高中数学六种概率模型

合集下载

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点

第二章统计一、简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

二、系统抽样1.系统抽样(也叫等距离抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体)/n(样本个数)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

三、分层抽样1.分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

高中常见数学模型案例

高中常见数学模型案例

高中常见数学模型案例中华人民共和国教育部 4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。

”教材中常见模型有如下几种:一、函数模型用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。

函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。

1、正比例、反比例函数问题例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。

分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。

若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(⋅-=---b a b 化简得a b 45=,所以x a bx y ⋅⋅==2.0452.0,即+∈=N x x a y ,42、一次函数问题例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。

分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。

高中数学模型总结归纳

高中数学模型总结归纳

高中数学模型总结归纳数学模型是数学在实际问题中的应用,通过建立数学模型,我们可以对实际问题进行定量分析和预测。

在高中数学学习中,数学模型是一个重要的学习内容,它能够培养学生的数学思维和解决实际问题的能力。

下面将从线性规划、概率统计和微分方程三个方面总结归纳高中数学模型的相关知识。

一、线性规划模型线性规划模型是数学建模中常用的一种模型。

它通过建立一组线性方程和一个线性目标函数来描述实际问题,并求解最优解。

线性规划模型在经济、管理、交通等领域有广泛的应用。

例如,在生产计划中,可以通过线性规划模型来确定最佳的生产数量,以最大化利润或最小化成本。

在运输问题中,可以利用线性规划模型来确定最佳的物流路径,以最大化运输效益或最小化运输成本。

二、概率统计模型概率统计模型是研究随机现象的数学模型。

它通过建立概率分布函数和统计模型来描述实际问题,并对随机变量进行分析和推断。

概率统计模型在风险评估、市场调查、医学研究等领域具有重要的应用价值。

例如,在风险评估中,可以利用概率统计模型来评估不同投资组合的风险和收益,以帮助投资者做出合理的决策。

在市场调查中,可以通过概率统计模型来分析市场需求和消费者行为,以指导企业的营销策略。

三、微分方程模型微分方程模型是描述变化过程的数学模型。

它通过建立微分方程和初始条件来描述实际问题,并求解方程得到解析解或数值解。

微分方程模型在物理、生物、环境等领域有广泛的应用。

例如,在物理学中,可以利用微分方程模型来描述物体的运动规律,求解方程可以得到物体的位置、速度和加速度等信息。

在生物学中,可以通过微分方程模型来描述生物种群的增长和衰退过程,以了解生态系统的变化和稳定性。

高中数学模型是数学在实际问题中的应用,通过建立数学模型,可以对实际问题进行定量分析和预测。

线性规划模型、概率统计模型和微分方程模型是数学建模中常用的三种模型。

通过学习和应用这些模型,可以培养学生的数学思维和解决实际问题的能力,提高数学学科的学习效果和实际应用能力。

高中数学概率知识点归纳总结

高中数学概率知识点归纳总结

高中数学概率知识点归纳总结《高中数学概率知识点归纳总结》嗨,大家好!我虽然是个小学生,但是我对高中数学里的概率可好奇啦。

今天就想和大家聊聊我了解到的高中数学概率的那些事儿。

咱们先说说概率是啥吧。

概率啊,就像是猜一个事情发生的可能性大小。

比如说,我们玩抛硬币的游戏,硬币不是正面就是反面,那正面朝上的概率是多少呢?嘿嘿,就是二分之一啦。

这就好像是把所有可能发生的情况放在一个大盒子里,正面朝上就是其中的一种情况,所以就是一半的可能性。

这就好比是分糖果,一共有两颗糖,一颗是水果味的,一颗是牛奶味的,你拿到水果味糖的概率就是二分之一呀。

那概率的基本概念里有个叫样本空间的东西。

样本空间就是所有可能结果的集合。

就像扔骰子,骰子有六个面,那这个扔骰子的样本空间就是{1,2,3,4,5,6}这六个数。

这多像我们去超市选零食,超市里的零食架子上有各种各样的零食,这整个零食架子就像是样本空间,而每一种零食就是其中的一个结果。

再说说事件。

事件呢,就是样本空间的一个子集。

比如说扔骰子,得到偶数这个事件,那这个事件就是{2,4,6}。

这就好比是在超市里专门挑出甜的零食,这些甜的零食就是一个事件。

那事件又分好多种呢。

有基本事件,就像单独的一个结果,扔骰子得到3就是一个基本事件。

还有复合事件,像刚刚说的得到偶数这种由好几个基本事件组成的就是复合事件。

接着就是概率的计算啦。

古典概型可有趣了。

古典概型就是满足两个条件的概率模型,一是试验中所有可能出现的基本事件只有有限个,二是每个基本事件出现的可能性相等。

就像从一个盒子里拿球,盒子里有3个红球和2个白球,一共就5个球,这就是有限个球。

而且每个球被拿到的可能性是一样的。

那从这个盒子里拿到红球的概率怎么算呢?就是红球的个数除以球的总个数,也就是3除以5等于五分之三。

这就像在一群小朋友里分蛋糕,男生有3个,女生有2个,那男生分到蛋糕的概率就是男生的人数除以总人数啦。

还有几何概型呢。

几何概型和古典概型有点不一样。

高中数学中几种常见的概率模型

高中数学中几种常见的概率模型

高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。

如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。

在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。

2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。

在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。

一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。

3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。

对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。

“独立是指是指各次试验的结果是相互独立的。

基于n重贝努利试验建立的模型,即为贝努利模型。

4、超几何分布:是统计学上一种离散概率分布。

它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。

称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。

超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。

高中数学六种概率模型

高中数学六种概率模型

高中数学六种概率模型概率是数学中的重要概念,用于描述事件发生的可能性。

在高中数学中,概率是一个重要的内容,它有着广泛的应用。

在数学中,我们常常使用六种概率模型来描述和计算概率,它们分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。

