结论正确的是 ( )
A.h>0,k>0 B.h<0,k>0
C.h<0,k<0
D.h>0,k<0
9.向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系式为
y=ax2+bx+c(a≠0).若此炮弹在第 6 秒与第 14 秒时的高度相等,则在下列时
间中炮弹所在高度最高的是( )
A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 14 秒
,当 k=
时,y 随 x 的增大而减小.
时,它的图象是开口向下的抛物线;此时当 x
13.若抛物线 y=(x+a)2+a-1 的顶点在第二象限,则 a 的取值范围是
.
14.如图,已知二次函数 y=x2+bx+c 的图象经过点(-1,0),(1,-2),当 y 随 x 的增
大而增大时,x 的取值范围是________.
25.某跳水运动员进行 10m 跳台跳水训练时,身体(看成一点)在空中运动路线是 如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳 某个规定动作时,正常情况下该运动员在空中的最高处 A 点距水面 10 m,入水处 B 点距池边的距离为 4m,同时运动员在距水面高度为 5m 以前,必须完成规定的翻 腾动作,并调整好入水的姿势,否则就会出现失误. 世纪金榜导学号 26534313
第22章 二次函数 人教版九年级数学上册能力测试(含答案)

第二十二章二次函数(测能力)——2022-2023学年人教版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若是关于x的二次函数,则m的值为( )A.-2B.-2或1C.1D.不存在2.今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y与x的函数关系式是( )A. B.C. D.3.二次函数的图像如图所示,若一元二次方程有实数根,则m的最大值为( )A.3B.-3C.-6D.94.在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A. B.C. D.5.抛物线的函数解析式为,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为( )A. B.C. D.6.关于抛物线,下列说法错误的是( )A.开口向下B.顶点坐标是C.当时,y随x的增大而增大D.对称轴是直线7.将二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线与这个新图象有3个公共点,则b的值为( )A.或-12B.或2C.-12或2D.或-128.在抛物线和直线上有三点,则的结果是( )A. B.0 C.1 D.29.如图,在中,,cm,cm.动点P从点A出发,沿边AB向点B以1 cm/s的速度移动(不与点B重合),同时动点Q从点B出发,沿边BC向点C以2 cm/s的速度移动(不与点C重合).当四边形APQC的面积最小时,经过的时间为( )A.1 sB.2 sC.3 sD.4 s10.已知抛物线(a,b,c为常数,且)的图象如图所示,有下列结论:①;②若,则;③.其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(每小题4分,共20分)11.若抛物线与x轴没有交点,则m的取值范围是______.12.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线上.设(),矩形ABCD的周长为l,则l与m的函数解析式为_________.13.某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留1m宽的门,所有围栏的总长(不含门)为26m.若要使得建成的饲养室面积最大,则利用墙体的长度为__________m.14.如图,已知二次函数的图像经过,两点,且图像的对称轴与x 轴交于点C,连接BA,BC,则的面积为___________.15.已知抛物线与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程无实数根;③;④的最小值为3.其中正确的结论是__________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液”的销售单价为x (元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大?最大利润为多少元?17.(8分)抛物线与直线交于.(1)求m和n的值;(2)求抛物线的顶点坐标和对称轴;(3)对于二次函数,当x在什么范围时,y随x的增大而减小?(4)抛物线与直线还有其他交点吗?若有,请求出来;若没有,说明理由.18.(10分)如图,抛物线与x轴交于点A,B,与y轴交于点C.过点C作轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为.(1)求抛物线的表达式;(2)求梯形COBD的面积.19.(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…-3-2-10123…y…3m-10-103…其中,_________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有___________个交点,所以对应的方程有___________个不相等的实数根;②方程有__________个不相等的实数根;③关于x的方程有4个不相等的实数根时,a的取值范围是__________.20.(12分)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离02581114 x/m竖直高度20.0021.4022.7523.2022.7521.40y/m根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系.