人教版八年级数学上册第十三章达标测试卷及答案
最新人教版八年级数学上册第13章同步测试题及答案

最新人教版八年级数学上册第13章同步测试题及答案13.1 轴对称1.在以下四个标志中,是轴对称图形的是( ).2.下列说法中错误的是( ).A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为( ).(第3题图)A.48°B.54°C.74°D.78°4.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB(第4题图)5.如图所示,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.40°B.70°C.30°D.50°(第5题图)6.如图,在△ABC中,AB的中垂线交AB于点E,交BC于点D,若△ADC的周长为16cm,AC=4cm,则BC的长为()A.22cm B.12cm C.10cm D.7cm(第6题图)7.我国的文字非常讲究对称美,分析如图四个图案,图案________有别于其余三个图案( ).8.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是( ).(第8题图)9.(创新应用题)如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是( ).(第9题图)A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行10.从商场试衣镜中看到某件名牌服装标签上的后5位编码是,则该编码实际上是__________.11.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.(第11题图)12.如图所示,在△ABC中,∠BAC=106°,EF,MN分别是AB,AC的垂直平分线,点E,N在BC上,则∠EAN= .(第12题图)13.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点F,E,连接EF交OA于点N,交OB于点M,EF=15,求△PMN的周长.(第13题图)14.如图,将一张正六边形纸沿虚线对折3次,得到一个多层的60°角的三角形纸.用剪刀在折叠好的纸上随意剪出一条线.(第14题图)(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有五条对称轴的图形,你应该取什么形状的纸?应该如何折叠?15.如图,在△ABC中,BC=7,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G.求△AEG的周长.(第15题图)16.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线.(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(第16题图)参考答案1.A 分析:只有A图沿中间竖直的一条直线折叠,左右两边能够重合,故选A.2.C 分析:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C.3.B 分析:因为关于某直线对称的两图形全等,所以∠A=∠A′=78°,∠C′=∠C=48°,所以∠B =54°,故选B.4.C5.C 分析:∵AB=AC,∠A=40°,∴∠ABC=∠C=70.∵MN是AB的垂直平分线,∴DA=DB.∴∠DBA=∠A=40°,∴∠DBC=30°.故选C.6.B 分析:∵DE是AB的垂直平分线,∴DA=DB.∵△ADC的周长为16cm,∴AD+AC+CD=BD+CD+AC=BC+AC=16cm.∵AC=4cm,∴BC=12cm.故选B.7.D 分析:都是轴对称图形,但图案D有两条对称轴,其余三个图案都只有一条对称轴.8.D 分析:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D适合,故选D.9.B 分析:因为对称且平移,所以原有的性质已有变化,A、C、D都已不成立,只有B选项正确,故选B.10.BA629 分析:假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到BA629,或将此图案从反面观察,也可得到BA629.11.6 分析:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12①.由△EDC的周长为24可知CE+CD+DE=24.由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24②. ②-①,得2DE=12,所以DE=6.12.32°13.解:∵点P与点E关于OB轴对称,∴CE=CP,MC⊥PE.∴∠MCE=∠MCP=90°.在△MCE和△MCP中,∵,,,CE CPMCE MCP CM CM=⎧⎪∠=∠⎨⎪=⎩∴△MCE≌△MCP.∴MP=ME,同理NP=NF.∴MP+MN+NP=ME+MN+NF=EF=15,即△PMN的周长是15.14.解:(1)轴对称图形.(2)至少有3条对称轴.(3)取一张正十边形的纸,沿它的通过中心的五条对角线折叠5次,得到一个多层的36°角的图形,用剪刀在叠好的纸上任意剪出一条线,打开就可以得到一个至少含五条对称轴的图形.15.解:∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,CG=AG.∴△AEG的周长为AE+EG+AG=BE+EG+CG=BC=7.16.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.13.2 画轴对称图形基础巩固1.下列说法正确的是( ).A.全等的两个图形可以由其中一个经过轴对称变换得到B.轴对称变换得到的图形与原图形全等C.轴对称变换得到的图形可以由原图形经过一次平移得到D.轴对称变换中的两个图形,每一对对应点所连线段都被这两个图形之间的直线垂直平分2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是轴对称图形的有( ).(第2题图)A.1个B.2个C.3个D.4个3.点M(1,2)关于x轴对称的点的坐标为( ).A.(-1,-2) B.(-1,2)C.(1,-2) D.(2,-1)4.如图,将正方形纸片对折两次,并剪出一个菱形小洞后铺平,得到的图形是( ).(第4题图)5.已知点P(a+1,3)、Q(-2,2a+b)关于y轴对称,则a=__________,b=__________;若关于x对称,则a=__________,b=__________.6.如图,四边形ABCD的顶点坐标为A(-5,1),B(-1,1),C(-1,6),D(-5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出各对称图形的顶点坐标.(第6题图)能力提升7.李芳同学球衣上的号码是253,当她把镜子放在号码的正左边时,镜子中的号码是( ).(第7题图)8.若|3a-2|+|b-3|=0,则P(-a,b)关于y轴的对称点P′的坐标是__________.9.点A(-2a,a-1)在x轴上,则A点的坐标是__________,A点关于y轴的对称点的坐标是__________.10.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是________.(第10题图)11.作图题:在方格纸中,画出△ABC关于直线MN对称的△A1B1C1.