一、等可能模型等可能模型是最简单的概率模型之一,它假设每个事件发生的可能性相等。

例如,抛一枚公正的硬币,出现正面或反面的概率都是1/2。

又如,掷一颗公正的骰子,出现任意一个数字的概率都是1/6。

等可能模型的特点是简单明了,计算方法也非常简单,只需将某个事件发生的可能性除以总的可能性即可。

二、几何模型几何模型是描述概率的一种模型,它应用于空间中的几何问题。

例如,在一个正方形的平面上随机选择一个点,那么这个点落在正方形的某个子集中的概率就可以使用几何模型来描述。

几何模型的特点是需要用到几何图形的性质和计算方法,通常需要使用面积或体积的概念来描述概率。

三、排列模型排列模型是用于描述事件发生顺序的概率模型。

例如,从1到10这十个数字中随机选择3个数字,按照选择的顺序排列,那么不同的排列方式的概率可以使用排列模型来计算。

排列模型的特点是需要考虑事件发生的顺序,通常需要使用排列的计算方法。

四、组合模型组合模型是用于描述事件发生组合的概率模型。

例如,从1到10这十个数字中随机选择3个数字,不考虑选择的顺序,那么不同的组合方式的概率可以使用组合模型来计算。

组合模型的特点是不考虑事件发生的顺序,通常需要使用组合的计算方法。

五、条件概率模型条件概率模型是用于描述事件在给定条件下发生的概率。

例如,已知某个学生参加了数学竞赛,并且获得了奖项,那么在已知该学生获奖的条件下,他是男生的概率可以使用条件概率模型来计算。

条件概率模型的特点是需要考虑给定条件下事件发生的概率,通常需要使用条件概率的计算方法。

六、贝叶斯模型贝叶斯模型是用于描述事件的先验概率和后验概率之间的关系的概率模型。

高中数学模型系列之概率模型

高中数学模型系列之概率模型

高中数学模型系列之概率模型概率模型简介概率模型是数学中一个重要的分支,用于描述和分析不确定性和随机事件的规律。

它是基于概率论和统计学的理论基础,广泛应用于实际问题的建模和预测中。

概率的基本概念在概率模型中,我们首先需要了解一些基本的概率概念。

1. 随机试验:指具有不确定性的试验,其结果无法事先确定。

2. 样本空间:随机试验所有可能结果的集合。

3. 事件:样本空间的子集,表示我们感兴趣的结果。

4. 概率:表示事件发生的可能性大小的数值。

概率计算方法在概率模型中,我们可以使用两种基本的计算方法来计算事件的概率。

1. 古典概型:适用于各种试验结果等可能发生的情况。

概率可以通过事件发生次数与样本空间大小的比值来计算。

2. 统计概型:适用于试验结果不等可能发生的情况。

概率可以通过统计数据进行估算。

概率模型的应用概率模型广泛应用于各个领域,下面列举几个常见的应用场景。

1. 游戏和赌博:在赌博中,使用概率模型可以帮助预测不同结果的可能性,从而进行合理的押注决策。

2. 金融和保险:在金融和保险行业中,概率模型可以用于计算风险和收益的概率,从而辅助决策和风险管理。

3. 生物学和医学:概率模型可以用于分析疾病的发生和传播,预测药物的疗效,以及评估基因变异对生物体的影响。

4. 工程和科学研究:在工程和科学研究中,使用概率模型可以帮助分析和优化复杂系统的性能和可靠性。

小结概率模型作为数学的一个重要分支,具有广泛的应用领域。

通过理解和运用概率模型,我们可以更好地理解和分析各种随机事件,从而做出更合理的决策和预测。

以上是关于高中数学模型系列之概率模型的简要介绍。

_注意:此文档为纯粹的数学介绍,具体应用中可能涉及到更多的细节和实际情况,请在具体问题中咨询相应领域的专业人士或进一步深入研究。