记该运动员第一次训练的着陆点的水平距离为;第二次训练的着陆点的水平距离为,则______(填“>”“=”或“<”).21.(12分)如图,抛物线的顶点为,与y轴交于点,点为其对称轴上的一个定点.(1)求这条抛物线的函数解析式.(2)已知直线l是过点且垂直于y轴的定直线,若抛物线上的任意一点到直线l的距离为d,求证:.(3)已知坐标平面内的点,请在抛物线上找一点Q,使的周长最小,并求此时周长的最小值及点Q的坐标.答案以及解析1.答案:A解析:若是关于x的二次函数,则解得.故选A.2.答案:B解析:该药店三月份销售口罩枚数y与x的函数关系式是.3.答案:A解析:由图像可得二次函数的最小值是-3.一元二次方程有实数根,,解得,m的最大值是3.4.答案:D解析:观察函数图象可知,,,二次函数的图象开口向上,对称轴,与y轴的交点在y轴负半轴.故选D.5.答案:C解析:根据题意知,将x轴向上平移2个单位长度,将y轴向左平移3个单位长度相当于将抛物线向下平移2个单位长度,再向右平移3个单位长度,则所得抛物线的解析式为.故选C.6.答案:C解析:抛物线,该函数图象开口向下,故选项A不符合题意;该函数图象的顶点坐标是,故选项B不符合题意;当时,y随x的增大而减小,故选项C符合题意;对称轴是直线,故选项D不符合题意.故选C.7.答案:A解析:如图所示,过点B的直线与新抛物线有三个公共点,将直线向下平移到A、B之间的抛物线只有C一个公共点时,直线与新抛物线也有三个公共点.令,解得:或6,即点B坐标.当一次函数过点B时,将点B的坐标代入,得,解得.将一次函数与二次函数表达式联立得:,整理得:,,解得:.综上,b的值为或,故选A.8.答案:D解析:如图,在抛物线和直线上有三点, ,.,∴抛物线的对称轴为直线,.在直线上,,.故选D.9.答案:B解析:设运动时间为x s,四边形APQC的面积为y,则cm,cm,cm,,即,当时,y有最小值,为12,故选B.10.答案:D解析:抛物线开口向下,.,,,故①正确;设二次函数与x轴的两个交点的横坐标分别是和,,则.,,故②正确;,,,.时,,,.,,,,,,,故③正确.故选D.11.答案:解析:∵抛物线与x轴没有交点,,即,解得.12.答案:解析:,,点D的横坐标为m.把代入抛物线中,得,.把代入抛物线中,得,解得,,点C的横坐标是,故,矩形ABCD的周长,即.13.答案:14解析:设平行于墙的一边长为x m,则垂直于墙的一边长为m,总面积,当时,建成的饲养室面积最大.故答案为14.14.答案:6解析:把,代入,得解得所以抛物线的表达式为.因为抛物线的对称轴为直线,所以.又因为,,所以,,所以的面积为.15.答案:①②③④解析:,,①正确.抛物线与x轴最多有一个交点,抛物线开口向上,抛物线与直线没有交点,关于x的方程无实数根,②正确.及抛物线与x轴最多有一个交点,x取任何值时,,当时,,③正确.当时,,,,,④正确.故答案为①②③④.16.答案:(1).(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.解析:(1)由题意得.(2)设每天的销售利润为w元,则有,,二次函数的图象开口向下.当时,w有最大值,最大值为360.当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.17.答案:(1);(2)(0,-5);y轴(3)(4)(-1,-3)解析:(1)∵抛物线与直线交于,∴将代入得,解得.将(2,3)代入得,解得.(2)根据(1)得出,∴抛物线的顶点坐标为(0,-5),对称轴为y轴.(3)抛物线开口向上,当时,y随x的增大而减小.(4)由题意得,解得,,故抛物线与直线还有其他交点,交点坐标为(-1,-3).18.答案:解:(1)把的坐标代入,得,.(2)令,得,.抛物线的对称轴是直线,...19.答案:(1)0(2)图见解析(3)见解析(4)①3,3,②2;③解析:(1)把代入得,即,故答案为0.(2)如图所示.(3)(答案不唯一)由函数图象知,①函数的图象关于y轴对称;②当时,y随x的增大而增大.(4)①由函数图象知,函数图象与x轴有3个交点,所以对应的方程有3个不相等的实数根;②如图,的图象与直线有两个交点,有2个不相等的实数根;③由函数图象知,关于x的方程有4个不相等的实数根时,a的取值范围是.故答案为①3,3,②2;③.20.答案:(1)(2)<解析:(1)该运动员竖直高度的最大值为23.20 m.由表格中的数据可知该抛物线的顶点坐标为,故该抛物线的解析式为,将代入,得,解得,.(2)设着陆点的纵坐标为t,则第一次训练时,,解得:或,根据图象可知,第一次训练时着陆点的水平距离,第二次训练时,,解得:或,根据图象可知,第二次训练时着陆点的水平距离,,,,故答案为:<21.答案:(1)(2)见解析(3)解析:(1)设抛物线的解析式为.由题意,得抛物线的顶点为.又抛物线与y轴交于,,解得.∴抛物线的解析式为.(2)证明:如图,过点P作垂直于对称轴于点M.在中,.由勾股定理,得.∵点在抛物线上,,即...又.(3)如图,作于点G,交抛物线于点Q,则点Q即为所求,此时的周长最小.由(2)可知,,.又,周长的最小值为,此时点Q的横坐标为4,纵坐标,即点Q的坐标为.。
第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)

检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版数学九年级上册 第22章 二次函数测试及答案