(第11题图)参考答案1.B 分析:由轴对称的概念及性质进行判断,知B 正确,D 错误,这两个图形之间的直线不一定是对称轴,又因为成轴对称的两个图形不仅全等还与位置有关故A 、C 错误.2.B 分析:由图形的特征,结合轴对称的概念,可以判断只有第一个和第三个中的图形都是轴对称图形,故有2个,应选B.3.C 分析:关于x 轴对称的点的坐标变化特点是:横坐标不变,纵坐标互为相反数,故选C.4.C 分析:本题是将正方形两次翻折后剪裁,且剪裁位置在折叠后图形的正中间,因而将所给最后图形作两次轴对称展开,得到图形C.5.1 1 -3 3 分析:若点P(a +1,3)、Q(-2,2a +b)关于y 轴对称,则a +1=2,2a +b =3,解得a =1,b =1;同样若点P(a +1,3)、Q(-2,2a +b)关于x 轴对称,则a +1=-2,2a +b =-3,解得a =-3,b =3.6.解:(1)如图所示,四边形A ′B ′C ′D ′和四边形A ″B ″C ″D ″即为所求.(第6题答图)(2) 四边形ABCD 关于y 轴对称的四边形A ′B ′C ′D ′各顶点的坐标分别是A ′(5,1),B ′(1,1),C ′(1,6),D ′(5,4);四边形ABCD 关于x 轴对称的四边形A ″B ″C ″D ″各顶点的坐标分别是A ″(-5,-1),B ″(-1,-1),C ″(-1,-6),D ″(-5,-4).7.A 分析:把球衣上253的号码向左翻折180°,得到的图案即是镜子中的号码. 8.2(,3)39.(-2,0) (2,0) 分析:因为点A 在x 轴上,所以a -1=0,所以a =1,A 点的坐标就是(-2,0),关于y 轴的对称点的坐标是(2,0). 10.10时45分11.解:分别作出点A ,B ,C 关于直线MN 的对称点A ′,B ′,C ′,再依次连接即得到图形。
人教版八年级数学第十三章测试卷试题及答案

人教版八年级数学第十三章测试卷试题一、单选题(共10题;共20分)1.到三角形三个顶点距离相等的点是()A. 三角形三条边的垂直平分线的交点B. 三角形三条角平分线的交点C. 三角形三条高的交点D. 三角形三条边的中线的交点2.如图所示是几种名车的标志,请指出:这几个图案中轴对称图形有()A. 1个B. 2个C. 3个D. 4个3.如图,已知AB=AC,AB=5,BC=3,以AB两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()A. 8B. 10C. 11D. 134.如图,在△ABC中,∠A为钝角,AB=20cm,AC=12cm,点P从点B出发以3cm/s的速度向点A运动,点Q同时从点A出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ是等腰三角形时,运动的时间是( )A. 2.5sB. 3sC. 3.5sD. 4s5.如图,己知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE6.若等腰三角形的顶角为50°,则这个等腰三角形的底角度数为()A. 50°B. 65°C. 80°D. 130°7.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN 周长的最小值是6 cm,则∠AOB的度数是()A. 15B. 30C. 45D. 608.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A. 60°B. 70°C. 80°D. 90°9.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A. 14B. 13C. 12D. 1110.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD 于点G,则=()A. B. 2 C. D.二、填空题(共8题;共24分)11.一等腰三角形一个外角是110°,则它的底角的度数为________.12.若点A(m,n)与点B(-3,2)关于y轴对称,则m+n的值是________.13.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠ACD的度数是________°.14.如图,AB是线段CD的垂直平分线,若AC=5cm,BD=3cm,则四边形CADB的周长为________cm.15.如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于________度。
人教版 八年级数学上册 第十三章测试题含答案)

人教版八年级数学上册第十三章测试题含答案)13.1 轴对称一、选择题1. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)2. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-54. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 在平面直角坐标系中,作点A(3,4)关于x轴的对称点A′,再将点A′向左平移6个单位长度,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)6. [2018·河北] 图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l47. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A.CF平分∠ACB B.CF⊥ABC.CF平分AB D.CF垂直平分AB8. 已知:在平面直角坐标系中,A(a,b)(b≠0),B(m,n).若a-m=4,b+n=0,则下列结论正确的是()A.把点A向左平移4个单位长度后,与点B关于x轴对称B.把点A向右平移4个单位长度后,与点B关于x轴对称C.把点A向左平移4个单位长度后,与点B关于y轴对称D.把点A向右平移4个单位长度后,与点B关于y轴对称9. 如图,分别以线段AB的两端点A,B为圆心,大于12AB的长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与点O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OBC.OP=OF D.PO⊥AB10. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .72二、填空题11. 如图,在△ABC 中,AB =BC ,∠ABC =110°.AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD =________度.12. 如图,△ABO 是关于y 轴对称的轴对称图形,点A 的坐标为(-2,3),则点B 的坐标为________.13. 如图所示,分别将标号为A ,B ,C ,D 的正方形沿图中的虚线剪开后,得到标号为E ,F ,G ,H 的四个图形,则剪前与剪后拼接的图形的对应关系是:A 与________对应,B 与________对应,C 与________对应,D 与________对应.14. 已知点P(x,y)的坐标满足等式(x-2)2+|y-1|=0,且点P与点P′关于y轴对称,则点P′的坐标为________.15. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.16. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题17. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.18. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG的周长为16,GE=3,求AC的长.19. 如图,在四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A.求证:点A在线段CD的垂直平分线上.人教版八年级数学上册13.1 轴对称一、选择题1. 【答案】B2. 【答案】A3. 【答案】B[解析] ∵点(m-1,-1)与点(5,-1)关于y轴对称,∴m-1=-5,解得m=-4.4. 【答案】A5. 