_。

高中数学概率与统计常考题型归纳

高中数学概率与统计常考题型归纳

高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为E(X)=2×59+3×29+4×1081+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5××40=12.第4组的人数为5××40=8.第5组的人数为5××40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值. 解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24,由此得b^=lxylxx=2480=,a^=y-b^x=2-×8=-,故所求线性回归方程为y^=-.(2)由于变量y的值随x值的增加而增加(b^=>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=×7-=(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K2=10060×40×55×45≈>,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学六种概率模型
在高中数学中,概率是一个重要的概念,在日常生活中也随处可见。

概率模型是用来描述不确定事件发生的可能性的数学模型。

在高中数学中,我们学习了六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。

第一种概率模型是等可能模型。

在等可能模型中,我们假设所有的结果是等可能发生的,例如掷硬币、掷骰子等。

在这种情况下,我们可以通过计算事件发生的可能性来求解概率。

例如,抛掷一枚硬币,出现正面的概率和出现反面的概率都是1/2。

第二种概率模型是几何模型。

几何模型适用于一些连续事件,例如抛掷一根棍子,棍子落在某个距离范围内的概率。

这种情况下,我们需要用到几何概率的计算方法,即事件的概率等于事件所占的长度或面积与总长度或面积的比值。

第三种概率模型是排列模型。

排列模型适用于有序事件的概率计算。

例如,从一副扑克牌中抽出三张牌,求得其中一种特定牌型的概率。

这种情况下,我们可以使用排列的计算公式,将事件的可能性与总的可能性进行比较。

第四种概率模型是组合模型。

组合模型适用于无序事件的概率计算。

例如,从一副扑克牌中抽出三张牌,求得其中任意三张牌的概率。

这种情况下,我们可以使用组合的计算公式,将事件的可能性与总的可能性进行比较。

第五种概率模型是条件概率模型。

条件概率模型是指在已知一些信息的情况下,求另外一些信息的概率。

例如,在已知某人生病的情况下,求他感染某种疾病的概率。

在条件概率中,我们需要用到贝叶斯公式来计算概率。

第六种概率模型是贝叶斯模型。

贝叶斯模型是一种用来更新先验概率的模型。

在贝叶斯模型中,我们通过观察到的事实来更新我们对事件发生的概率的估计。

这种模型常常用于统计学和机器学习中。

高中数学中有六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。

这些模型可以帮助我们计算事件发生的可能性,对我们理解概率提供了有力的工具。

通过学习这些模型,我们可以更好地理解和应用概率知识,为未来的学习和工作打下坚实的基础。

相关文档
最新文档