人教版数学九上第22章 二次函数测试及答案班级:________ 学号:________ 姓名:________ 得分:________一、选择题(每小题3分,共30分)1.在下列关于x 的函数中,一定是二次函数的是( ) A.y =x 2B.y =ax 2+bx +cC.y =8xD.y =x 2(1+x )2.将二次函数223y x x =-+化为()2+y x m h =+的形式,结果为( ) A .()214y x =-+B .()212y x =-+C .()214y x =++D .()212y x =++3.已知二次函数y 1=﹣3x 2,,,它们的图象开口由小到大的顺序是( ) A.y 1<y 2<y 3B.y 3<y 2<y 1C.y 1<y 3<y 2D.y 2<y 3<y 14.抛物线y =−(x −5)2不经过的象限是( )A.第一、二象限B.第一、四象限C.第二、三象限D.第三、四象限5.由下表:) A.B.C.D.6.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .7.如图,在△ABC 中,∠B =90°,AB =6cm ,BC =12cm ,动点P 从点A 开始沿边AB 向B 以1cm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以2cm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过________秒,四边形APQC 的面积最小.( ) A .1B .2C .3D .4第7题图 第8题图 第10题图8.运动员推出铅球后铅球在空中的飞行路线可以看作是抛物线的一部分,铅球在空中飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似地满足函数关系y =ax 2+bx +c (a ≠0).下图记录了铅球飞行中的x 与y 的三组数据,根据上述函数模型和数据,可推断出该铅球飞行到最高点时,水平距离最接近的是( ) A .2.6 mB .3 mC .3.5 mD .4.8 m9.二次函数y =x 2+bx 的对称轴为x =1,若关于一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .t <8B .t <3C .﹣1≤t <3D .﹣1≤t <810.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( ) A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-二、选择题(每小题3分,共30分)11.若函数y =(m +2)2mmx +是关于x 的二次函数,则满足条件的m 的值为________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________. 13.把二次函数243y x x =-+化成2()y a x h k =-+的形式是_________.14.若二次函数26y x x m =-+与x 轴有两个不同交点,则m 的取值范围是__________.15.若二次函数26y x x c =-+的图象经过A (﹣1,1y )、B (2,2y )、C (3,3y )三点,则关于123y y y ,,大小关系正确的是___________.16.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²﹣m +2019的值为_______17.如图,是二次函数y =﹣x 2+bx +c 的部分图象,则不等式﹣x 2+bx +c >0的解集是_____.第17题图 第19题图 第20题图18.某网店销售某种商品,成本为30元/件,当销售价格为60元件/时,每天可售出100件,经市场调查发现,销售单价每降1元,每天销量增加10件.当销售单价为__________元时,每天获取的利润最大. 19.如图,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为____.20.二次函数 y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线 x =1,则下列四个结论:①c >0; ②2a +b =0; ③b 2﹣4ac >0; ④a ﹣b +c >0;正确的是_____.三、解答题(共60分)21.(6分)已知二次函数y =x 2﹣4x +3.(1)求该二次函数与x 轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y <0时,x 的取值范围.22.(6分)已知抛物线y=﹣x2+bx﹣c的部分图象如图.(1)求b、c的值;(2)分别求出抛物线的对称轴和y的最大值.23.(6分)二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的解析式;(2)写出它的开口方向,对称轴、最值.24.(6分)已知抛物线y=2x2﹣8x+k+8和直线y=mx+1相交于点P(3,4m),求这两个函数的解析式及另一交点坐标.25.(8分)如图,在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点B的坐标为(﹣1,0)(1)求抛物线的解析式;(2)点D的坐标为(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,求点P的坐标.26.(10分)某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?27.(8分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.28.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,且点A在点B的左侧,直线y=﹣x﹣1与抛物线交于A,C两点,其中点C的横坐标为2.(1)求二次函数的解析式;(2)P是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值.参考答案1.A【解析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选:A.2.B【解析】根据配方法整理即可得解.解:223y x x =-+ =(x 2 −2x +1)+2=()2-12x +,故选B 3.C【解析】抛物线的开口大小由二次项系数的绝对值大小确定,绝对值越大,开口越小. 