【答案】D[解析] 点A(3,4)关于x轴的对称点A′的坐标为(3,-4),将点A′向左平移6个单位长度,得到点B(-3,-4).6. 【答案】C[解析] 沿着直线l3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l3.7. 【答案】B8. 【答案】A[解析] ∵a -m =4,∴a -4=m.又∵b +n =0(b≠0),∴b =-n.∴把点A 向左平移4个单位长度后,与点B 关于x 轴对称.9. 【答案】C[解析] 由作图可知,EF 垂直平分AB ,因此可得OA =OB ,PO ⊥AB ,由线段垂直平分线的性质可得PA =PB ,但不能得到OP =OF.10. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线,∵5AB ==, ∴1522CF AB ==.故选A .二、填空题11. 【答案】35 【解析】∵AB =BC ,∠ABC =110°,∴∠A =∠C =35°,∵DE 垂直平分AB ,∴DA =DB ,∴∠ABD =∠A =35°.12. 【答案】(2,3)[解析] ∵△ABO 是关于y 轴对称的轴对称图形,∴点A(-2,3)与点B 关于y 轴对称.∴点B 的坐标为(2,3).13. 【答案】GE F H [解析] A 剪开后是三个三角形,B 剪开后是两个直角梯形和一个三角形,C 剪开后是一个直角三角形和两个四边形,D 剪开后是两个三角形和一个四边形,因而,A 与G 对应,B 与E 对应,C 与F 对应,D 与H 对应.14. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).15. 【答案】3[解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE=1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.16. 【答案】③三、解答题17. 【答案】解:∵两个四边形关于直线l对称,∴四边形ABCD≌四边形FEHG,∴∠H=∠C=90°,∠A=∠F=80°,∠E=∠B=135°,a=5 cm,b=4 cm. ∴∠G=360°-∠H-∠E-∠F=55°.18. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.19. 【答案】证明:连接AC.∵点A在线段BC的垂直平分线MN上,∴AB=AC.∵AB=AD,∴AC=AD.∴点A在线段CD的垂直平分线上.13.2 画轴对称图形课时训练一.选择题1.点A(3,4)关于x轴的对称点的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)2.在平面直角坐标系中,点M(12,﹣17)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2),下面选项中关于y轴对称的是()A.P和Q B.P和H C.Q和R D.P和R4.若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则()A.m=2,n=0B.m=2,n=﹣2C.m=4,n=2D.m=4,n=﹣2 5.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)6.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)7.在平面直角坐标系中,点A(﹣3,﹣4)平移后能与原来的位置关于y轴对称,则应把点A()A.向左平移6个单位B.向右平移6个单位C.向下平移8个单位D.向上平移8个单位8.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2020次变换后,点M的坐标变为()A.(﹣2018,2)B.(﹣2018,﹣2)C.(﹣2017,2)D.(﹣2017,﹣2)二.填空题9.点A(5,﹣1)关于x轴对称的点A'的坐标是.10.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.11.如图,点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,则a+b=.12.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2019的值是.三.解答题13.已知点M(﹣2,2b﹣1),N(3a﹣11,5).(1)若M,N关于y轴对称,试求a,b的值;(2)若M,N关于x轴对称,试求a+b的算术平方根.14.△ABC在平面直角坐标系中的位置如图.请画出△ABC关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.15.如图,在长方形网格中有一个△ABC.(1)画出△ABC关于y轴对称的△A1B1C1.(2)若网格中的最小正方形边长为1,求△A1B1C1的面积.16.如图,△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)写出△ABC三个顶点的坐标.(2)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标.17.如图,在平面直角坐标系中,A(1,0),B(3,3),C(5,1).(1)画出△ABC关于x轴的对称图形△AB1C1;(2)△ABC的面积为;(3)在x轴上求一点P,使得△APB的面积等于△ABC的面积.18.如图,在平面直角坐标系中.(1)作△ABC关于x轴对称的△A1B1C1;(2)求出△ABC的面积;(3)在x轴上是否存在一点P,使得△AA1P与△ABC面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.参考答案一.选择题1.解:点A(3,4)关于x轴对称点的坐标为:(3,﹣4).故选:A.2.解:∵点(12,﹣17)关于x轴对称的坐标是(12,17),∴点M(12,﹣17)关于x轴对称的点在第一象限.故选:A.3.解:点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2)中Q和H,P和R都关于y轴对称.故选:D.4.解:根据题意:m﹣3=﹣1,2n=﹣4,所以m=2,n=﹣2.故选:B.5.解:∵A,B关于y轴对称,A(5,3),∴B(﹣5,3),故选:B.6.解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),即(3,4),故选:C.7.解:∵点A(﹣3,﹣4)平移后能与原来的位置关于y轴轴对称,∴平移后的坐标为(3,﹣4),∵横坐标增大,∴点是向右平移得到,平移距离为|3﹣(﹣3)|=6.故选:B.8.解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为2,横坐标为2﹣2020×1=﹣2018,∴点M的坐标变为(﹣2018,﹣2),故选:B.二.填空题9.解:点A(5,﹣1)关于x轴对称的点A'的坐标是(5,1).故答案为:(5,1).10.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.11.解:∵点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.12.解:∵点M(a,3),点N(2,b)关于y轴对称,∴a=﹣2,b=3,∴(a+b)2019=(﹣2+3)2019=1.故答案为:1.三.解答题13.解:(1)依题意得3a﹣11=2,2b﹣1=5,∴a=,b=3.(2)依题意得3a﹣11=﹣2,2b﹣1=﹣5,∴a=3,b=﹣2,∴=1.14.解:A1(2,3)(1分)B1(3,2)(2分)C1(1,1)(3分)15.解:(1)△A1B1C1即为所求;(2)△A1B1C1的面积为:3×5﹣×2×3﹣×2×3﹣×1×5=15﹣3﹣3﹣2.5=6.5.16.