统计学重要公式考试必备

合集下载

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。

在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。

本文将介绍一些统计学常用公式,并对其进行说明和用途解释。

一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。

2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。

当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。

3. 众数(Mode)众数是一组数据中出现频率最高的数值。

4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。

比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。

二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。

对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。

统计学公式总结

统计学公式总结

统计学公式总结统计学是一门关于收集、分析、解释和表达数据的科学。

它通过具体的数学模型和公式来描述和理解数据中的规律和关系。

在统计学中,有许多重要的公式被广泛应用于各种数据处理和分析的情况。

本文将会总结一些常见和重要的统计学公式。

1. 均数公式:均数是一组数据的平均值,用于反映一组数据的中心位置。

计算均数的公式是:mean = sum(data) / n其中,data表示数据集,n表示数据的个数,sum表示求和。

2. 中位数公式:中位数是将一组数据按照大小排列后,位于中间位置的数值。

计算中位数的公式有两种情况:- 当数据集的个数n为奇数时,中位数的公式是:median = data[(n+1)/2]- 当数据集的个数n为偶数时,中位数的公式是:median = (data[n/2] + data[(n/2)+1]) / 23. 众数公式:众数指一组数据中出现频率最高的数值。

计算众数的公式是:mode = value with maximum frequency4. 方差公式:方差是一组数据与其均值之间差异的平方的平均值。

方差可以用于衡量数据的离散程度,公式如下:variance = sum((data - mean)^2) / n5. 标准差公式:标准差是方差的正平方根,用于衡量数据集的离散程度。

标准差的公式是:standard deviation = sqrt(variance)6. 协方差公式:协方差用于衡量两个变量之间的相关性。

协方差的公式为:covariance = sum((X - mean_X) * (Y - mean_Y)) / n其中,X和Y表示两个变量,mean_X和mean_Y表示X和Y的均值,n表示变量的个数。

7. 相关系数公式:相关系数用于衡量两个变量之间的线性相关性,其取值范围为-1到1。

相关系数的公式是:correlation = covariance / (std_X * std_Y)其中,std_X和std_Y表示X和Y的标准差。

统计学原理重要公式

统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

统计学原理常用公式汇总

统计学原理常用公式汇总

统计学原理常用公式汇总第2章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距e)组数k=1+3.322Lg n n为数据个数第3章综合指标i.相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2.加权算术平均数或3调和平均数:åå=fXfX h11式中:,hXf Xf mX Xmf XfX Xmm Xf fX======ååååååiii.标志变动度1.全距=最大标志值-最小标志值2.标准差: 简单σ= ;加权σ=3.标准差系数:iiii 抽样推断1. 抽样平均误差:重复抽样: nx σμ=np p p )1(-=μ 不重复抽样: )1(2Nn nx -=σμ 2.抽样极限误差 x x t μ=∆3.重复抽样条件下:平均数抽样时必要的样本数目222x t n ∆=σ成数抽样时必要的样本数目22)1(pp p t n ∆-=不重复抽样条件下:平均数抽样时必要的样本数目22222σσt N Nt n x +∆=第4章 动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数 ①由时期数列计算na a ∑=②由时点数列计算在间断时点数列的条件下计算:若间断的间隔相等,则采用“首末折半法”计算。

公式为:12121121-++++=-n a a a a a n n Λ 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