解:∵|﹣3|>| |>|﹣|,二次项系数的绝对值越大,抛物线开口越小, ∴y 1<y 3<y 2, 故选C . 4.A【解析】由抛物线解析式 ﹣( )可判断开口方向,顶点位置,对称轴,与y 轴交点等,根据函数的大致图象判断抛物线的位置,回答题目的问题.解:由抛物 ﹣( )可知开口向上,顶点为(5,0),对称轴是x =5, 与y 轴交点是(0,﹣),所以过第三、四象限,不经过第一、二象限. 故选A . 5.C【解析】根据二次函数的增减性,可得答案. 解:由表格中的数据,得在6.17<x <6.20范围内,y 随x 的增大而增大, 当x =6.18时,y =﹣0.01,当x =6.19时,y =0.04,方程ax 2+bx +c =0的一个根x 的取值范围是6.18<x <6.19,故选:C . 6.C【解析】令x =0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,则一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确,故选:C.7.C【解析】根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系求最小值.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为S cm2,则有:S=S△ABC﹣S△PBQ=12×12×6﹣12(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.C【解析】轨迹为二次函数,把三点代入二次函数,利用待定系数法求解即可解决问题.解:由题意抛物线经过(0,1.8),(3,3),(6,2.7),则有:1.8933366 2.7ca b ca b c=⎧⎪++=⎨⎪++=⎩,解得:11213201.8a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为2113 1.81220y x x =-++,∴该铅球飞行到最高点时,水平距离是1320 3.9126ba -=-=-m . 故选C . 9.D【解析】根据二次函数对称轴求出二次函数解析式,再构造函数g =t ,根据题意得到在﹣1<x <4时,二次函数的取值范围,即可根据方程与函数的关系进行求解. 解:∵二次函数y =x 2+bx 的对称轴为x =1, ∴b =﹣2,∴y =x 2﹣2x =(x ﹣1)2﹣1,故在﹣1<x <4时,二次函数的取值范围为﹣1≤y <8 设函数g =t ,则关于一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解 t 的取值范围是﹣1≤t <8 故选D. 10.B【解析】设抛物线解析式为y =ax 2,由已知可得点B 坐标为(45,﹣78),利用待定系数法进行求解即可.解:∵拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,∴设抛物线解析式为y =ax 2,点B(45,﹣78),∴﹣78=452a ,解得:a =26675-, ∴此抛物线钢拱的函数表达式为226675y x =-, 故选B. 11.1【解析】根据二次函数的定义得出m +2≠0且m 2+m =2,求出m 即可. 解:∵函数y =(m +2)x m 2+m是关于x 的二次函数,∴m +2≠0且m 2+m =2,解得:m ≠﹣2且m =﹣2,m =1, ∴m =1, 故答案为:1. 12.y =x 2﹣2【解析】根据抛物线平移的规律(左加右减,上加下减)求解.解:抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2. 故答案为:y =x 2﹣2.13.2(2)1y x =-- 【解析】y =x 2−4x +3=(x 2−4x +4)−4+3=(x −2)2−1,故答案为:y =(x −2)2−1.14.9m <【解析】二次函数26y x x m =-+与x 轴有两个不同交点,等价于方程260x x m -+=有两个不等实数根,也就是△>0,可得关于m 的不等式,解之即可.解:由题意得2(6)40m ∆=-->, 解得9m <. 15.132y y y >>【解析】根据函数解析式的特点,其对称轴为x =3,图象开口向上;利用y 随x 的增大而减小,可判断y 2<y 1,根据二次函数图象的对称性可判断y 3>y 2;于是y 1>y 3>y 2.解:26y x x c =-+可整理为()239y x c =-+-,根据函数解析式的特点可知当x =3时y最小,函数图像关于x =3对称,图象开口向上,当x <3时,y 随x 的增大而减小,对比A 、B 横坐标都比3小,且﹣1<2,则12y y >,根据图像的对称性,横坐标距离对称轴x =3越远的点其y 值越大,则A 、B 、C 点横坐标离x =3的距离分别为:134-+=、231-=、33+=41>>,则132y y y >>.16.2020【解析】把点(m ,0)代入抛物线y =x ²﹣x ﹣1求出m ²﹣m 的值,再代入所求代数式进行计算即可.解:∵抛物线y =x ²−x −1与x 轴的一个交点为(m ,0), ∴m ²−m −1=0, ∴m ²−m =1, ∴原式=1+2019=2020. 故答案为:2020. 17.﹣1<x <9【解析】由对称轴x =4,抛物线与x 轴的交点(9,0),根据二次函数的对称性求得另一个与x 轴交点的坐标根据图象与x 轴交点的坐标即可得到不等式﹣x 2+bx +c >0的解集.解:∵对称轴x =4,抛物线与x 轴的交点(9,0), ∴另一个与x 轴交点的坐标(﹣1,0),∴二次函数y =﹣x 2+2x +c 的图象与x 轴交点坐标为(﹣1,0)、(9,0),而﹣x2+bx+c>0,即y>0,∴﹣1<x<9.故答案为:﹣1<x<9.18.50【解析】直接利用每件利润×销量=总利润,进而得出关系式进,再根据函数最值的方法求出而答案.