解:(1)A、B、C三点的坐标分别为(2,4),(1,1),(3,2);(2)如图所示:△A1B1C1,点C1的坐标为:(﹣3,2).17.解:(1)如图所示,△AB1C1即为所求.(2)△ABC的面积为4×3﹣×2×3﹣×1×4﹣×2×2=5,故答案为:5;(3)设点P坐标为(m,0),根据题意,得:×|m﹣1|×3=5,解得m=或m=﹣,∴点P的坐标为(,0)或(﹣,0).18.解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=×(1+3)×5﹣×1×2﹣×3×3=;(3)存在,设点P坐标为(a,0),根据题意,得:×4×|a﹣1|=,解得a=或a=﹣,∴点P坐标为(,0)或(﹣,0).13.3 等腰三角形一、选择题1. 如图,等腰三角形的对称轴是()A.直线l1B.直线l2C.直线l3D.直线l42. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB3. 已知等腰三角形的一个角等于42°,则它的底角为() A.42°B.69°C.69°或84°D.42°或69°4. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°7. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.308. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题11. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.12. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.15. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.16. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题17. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.18. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.19. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.人教版八年级数学上册13.3 等腰三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.5. 【答案】D[解析] 由∠BAD +∠B =∠CAD +∠C 可得∠ADB =∠ADC ,又∠ADB +∠ADC =180°,所以∠ADB =∠ADC =90°,又BD =DC ,由垂直平分线的性质可得AB =AC.由等式的性质,根据AB -BD =AC -CD ,AB +BD =AC +CD ,又BD =CD ,均可得AB =AC.选项D 不能得到AB =AC.6. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.7. 【答案】B[解析] ∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°.∵DE ∥BC ,∴∠ADE =∠B =60°,∠AED =∠C =60°.∴△ADE 为等边三角形.∵AB =10,BD =6,∴AD =AB -BD =10-6=4.∴△ADE 的周长为4×3=12.8. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A. 9. 【答案】C10. 【答案】D[解析] ∵OC =CD =DE ,∴∠O =∠ODC ,∠DCE =∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题11. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.12. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.13. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】28 cm15. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.16. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题17. 【答案】解:∵∠ADB=30°+40°=70°,AB=BD,∴∠BAD=∠ADB=70°.∴∠BAC=∠BAD+∠CAD=100°.18. 【答案】解:OE=OF.理由:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE平分∠ACB,CF平分∠ACD,∴∠OCE=∠BCE,∠OCF=∠DCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC,OC=OF.∴OE=OF.19. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.。
人教版八年级上册数学第13章测试卷及答案

精品基础教育教学资料,仅供参考,需要可下载使用!《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .14.如图:D、E是三角形ABC的边BC上的两点,且BD=DE=AD=AE=EC,则∠BAC的大小等于.三、解答题(5个小题,共52分)15.(8分)如图所示,写出△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.16.(10分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.17.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.18.(12分)如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.(12分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N 第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.《轴对称》综合测试一参考答案一、1. D 2.B 3.C 4.A 5.C 6.B 7.A 8.B.提示:1. 提示:A、有3条对称轴;B、有4条对称轴;C、有2条对称轴;D、有6条对称轴.故选D.2.提示:A、两个关于某直线对称的图形一定全等,本选项正确;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确;D、平面上两个全等的图形不一定关于某直线对称,本选项正确.故选B.3.提示:A、有两个角是60°的三角形,那么第三个角也是60°,故是等边三角形;B、有一个角是60°的等腰三角形是等腰三角形;C、有两个外角相等的等腰三角形,不一定是等边三角形;D、三边都相等的三角形是等边三角形,正确;故选:C.4.提示:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.5.提示:∵∠ACB=90°,∠A=30°,∴BC=AB.∵CD是高,∴∠BCD=∠A=30°,∴BD=BC,∴BD=AB.故选C.小结:30º锐角所对的边等于斜边的一半,只有在直角三角形中才成立,其他三角形中不成立.6.提示:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC;又∵AD=AE,∠AED=75°,∴∠ADE=75°∴∠EDC=∠ADC-∠ADE=90°-75°=15°.故选B.小结:本题主要考查了等腰三角形的两条重要性质:等边对等角和“三线合一”.7.提示:如图所示,点B′(0,3).