统计学中的基本概念和重要公式

统计学中的基本概念和重要公式

37、随机变量 38、离散型随机变量 39、连续型随机变量 40、概率分布 42、概率密度函数 43、概率分布的数学期望和方差 44、二项试验 45、二项分布 46、泊松分布 47、均匀分布 48、指数分布 49、正态分布
50、标准正态分布 51、标准分数(Z分数) 52、统计量 53、总体参数 54、中心极限定理 55、样本均值的分布 56、标准误 57、卡方分布 58、t分布 59、F分布 60、点估计(有效性、无偏性、一致性、充分性)
2
23.二项分布的概率函数p( x) = Cnx p x q n − x , x = 0,1,2,..., n, q = 1 − p 24.二项分布的数学期望和方差E ( X ) = µ = np,Var ( X ) = σ 2 = np(1 − p ) 25.泊松分布p( x) =
µ xe−µ
x! x! n Crx ⋅ C N− xr − 27.超几何分布p ( x) = ,0 ≤ x ≤ r n CN
( X i − µ )2 ∑
n −1
N ( X i − µ )2 ∑
5.标准差: ( )总体标准差:σ = σ 2 1 (2)样本标准差: = S2 S 6.变异系数 σ 标准差 总体:CV = ×100% = × 100% µ 平均数 S 样本:CV = × 100% X
⌢ ⌢ σ(p −p
1 2
)
⌢ ⌢ n1 p1 + n2 p2 ⌢ 总体比率合并估计 : p = n1 + n2
⌢ ⌢ ⌢ ⌢ p1 = p2时σ ( p1 − p2 )的点估计量 : S ( p1 − p2 ) =
⌢ ⌢ 1 1 p (1 − p) + n n 2 1

《统计学原理》常用公式汇总及计算题目分析

《统计学原理》常用公式汇总及计算题目分析

《统计学原理》常用公式汇总及计算题目分析第一部分常用公式第三章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i.相对指标1。

结构相对指标=各组(或部分)总量/总体总量2。

比例相对指标=总体中某一部分数值/总体中另一部分数值3。

比较相对指标=甲单位某指标值/乙单位同类指标值4。

强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2。

加权算术平均数或iii。

变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ= ;加权σ=3。

标准差系数:第五章抽样估计1。

平均误差:重复抽样:不重复抽样:2。

抽样极限误差3。

重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析1.相关系数2。

配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(—)此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度.(—)此差额说明由于质量指标的变动对价值量指标影响的绝对额.加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:= ×绝对值变动分析:—= (—)×(—)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。

统计学常用公式汇总

统计学常用公式汇总

《统计学原理》常用公式汇总组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距111平均指标 1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=;加权σ= 3.标准差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析 1.相关系数2.配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-= (-)×(-)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。

公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:(2)由相对指标或平均指标动态数列计算序时平均数基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;逐期增长量之和累积增长量二. 平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数(1)计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)。