解:设当销售单价为x元时,每天获取的利润为y元,则y=(x﹣30)[100+10(60﹣x)]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∴当x=50时,y有最大值,且为4000,故答案为:50.19.4【解析】确定出抛物线y=12x2﹣2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.解:如图,∵y=12x2﹣2x=12(x﹣2)2﹣2,∴平移后抛物线的顶点坐标为(2,﹣2),对称轴为直线x=2,当x =2时,y =12×22=2, ∴平移后阴影部分的面积等于如图三角形的面积,12×(2+2)×2=4. 故答案为:4. 20.①②③【解析】由抛物线开口方向得到a <0,由抛物线与y 轴交点位置得到c >0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x 轴的交点个数可对③进行判断;由于x =﹣1时函数值小于0,则可对④进行判断. 解:∵抛物线开口向下, ∴a <0,∵抛物线与y 轴交点位于y 轴正半轴, ∴c >0,所以①正确;∵抛物线的对称轴为直线x 12ba=-=, ∴b =﹣2a ,即2a +b =0,所以②正确; ∵抛物线与x 轴有两个不同的交点, ∴b 2﹣4ac >0,所以③正确; ∵x =﹣1时,y <0, ∴a ﹣b +c <0,所以④错误. 故答案为:①②③.21.(1)二次函数与x 轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1); (2)图见详解;当y <0时,1<x <3.【解析】(1)令y =0,可求出x 的值,即为与x 轴的交点坐标;将二次函数化为顶点式即可得出顶点坐标(2)根据与x轴的交点坐标,顶点坐标,与y轴的交点即可画出图像,再根据图像信息即可得出x的取值范围.解:(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.22.(1)b=﹣2,c=﹣3;(2) 抛物线的对称轴是x=﹣1,最大值为4【解析】(1)根据函数的图象过(1,0)(0,3),利用待定系数法,再代入y=﹣x2+bx﹣c,列出方程组,即可求出b,c的值;(2)把函数化为顶点式,求得对称轴和最大值即可.解:(1)把(1,0),(0,3)代入y=﹣x2+bx﹣c得解得b=﹣2,c=﹣3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,所以抛物线的对称轴是x =﹣1,最大值为4.23.(1)y =﹣12(x ﹣3)2+5;(2)开口向下,对称轴为直线x =3,当x =3时函数的最大值为5;【解析】(1)设顶点式y =a (x ﹣3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)根据二次函数解析式,即可得到开口方向,对称轴、顶点坐标和最值.解:(1)设抛物线的解析式为y =a (x ﹣3)2+5, 将A (1,3)代入上式得3=a (1﹣3)2+5,解得a =﹣12, ∴抛物线的解析式为y =﹣12(x ﹣3)2+5, (2)根据y =﹣12(x ﹣3)2+5,可得抛物线开口向下,对称轴为直线x =3,顶点坐标为(3,5),当x =3时函数的最大值为5. 24.3(2,5)2.【解析】先把()3,4P m 代入21y mx =+求出m ,从而得到一次函数解析式,且确定P 点坐标,然后把P 点坐标代入21288y x x k =-++求出k 的值,于是可确定抛物线解析式;联立方程,解方程可确定抛物线与直线的另一个交点坐标. 解:把()3,4P m 代入21y mx =+得314m m +=,解得1m =,∴一次函数解析式为1y x =+,()3,4P把()3,4P 代入21288y x x k =-++得182484k -++=,解得2k =,∴抛物线解析式为212810y x x =-+;联立得方程:228101y x x y x ⎧=-+⎨=+⎩,解得:34x y =⎧⎨=⎩或3252x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴抛物线与直线的另一个交点坐标为3(2,5)2.25.(1)y =﹣x 2+2x +3;(2)点P 的坐标为(2)或(1,2).【解析】(1)求出A 、B 坐标,利用待定点C 的坐标为(0,3),点D (1,0),(2)由点C 的坐标为(0,3),点D (1,0),可知满足条件的点P 的纵坐标为2,解方程﹣x 2+2x +3=2即可得到点P 的横坐标,由此即可解决问题.解:(1)∵抛物线的对称轴为直线x =1,y =﹣x 2+bx +c 与x 轴交于点A 和点B ,∴由题意可求点A 的坐标为(3,0).将点A (3,0)和点B (﹣1,0)代入y =﹣x 2+bx +c ,得 09301b c b c =-++⎧⎨=--+⎩,解得 23b c =⎧⎨=⎩,∴抛物线的解析式y =﹣x 2+2x +3.(2)如图,∵点C 的坐标为(0,3),点D (1,0), ∴满足条件的点P 的纵坐标为2.∴﹣x 2+2x +3=2.解得 x 1,x 2=1∴点P 的坐标为(2)或(1,2).26.(1)y ==﹣10x 2+80x +1800(0≤x ≤5,且x 为整数);(2)每件商品的售价为34元时,商品的利润最大,最大月利润是1960元.【解析】(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;解:(1)y =(30﹣20+x )(180﹣10x )=﹣10x 2+80x +1800(0≤x ≤5,且x 为整数); (2)由(1)知,y =﹣10x 2+80x +1800(0≤x ≤5,且x 为整数).∵﹣10<0,∴当x =802(10)-⨯-=4时,y 最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,最大月利润是1960元.27.