故选A.小结:本题考查的是画轴对称图形,旨在培养学生的动手操作能力和观察能力.8.提示:如图,延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE-S△ACE=1022m m+-=5.故选:B.小结:因为等底同高的两个三角形面积相等,所以三角形被中线分成的两个三角形面积相等.二、9. -1 10.40°11.10°12.9 13.14 14.120°提示:9. 提示:由点A(a,2019)与点B(2020,b)关于x轴对称,得a=-2020,b=2019,a+b=-1,故答案为:-1.10.提示:∵一个角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40°.11.提示:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.12.提示:根据等腰三角形是轴对称图形,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.小结:本题考查了等腰三角形的性质及轴对称性质,利用对称发现△CEF和△BEF的面积相等是正确解答本题的关键.13.提示:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=8+6=14.故答案为14.小结:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.14.提示:∵AD=AE=DE,∴△ADE是等边三角形,∴∠ADE=∠AED=∠DAE=60°,∵AD=AB,AE=EC,∴∠B=∠BAD,∠C=∠CAE,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE=30°,∴∠BAC=∠BAD+∠DAE+∠CAE=120°.故答案为:120°.小结:本题考查了等边三角形的判定的性质,发现并利用等边三角形是解题的关键.三、15. 解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),如图所示:△A2B2C2,即为所求.16.解:本题画法较多,只要满足题意均可,如图所示:17.思路分析:根据等腰直角三角形的性质,得到△BEH是等腰直角三角形,然后利用角平分线的性质,得到DE=HE,再利用BM=2DE,得到△HEM是等腰直角三角形,从而获证. 解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.小结:等腰直角三角形既是等腰三角形也是直角三角形,因此它兼具这两种三角形的所有性质.18.思路分析:(1)利用垂直平分线的性质求AB的长;(2)由四边形内角和得∠ACB的度数,再由三角形内角和得∠A+∠B的度数,最后根据等腰三角形的性质求∠MCN的度数.解:(1)∵DM是AC边的垂直平分线,∴MA=MC,∵EN是BC边的垂直平分线,∴NB=NC,∴AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)∵MD⊥AC,NE⊥BC,∠MFN=70°,∴∠ACB=180°﹣∠MFN=110°,∴∠A+∠B=70°,∵MA=MC,NB=NC,∴∠MCA=∠A,∠NCB=∠B,∴∠MCA+∠NCB=70°,∴∠MCN=110°-70°=40°.小结:本题主要考查了线段垂直平分线和等腰三角形的性质.线段垂直平分线经转化后就是等腰三角形.19.思路分析:(1)当M、N两点重合时,它们的路程差是12,据此可求出运动时间;(2)当M在AC上,N在AB上时,可得到等边三角形△AMN,根据等边三角形的性质得运动时间;(3)根据点M、N将在点C重合,所以点M、N在BC上时,能得到以MN为底边的等腰三角形AMN,证明△ACM≌△ABN,由全等三角形的性质求得运动时间.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.小结:动点问题要动中求静,将动点运动的路径进行分段,逐段分析可解决问题.《轴对称》综合测试二一、选择题(每小题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.2.已知点A(﹣2,3)关于x轴对称的点是点B,点B关于y轴对称的点是C,则点C的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形4.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.15cm B.13cm C.11cm D.9cm5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)6.将一张正方形按图1,图2方式折叠,然后用剪刀沿图3中虚线剪掉一角,再将纸片展开铺平后得到的图形是()A.B.C.D.7.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③8.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P n﹣P n﹣1的值为()A.114n-⎛⎫⎪⎝⎭B.C.112n-⎛⎫⎪⎝⎭D.二、填空题(每小题4分,共24分)9.我国国旗上的五角星有条对称轴.10.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= .11.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为.12.已知一个等腰三角形的两边长分别是6和5,那么它的周长为.13.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.14.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.三、解答题(5个小题,共52分)15.(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.16.(10分)如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P 的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.17.(10分)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= °,∠C= °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2.①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.18.(12分)(1)如图1,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为.19.(12分)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG 与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.《轴对称》综合测试二参考答案一、1. D 2.B 3.B 4.B 5.C 6.B 7.A 8.C.提示:1. 提示:利用轴对称图形定义判断.下列四个汉字中,可以看作轴对称图形的是“中”,故选D.2.提示:点A(﹣2,3)关于x轴对称的点B的坐标为(﹣2,﹣3).点B(﹣2,﹣3)关于y轴对称的点C的坐标为(2,-3).故选:B.3.提示:根据非负数的性质,得∴a﹣b=0,且b﹣c=0,∴a=b,且b=c,∴a=b=c,∴这个三角形一定是等边三角形,故选B.4.提示:∵AB=AC,∴∠ABC=∠C.∵DE∥AB,∴∠DEC=∠ABC=∠C,∠ABD=∠BDE,∴DE=DC,∵BD是∠ABC的平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE,∴BE=DE=DC=5cm,∴△CDE 的周长为DE+DC+EC=5+5+3=13(cm),故选B.5.