统计学常用公式

统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:N=1m-1e m-S 2M =L+ii fd f ⨯∑式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【A VERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为:式中:G 表示几何平均数;∏表示连乘符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)
成绩
职工人数
频率(%)
60分以下
60-70
70-80
80-90
90-100
3
6
15
12
4
15
30
10
合计
40
100
(2)分组标志为"成绩",其类型为"数量标志";分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;
(3)本单位职工业务考核平均成绩
(4)本单位的职工考核成绩的分布呈两头小,中间大的"正态分布"的形态,说明大多数职工对业务知识的掌握达到了该单位的要求。
(3)当极限误差为%时,则概率保证程度为% (z=Δ/μ)
6.某企业上半年产品产量与单位成本资料如下:
月份
产量(千件)
单位成本(元)
1
2
3
4
5
6
2
3
4
3
4
5
73
72
71
73
69
68
要求:(1)计算相关系数,说明两个变量相关的密切程度。
(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少
60
160
8
12
10
数及销售额变动的绝对额;
(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额;
(3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。
解:(1)商品销售额指数=
销售额变动的绝对额: 元
(2)两种商品销售量总指数=
销售量变动影响销售额的绝对额 元
5184
5041
5329
4761
4624
146
216
284
219
276
340
合计
21
426
79
30268
1481
(1)计算相关系数:
说明产量和单位成本之间存在高度负相关。
(2)配合回归方程 y=a+bx
=
=
回归方程为:y=77.37-1.82x
产量每增加1000件时,单位成本平均减少1.82元
(3)当产量为6000件时,即x=6,代入回归方程:
(3)总产量的区间:(551×1500 826500件; 569×1500 853500件)
5.采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.
要求:(1)计算合格品率及其抽样平均误差
(2)以%的概率保证程度(z=2)对合格品率和合格品数量进行区间估计。
(3)如果极限误差为%,则其概率保证程度是多少
单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90
分为良,90─100分为优。
要求:
(1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并
编制一张考核成绩次数分配表;
(2)指出分组标志及类型及采用的分组方法;
(3)计算本单位职工业务考核平均成绩
(4)分析本单位职工业务考核情况。
甲市场平均价格 (元/斤)
乙市场平均价格 (元/斤)
说明:两个市场销售单价是相同的,销售总量也是相同的,影响到两个市场
平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。
3.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,
标准差为件;乙组工人日产量资料如下:
日产量(件)
工人数(人)
统计学重要公式考试必备
统计学重要公式
统计学原理复习(计算题)
1.某单位40名职工业务考核成绩分别为:
68 89 88 84 86 87 75 73 72 68
75 82 97 58 81 54 79 76 95 76
71 60 90 65 76 72 76 85 89 92
64 57 83 81 78 77 72 61 70 81
(3)商品销售价格总指数=
价格变动影响销售额的绝对额: 元
9.某商店两种商品的销售额和销售价格的变化情况如下:
商品
单位
销售额(万元)
1996年比1995年
销售价格提高(%)
解:(1)样本合格率
p = n1/n = 190/200 = 95%
抽样平均误差 = %
(2)抽样极限误差Δp=zμp= 2×% = %
下限: △p=95%% = %
上限: △p=95%+% = %
则:总体合格品率区间:(% %)
总体合格品数量区间(%×2000=1838件 %×2000=1962件)
解:(1)配合直线回归方程:y=a+bx
b= = =
a= = =
则回归直线方程为:yc=+
(2)回归系数b的经济意义:当销售额每增加一万元,销售利润率增加%
(3)计算预测值:
当x=500万元时yc=+ =%
8.某商店两种商品的销售资料如下:
商品
单位
销售量
单价(元)
基期
计算期
基期
计算期



公斤
50
150
要求:(1)计算抽样平均误差(重复与不重复);
(2)以95%的概率(z=)估计该厂工人的月平均产量的区间;
(3)以同样的概率估计该厂工人总产量的区间。
解: (1)
重复抽样:
不重复抽样:
(2)抽样极限误差 = × =9件
月平均产量的区间: 下限: △ =560-9=551件
上限: △ =560+9=569件
(3)假定产量为6000件时,单位成本为多少元
解:计算相关系数时,两个变量都是随机变量,
不须区分自变量和因变量。考虑到要配和合回归方程,
所以这里设产量为自变量(x),单位成本为因变量(y)
月 份

产量(千件)

单位成本(元)

xy
1
2
3
4
5
6
2
3
4
3
4
5
73
72
71
73
69
68
4
9
16
9
16
25
5329
2.2004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下:
品种
价格(元/斤)
甲市场成交额(万元)
乙市场成交量(万斤)



2
1
1
合计

4
试问哪一个市场农产品的平均价格较高并说明原因。
解:
品种
价格(元)
甲市场
乙市场
成交额
成交量
成交量
成交额
m
m/x
f
xf



1
2
1
2
1
1
合计

4
4
解:先分别计算两个市场的平均价格如下:
15
25
35
45
15
38
34
13
要求:⑴计算乙组平均每个工人的日产量和标准差;
⑵比较甲、乙两生产小组哪个组的日产量更有代表性
解:(1)
(件)
(件)
(2)利用标准差系数进行判断:
因为>
故甲组工人的平均日产量更有代表性。
4.某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,得每人平均产量560件,标准差
y=77.37-1.82×6=66.45(元)
7.根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:
n=7 =1890 = 2=535500 2= =9318
要求: (1) 确定以利润率为因变量的直线回归方程.
(2)解释式中回归系数的经济含义.
(3)当销售额为500万元时,利润率为多少
相关文档
最新文档