(1)20m ;(2)当a ≥24时, S 最大值为288平方米;当0<a <24时, S 最大值为21242a a -+.【解析】(1)设AD 为x ,则AB 为46212422x x +-=-,根据面积公式列出一元二次方程即可求解;(2)设S=AD×AB ,根据二次函数及自变量的取值范围即可求解. 解:(1)设AD 为x ,则AB 为46212422x x +-=-, 依题意得1242x x ⎛⎫-⨯⎪⎝⎭=280, 解得x =20,x =28>a ,故舍去, ∴AD 的长为20m ;(2)设矩形菜园ABCD 面积S=AD×AB=()2211242428822x x x -+=-+ 当a ≥24时,则当x =24时,S 最大值为288平方米;当0<a <24时,则当0<x ≤a 时,S 随x 的增大而增大,当x =a 时,S 最大值为21242a a -+. 28.(1)y =x 2﹣2x ﹣3.(2)当m =时,PE 取最大值,最大值为.【解析】分析: (1)根据点C 在x 轴上求得点A 的坐标,再根据点C 的横坐标为2求出点C 的纵坐标,把A (﹣1,0),B (3,0)代入二次函数的解析式,利用待定系数法即可求得函数的解析式;(2)设点P 的坐标为(m ,﹣m ﹣1)(﹣1≤m ≤2),则点E 的坐标为(m ,m 2﹣2m ﹣3),进而可得出PE=﹣m 2+m +2=﹣(m ﹣)2+,再利用二次函数的性质即可解决最值问题. 详解:(1)当y =0时,有﹣x ﹣1=0, 解得:x =﹣1,∴点A 的坐标为(﹣1,0); 当x =2时,y =﹣x ﹣1=﹣3,∴点C的坐标为(2,﹣3).将A(﹣1,0)、C(2,﹣3)代入y=x2+bx+c,得:,解得:,∴二次函数的解析式为y=x2﹣2x﹣3.(2)设点P的坐标为(m,﹣m﹣1)(﹣1≤m≤2),则点E的坐标为(m,m2﹣2m﹣3),∴PE=﹣m﹣1﹣(m2﹣2m﹣3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,∴当m=时,PE取最大值,最大值为.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章《二次函数》过关测试一.选择题(共10小题)1.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1 2.抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣13.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1B.x≤3C.x<1或x>0D.x<1或x>3 4.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+3 5.若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是()A.a≠0B.a≠2C.a<2D.a>26.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,下列结论中正确的是()A.ab>0B.b=2a C.4a+2b+c<0D.a+c<b7.(﹣1,y1),(2,y2)与(3,y3)为二次函数y=﹣x2﹣4x+5图象上的三点,则y 1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y38.如图,当ab>0时,函数y=ax2与函数y=bx+a的图象大致是()A.B.C.D.9.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.9<1).下10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA 列结论:①2a+b>0;②abc<0;③若OC=2OA,则2b﹣ac=4;④3a﹣c<0.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题)11.在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y 1﹣y20(填“>”、“<”或“=”).12.已知函数y=ax2﹣(a﹣1)x﹣2a+1,当0<x<3时,y随x的增大而增大,则a的取值范围是.13.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其中自变量x与函数值y之间满足下面的对应关系:x…357…y… 2.5 2.5﹣1.5…则a+b+c= .14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE= .15.一个二次函数的图象经过A(0,0)、B(2,4)、C(4,0)三点,该函数的表达式是.16.如图,抛物线y=﹣x2+2x+3交x轴于A,B两点,交y轴于点C,点C关于抛物线的对称轴的对称点为E,点G,F分别在x轴和y轴上,则四边形EDFG 周长的最小值为.17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽m.18.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若B(﹣,y1),C(﹣,y2)为图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中正确的结论是.三.解答题(共7小题)19.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+5的顶点为A.(1)求点A的坐标;(2)将线段OA沿x轴向右平移2个单位得到线段OˊAˊ.①直接写出点Oˊ和Aˊ的坐标;②若抛物线y=mx2﹣4mx+4m+5与四边形AOOˊAˊ有且只有两个公共点,结合函数的图象,求m的取值范围.20.如图1所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系图象如图2所示,请回答:(1)线段BC 的长为 cm .