提示:如图,∵点P (﹣1,2),∴点P 到直线x=1的距离为1﹣(﹣1)=2,∴点P 关于直线x=1的对称点P ′到直线x=1的距离为2,∴点P ′的横坐标为2+1=3,∴对称点P ′的坐标为(3,2).故选C .小结:本题采用数形结合的办法更容易得到答案,找一个点的坐标,应分为求点的横坐标与纵坐标两个小题.6.提示:由于剪去的是一个等腰直角三角形,四个等腰直角三角形直角顶点重合可以得到一个正方形.故选:B .小结:此题主要考查了剪纸问题,解答此类题最好动手操作,易得出答案. 7.提示:由题意知,要求“被一条直线分成两个小等腰三角形”,(1)中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; (2)不能;(3)显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; (4)中的为36°,72,72°和36°,36°,108°,能.故选A .小结:在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形形状相同才有可能. 8.提示:P 1=1+1+1=3,P 2=1+1+12=52,P 3=1+12+12+14×3=114,P 4=1+12+12+14×2+18×3=238,… ∴p 3﹣p 2=114﹣52=14=212,P 4﹣P 3=238﹣114=18=312,则Pn ﹣Pn ﹣1=112n -=112n -⎛⎫⎪⎝⎭.故选C .小结:本题考查了等边三角形的性质;要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、9. 5 10.﹣5 11.12 12.16或17 13.5.5 14.8.提示:9. 提示:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.提示:∵点P(2a+b,b)与P1(8,﹣2)关于y轴对称,∴2a+b=﹣8,b=﹣2,解得:a=﹣3,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.11.提示:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=12AB=4.∴△BEC的周长12.故答案为:12.12.提示:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故答案为:16或17.小结:已知等腰三角形的两边长求周长,不仅要分类讨论,还要看是否符合三角形三边关系.13.提示:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×11=5.5,∴DF=5.5.故答案为:5.5.小结:角平分线与平行线结合时,常有等腰三角形出现.14.提示:如图,AB是腰长时,有4个点可以作为点C,AB是底边时,有4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.小结:掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.三、15. 解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.16.解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=12BP=12×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.17.思路分析:(1)由等边对等角,得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C;(2)①由(1)可知∠BAD=∠CAD=36°,利用三角形内角和求得∠ANH、∠AEH的度数,可得AN=AE;②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.小结:本题主要考查等腰三角形的判定和性质,掌握等角对等边、等边对等角是解题的关键,注意方程思想的应用.18.思路分析:(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN于C,即可得出答案;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F.此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,根据轴对称的性质可得AM=PM,AN=QN,然后求出△AMN周长=PQ,根据轴对称确定最短路线问题,PQ的长度即为△AMN 的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AMN=2∠P,∠ANM=2∠Q,然后求解即可得出答案.解:(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C点符合要求.(2)作图如下:(3)①作图如下:②∵∠BAE=125°,∴∠P+∠Q=180°﹣125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.小结:在平面内找最短路径,要利用轴对称,用这个点的对称点去代替这个点,化曲为直.19.思路分析:(1)利用“三边相等”的三角形是等边三角形证得△EBC是等边三角形;(2)延长ED使得DW=DM,连接MN,即可得出△WDM是等边三角形,利用△WGM≌△DBM即可得出BD=WG=DG+DM,再利用AD=BD,即可得出答案;(3)利用等边三角形的性质得出∠H=∠2,进而得出∠DNG=∠HNB,再求出△DNG≌△HNB 即可得出答案.(1)证明:如图1所示:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=.∵BD平分∠ABC,∴∠CBD=∠DBA=∠A=30°.∴DA=DB.∵DE⊥AB于点E.∴AE=BE=.∴BC=BE.∴△EBC是等边三角形;(2)结论:AD=DG+DM.证明:如图2所示:延长ED使得DW=DM,连接MW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,又∵DM=DW,∴△WDM是等边三角形,∴MW=DM,在△WGM和△DBM中,∵∴△WGM≌△DBM,∴BD=WG=DG+DM,∴AD=DG+DM.(3)结论:AD=DG﹣DN.证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.小结:此题主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知做出正确辅助线是解题关键.。
2023年人教版八年级数学上册第十三章综合测试卷及答案