(2)当运动时间t=2.5秒时,P 、Q 之间的距离是 cm .21.如图,一个滑道由滑坡(AB 段)和缓冲带(BC 段)组成,滑雪者在滑坡上滑行的距离y 1(单位:m )和滑行时间t 1(单位s )满足二次函数关系,并测得相关数据: 滑行时间t 1/s 0 1 2 3 4 滑行距离y 1/s4.51428.548滑雪者在缓冲带上滑行的距离y 2(单位:m )和滑行时间t 2(单位:s )满足:y 2=52t 2﹣2t 22,滑雪者从A 出发在缓冲带BC 上停止,一共用了23s . (1)求y 1和t 1满足的二次函数解析式; (2)求滑坡AB 的长度.22.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.23.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.24.如图,一农户要建一矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积最大,最大面积是多少?25.如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.(1)求b,c的值;(2)在抛物对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.2.【解答】解:抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x ﹣2)2+1.故选:B.3.【解答】解:∵当x=1时,y=6;当x=3时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),∴当y<6时,x<1或x>3.故选:D.4.【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.5.【解答】解:∵函数y=(2﹣a)x2﹣x是二次函数,∴2﹣a≠0,即a≠2,故选:B.6.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x=﹣=1,得2a=﹣b,∴a、b异号,即b>0,即ab<0,b=﹣2a,A、B选项错误;∵二次函数y=ax2+bx+c图象可知,当x=2时,y>0,∴4a+2b+c>0,故C错误;∵二次函数y=ax2+bx+c图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,故D正确;故选:D.7.【解答】解:∵(﹣1,y1),(2,y2)与(3,y3)为二次函数y=﹣x2﹣4x+5图象上的三点,∴把函数y=﹣x2﹣4x+5变形为:y=﹣(x+2)2+9,∴由函数图象可知当x=2时此函数有最大值为9,当x>﹣2时,y的值随x的增大而减小,∴y1>y2>y3,故选:B.8.【解答】解:A、根据一次函数得出a<0,b>0,根据二次函数得出a>0,则ab<0,故本选项错误;B、根据一次函数得出a>0,b<0,根据二次函数得出a>0,则ab<0,故本选项错误;C、根据一次函数得出a<0,b<0,根据二次函数得出a<0,则ab>0,故本选项正确;D、根据一次函数得出a<0,b>0,根据二次函数得出a<0,则ab<0,故本选项错误;故选:C.9.【解答】解:设抛物线的解析式是y=ax2+bx+c,∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,∴解得,∴y=﹣x2+5x﹣4,设过点B(4,0),C(0,﹣4)的直线的解析式为y=kx+m解得,即直线BC的直线解析式为:y=x﹣4,设点D的坐标是(x,﹣x2+5x﹣4)∴=﹣2(x﹣2)2+8,∴当x=2时,△BCD的面积取得最大值,最大值是8.故选:C.10.【解答】解:①∵抛物线的开口向下,∴a<0.∵抛物线的对称轴﹣>1,∴b>﹣2a,即2a+b>0,①成立;②∵b>﹣2a,a<0,∴b>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc>0,②错误;③∵OC=2OA,∴A(﹣,0),∴ac2﹣bc+c=0,整理得:2b﹣ac=4,③成立;④∵抛物线的对称轴1<﹣<2,∴﹣2a<b<﹣4a,∵当x=1时,y=a+b+c>0,∴a﹣4a+c>0,即3a﹣c<0,④正确.综上可知正确的结论有3个.故选:C.二.填空题(共8小题)11.【解答】解:把点(﹣2,y1)、(1,y2)代入y=ax2+2ax+4得y 1=4a﹣4a+4=4,y2=a+2a+4=3a+4,所以y1﹣y2=3a+4﹣4=3a,而a<0,所以y1﹣y2<0.故答案为<.12.【解答】解:根据题意得:当a<0时,﹣≥3,解得:﹣≤a<0;当a=0时,原函数为一次函数y=x+1,∵1>0,∴y随x的增大而增大,∴a=0符合题意;当a>0时,﹣≤0,解得:a≤1.综上所述:a的取值范围是﹣≤a≤1.13.【解答】解:∵x=3,y=2.5;x=5,y=2.5,∴抛物线的对称轴为直线x=4,∴当x=1和x=7时函数值相等,而x=7时,y=﹣1.5,∴x=1时,y=﹣1.5,即a+b+c=﹣1.5.故答案为﹣1.5.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),=2,由点B、E坐标可知,BE所在的直线的kBE过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,=2,方程为y=2x﹣3,则直线CF所在的方程的k=kBE∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=﹣x2+4x.故答案为:y=﹣x2+4x.16.【解答】解:如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),连接D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′=+=+,∴四边形EDFG的周长的最小值为: +.