2023年人教版八年级数学上册第十三章综合测试卷及答案一、单选题1.以下四大通讯运营商的企业图标中,是轴对称图形的是( )A .B .C .D .2.如图,已知AD 垂直平分线段BC ,25BAD Ð=°,那么C Ð的度数为()A .25°B .50°C .65°D .70°3.如图,DE ,DF 分别是线段AB ,BC 的垂直平分线,连接DA ,DC ,则( )A .∠A =∠CB .∠B =∠ADCC .DA =DCD .DE =DF4.如图,在ABC V 中,AB AC =,40A °Ð=,//CD AB ,则BCD Ð=( )A .40°B .50°C .60°D .70°5.如图,直线m n ∥,ABC V 是等边三角形,顶点B 在直线n 上,直线m 交AB 于点E ,交AC 于点F ,若1140Ð=°,则2Ð的度数是( )A .80°B .100°C .120°D .140°6.如图,在ABC V 中,AB AC =,30C Ð=°,AB AD ^,4AD cm =,则BC 的长为( ).A .8cmB .12cmC .15cmD .16cm7.如图,ABC V 中,若80BAC Ð=°,70ACB Ð=°,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ Ð=°B .12DE BD =C .AF AC =D .25EQF Ð=°8.在平面直角坐标系中,点A 的坐标为(-2,-3),点B 的坐标为(3,-3),下列说法不正确的是( )A .点A 在第三象限B .点B 在第二、四象限的角平分线上C .线段AB 平行于x 轴D .点A 与点B 关于y 轴对称9.如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC 剪下△ABC ,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪,即∠ABC 的度数为( )A .144°B .126°C .120°D .108°10.如图,在ABC V 中,点D 为BC 边上一点,给出如下关系:①AD 平分BAC Ð;②AD BC ^于D ;③D 为BC 中点.甲说:如果①②同时成立,可证明AB AC =;乙说:如果②③同时成立,可证明AB AC =;丙说:如果①③同时成立,可证明AB AC =.则正确的说法是( )A .甲、乙正确,丙错误B .甲正确,乙、丙错误C .乙正确,甲、丙错误D .甲、乙、丙都正确11.如图,在平面直角坐标系中,点O 为坐标原点,点A 的坐标为(﹣5,12),它关于y 轴的对称点为B ,则△ABO 的周长为( )A .24B .34C .35D .3612.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形13.如图,在ABC V 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF BF=B .12AE AC =C .90DBF DFB Ð+Ð=°D .BAF EBCÐ=Ð14.如图,C 为线段AB 上一动点(不与点A 、B 重合),在AB 同侧分别作正三角形ACD 和正三角形BCE ,AE 与BD 交于点F ,AE 与CD 交于点G ,BD 与CE 交于点H ,连接GH .以下五个结论:①AE =BD ;②GH ∥AB ;③AD =DH ;④GE =HB ;⑤∠AFD =60°,一定成立的是( )A .①②③④B .①②④⑤C .①②③⑤D .①③④⑤15.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误的是( )A .BAD CADÐ=ÐB .△BCD 是等边三角形C .AD 垂直平分BC D .ABDC S AD BC=g 16.如图,在Rt △ABC 中,∠CBA =90°,∠CAB 的角平分线AP 和∠MCB 的平分线CF 相交于点D ,AD 交CB 于点P ,CF 交AB 的延长线于点F ,过点D 作DE ⊥CF 交CB 的延长线于点G ,交AB 的延长线于点E ,连接CE 并延长交FG 于点H ,则下列结论:①∠CDA =45°;②AF ﹣CG =CA ;③DE =DC ;④CF =2CD +EG ;其中正确的有( )A .②③B .②④C .①②③④D .①③④17.如图所示,在四边形ABCD 中,2AD =,90A D Ð=Ð=°,60B Ð=°,2BC CD =,在AD 上找一点P ,使PC PB +的值最小;则PC PB +的最小值为( )A .4B .3C .5D .618.如图,在直角坐标系xOy 中,点P 的坐标为(4,3),PQ ⊥x 轴于Q ,M ,N 分别为OQ ,OP 上的动点,则QN +MN 的最小值为( )A .7225B .245C .125D .9625二、填空题19.如图,一名滑雪运动员沿着倾斜角为30°的斜坡,从A 滑行至B ,已知100m AB =,则这名滑雪运动员的高度下降了_______米.20.如图,在ABC V 中,已知∠C =90°,AB 的垂直平分线交BC ,AB 于点D ,E ,∠CAB =50°,那么∠CAD =___________.21.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是边AC 的中点.当△ECF 的周长取得最小值时,∠EFC 的度数为_____________.22.如图,在ABC V 中,AB AC =,30C Ð=°,AB AD ^,3cm =AD ,则BC 为____________cm .23.如图,在四边形ABCD 中,AB =AC ,DB 平分∠ADC ,∠BCD =150°.则∠ABD 的度数为 ___°.三、解答题24.如图,在△ABC 中,AB AC =,120BAC Ð=°,点D 、E 在BC 上,AD ⊥AC ,AE ⊥AB .求证:AED V 为等边三角形.25.如图,点D 是等边三角形ABC 的边BC 上一点,以AD 为边作等边△ADE ,连接CE .(1)求证:ABD ACE △≌△;(2)若∠BAD =20°,求∠AEC 的度数.26.如图,在ABC V 和ADE V 中,AB AC =,AD AE =,90BAC DAE Ð=Ð=°.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE V 绕点A 顺时针旋转()090a a °<<°,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC V 和等边ADE V 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.27.如图所示,D 是ABC V 边BC 的中点,E 是AD 上一点,满足AE BD DC ==,FA FE =.求ADC Ð的度数.28.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合。
人教版八年级数学上册第13章测试题及答案

人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.。
最新人教版八年级数学上册 第十三章综合能力检测卷(含答案解析)

―、选择题(每题 3 分,共 30 分) 1.下列图标是轴对称图形的是( )
2.将点 A (2,3)向左平移 2 个单位长度得到点 A ' ,点 A ' 关于 x 轴的对称点是 A '' , 则点 A '' 的坐标为( A.(0,-3) 3.下列说法正确的有( ) B.(4,-3) ) C.(4,3) D.(0,3)
1 1 BC AD= 4 AD=16.解得 AD=8.因为 EF 是线段 AC 的垂 2 2
直平分线,所以点 C 关于直线的对称点为 A,所以 AD 的长为 CM+MD 的最小值, 所以△CDM 的周长的最小值为 AD+CD=AD+
1 1 BC=8+ 4=10.故选 C. 2 2
9. D【解析】如图,连接 MN,过点 N 作 ND//AB,交 AM 于点 D,则 DNC NCB
23.(12 分)如图,已知△ABC 中, CAB 的平分线和 AD 边 BC 的垂直平分线 ED 相 交于点 D ,过点 D 作 DF AC 交 AC 的延长线于点 F , DM AB 于点 M . (1)猜想 CF 和 BM 之间有何数量关系,并说明理由; (2)求证: AB AC 2CF .
AD, DE AB 于点 E .求证: EB 3EA .
22.(10 分)如图,已知△ABC 是边长为 3cm 的等边三角形,动点 P,Q 同时从 A,B 两 点出发,分别沿 AB,BC 方向匀速移动,它们的速度都是 1cm/s,当点 P 到达点 B 时,P,Q 两点停止运动.设点 P 的运动时间为 t s,则当 t 为何值时,△PBQ 是直角三 角形?
20.(8 分)如图,在等腰三角形 ABC 中,AB=AC,点 D,E 分别在边 AB,AC 上,且 AD=AE, 连接 BE,CD,交于点 F. (1)判断 ABE 与 ACD 的数量关系,并说明理由; (2)求证:过点 A,F 的直线垂直平分线段 BC.