故答案是: +.17.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O 且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,故答案为:4.18.【解答】解:①∵抛物线交y轴于正半轴,∴c>0,结论①正确;②∵抛物线的对称轴为直线x=﹣1,∴﹣1﹣(﹣)<﹣﹣(﹣1).又∵抛物线的开口向下,B(﹣,y1),C(﹣,y2)为图象上的两点,∴y1>y2,结论②错误;③∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,结论③正确;④∵抛物线的顶点纵坐标在x轴上方,∴>0,结论④错误.故答案为:①③.三.解答题(共7小题)19.【解答】解:(1)∵y=mx2﹣4mx+4m+5=m(x2﹣4x+4)+5=m(x﹣2)2+5,∴∴抛物线的顶点A的坐标为(2,5).(2)由(1)知,A(2,5),∵线段OA沿x轴向右平移2个单位长度得到线段O′A′.∴A'(4,5),O'(2,0);(3)如图,∵抛物线y=mx2﹣4mx+4m+5与四边形AOO′A′有且只有两个公共点,∴m<0.由图象可知,抛物线是始终和四边形AOO'A'的边O'A'相交,∴抛物线已经和四边形AOO′A′有两个公共点,∴将(0,0)代入y=mx2﹣4mx+4m+5中,得m=﹣.∴﹣<m<0.20.【解答】解:(1)根据图2可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm.故答案是:5;(2)如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB•sin∠PBF=2.5×=2,∴在直角△PBF中,由勾股定理得到:BF===1.5,∴FQ=2.5﹣1.5=1.∴在直角△PFQ中,由勾股定理得到:PQ===.故答案是:.21.【解答】解:(1)设y1=at+bt1,把(1,4.5)和(2,14)代入函数解析式得,,解得:,∴二次函数解析式为:y1=2.5t12+2t1;(2)将y=52t﹣2t2与y=2.5t2+2t联立,解得:t=,即:B点位置时用的时间,把t=代入函数:y1=2.5t12+2t1,则AB=y1≈330.86≈331m,答:滑坡AB的长度331m.22.【解答】解:(1)把B(3,﹣3)代入y=﹣x2+mx+m2得:﹣3=﹣32+3m+m2,解得m=2,∴y=﹣x2+2x=﹣(x+1)2+1,∴顶点A的坐标是(﹣1,1);(2)∵直线OB的解析式为y=﹣x,故设P(n,﹣n2+2n),Q(n,﹣n),∴PQ=﹣n2+2n﹣(﹣n)=﹣n2+3n,∴S△OPB=(﹣n2+3n)=﹣(n﹣)+,当n=时,S△OPB的最大值为.此时y=﹣n2+2n=,∴P(,);(3)∵直线OA的解析式为y=x,∴可设新的抛物线解析式为y=﹣(x﹣a)2+a,联立,∴﹣(x﹣a)2+a=x,∴x1=a,x2=a﹣1,即C、D两点间的横坐标的差为1,∴CD=.23.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),设直线BC的解析式为:y=kx+d,则,解得:,∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);由0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC =S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF=×4×3+(﹣x2+3x)×3=﹣(x﹣)2+.当x=时,四边形ABPC的面积最大此时P点的坐标为(,﹣),四边形ABPC的面积的最大值为;(3)设点Q的坐标为(m,m﹣3),∵O(0,0),C(0,﹣3),∴OC=3,QC==|m|,QO=.△QOC为等腰三角形分三种情况:①当OC=QC时,3=|m|,解得:m=±,此时点Q的坐标为(,﹣3)或(﹣,﹣﹣3);②当OC=QO时,3=,解得:m=3或m=0(舍去),此时点Q的坐标为(3,0);③当QC=QO时,有|m|=,解得:m=,此时点Q的坐标为(,﹣).综上可知:Q点坐标为(,﹣3)、(﹣,﹣﹣3)、(3,0)或(,﹣).24.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得y=x(25﹣2x+1)=﹣2,∵2x>14,7≤x≤13,所以当x=7米时,即矩形猪舍的长、宽分别为12米、7米,猪舍的面积最大,最大面积是84平方米.25.【解答】解:(1)把A(1,0)代入抛物线y=ax2+2x﹣3a,可得:a+2﹣3a=0解得a=1.∴抛物线的解析式为:y=x2+2x﹣3;把B(b,0),C(0,c)代入y=x2+2x﹣3,可得:b=1或b=﹣3,c=﹣3,∵A(1,0),∴b=﹣3;(2)∵抛物线的解析式为:y=x2+2x﹣3,∴其对称轴为直线x=﹣=﹣1,连接BC,如图1所示,∵B(﹣3,0),C(0,﹣3),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=﹣x﹣3,当x=﹣1时,y=1﹣3=﹣2,∴P(﹣1,﹣2);(2)存在点N,使以A,C,M,N四点构成的四边形为平行四边形.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=﹣1,C(0,﹣3),(﹣2,﹣3);∴N1②当点N在x轴上方时,如图2,过点N'作N'D⊥x轴于点D,在△AN'D与△M'CO 中,∴△AN'D≌△M'CO(AAS),∴N'D=OC=3,即N'点的纵坐标为 3.∴3=x2+2x﹣3,解得x=﹣1+或x=﹣1﹣,∴N'(﹣1+,3),N“(﹣1﹣,3).综上所述,符合条件的点N的坐标为(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).21 / 21。