人教版初中八年级上册数学第十三章测试卷含答案解析和命题双向细目表-八上13

人教版数学八年级上册第13单元《轴对称》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列图案中,是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点(3, -2)关于y轴对称的点的坐标是()A.(3,2)B. (-3,2)C. (-3,-2)D. (3,-2)3.若等腰三角形的周长为25cm,一边为11cm,则腰长为()A.11cmB.7cm或11cmC.7cmD.3cm或11cm4.等腰三角形是轴对称图形,它的对称轴是()A.中线B.底边上的中线C.中线所在的直线D.底边上的中线所在的直线5.三个等边三角形的摆放位置如图所示,若∠1+∠2=125°,则∠3的度数为()A.85°B.55°C.45°D.25°6.如图,在△ABE 中,∠E=20°, AE 的垂直平分线MN 交BE 于点C ,且AB=CE ,则∠B 的度数是( )A.40°B.60°C.50°D.55°7.如图,已知直线m 是正五边形ABCDE 的对称轴,且直线m 过点A ,则∠1的度数为( )A.36°B.70°C.72°D.不确定8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点A 1、A 2、 A 3、A 4....A 2020的位置上,则点A 2020的坐标为( )A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)9.在△ABC 中,AB=BC ,点D 在AC 上,BD=6cm ,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6cm ,则∠ABC=( )A.20°B.25°C.30°D.35°10.如图,线段AB ,DE 的垂直平分线交于点C ,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD 的度数为( )第5题 第6题第7题第9题 第8题 第10题A.168°B.158°C.128°D.118°二.填空题:本大题有6个小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章达标测试卷一、选择题(每题3分,共30分)1.下列四个交通标志图中为轴对称图形的是()2.已知点P(3,-2)与点Q关于x轴对称,则点Q的坐标为() A.(-3,2) B.(-3,-2)C.(3,2) D.(3,-2)3.一个等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为() A.16 B.21C.27 D.21或274.等腰三角形的一个角为50°,则这个等腰三角形的顶角为() A.50°B.65°C.80°D.50°或80°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 n mile 的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N 处与灯塔P的距离为()A.40 n mile B.60 n mileC.70 n mile D.80 n mile(第6题) (第7题) (第8题)7.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.168.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE的长为()A.7 B.8 C.9 D.109.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD =3 cm,则AB的长度是()A.3 cm B.6 cm C.9 cm D.12 cm(第9题) (第10题)10.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE的周长等于AB+AC.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(每题3分,共24分)11.若点M(m,-n)与点N(3,m-1)关于y轴对称,则mn=________,直线MN与x轴的位置关系是________.12.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第12题) (第13题) (第14题)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.(第15题) (第17题) (第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19~22题每题8分,25题14分,其余每题10分,共66分) 19.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?20.如图,在四边形ABCD中,已知A(4,4),B(1,3),C(1,0),D(3,1),在平面直角坐标系内分别作出四边形ABCD关于x轴和y轴对称的图形.21.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.22.如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D.求证AB=BC +CD.23.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如图,已知点D为等腰直角三角形ABC内一点,AC=BC,∠ACB=90°,∠CAD=∠CBD=15°,E为AD的延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证ME=BD.25.(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证DE=BD+CE. (2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D,E是过点A的直线m上的两动点(D,A,E三点互不重合),且△ABF和△ACF均为等边三角形,连接BD,CE.若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.答案一、1.D 2.C 3.C 4.D 5.A 6.D 7.A 8.C 9.D 10.C 二、11.-12;平行 12.40° 13.3 14.6 15.⎝ ⎛⎭⎪⎫3607° 16.60° 17.50°18.10 点拨:如图,连接AD ,交EF 于点M ′,连接CM ′,当点M 与点M ′重合时CM +MD 最短,因此△CDM 周长最小.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16,∴AD =16×2÷4=8. ∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:AE ∥BC .理由如下:∵AB =AC ,∴∠B =∠C .由三角形的外角性质得∠DAC =∠B +∠C =2∠B .∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE . ∴AE ∥BC .20.解:如图,四边形A 1B 1C 1D 1为四边形ABCD 关于x 轴对称的图形,四边形A 2B 2C 2D 2为四边形ABCD 关于y 轴对称的图形.(第20题)21.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又OP =OP ,∴Rt △POA ≌Rt △POB (HL ). ∴OA =OB . ∵OP 平分∠MON , ∴OP 垂直平分AB .22.证明:延长BC 至点E ,使BE =BA ,连接DE . ∵BD 平分∠ABC ,∴∠ABD =∠EBD . 又AB =EB ,BD =BD , ∴△ABD ≌△EBD (SAS ). ∴∠A =∠E .∵∠ACB =2∠A ,∴∠ACB =2∠E . ∵∠ACB =∠E +∠CDE , ∴∠CDE =∠E .∴CD =CE . 又∵AB =BE ,BE =BC +CE , ∴AB =BC +CD .23.(1)证明:∵AB =AC , ∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS ).∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3. ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12(180°-40°)=70°. ∴∠1+∠2=110°. ∴∠3+∠2=110°.∴∠DEF =70°.24.证明:(1)∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =45°. ∵∠CAD =∠CBD =15°, ∴∠BAD =∠ABD =30°. ∴AD =BD .又∵AC =BC ,∠CAD =∠CBD , ∴△ADC ≌△BDC (SAS ). ∴∠ACD =∠BCD =45°, ∴∠ADC =∠BDC =120°. ∵∠ADC +∠CDE =180°, ∴∠CDE =60°,∴∠BDE =120°-60°=60°. ∴∠BDE =∠CDE , 即DE 平分∠BDC . (2)连接CM .∵DC =DM ,∠CDE =60°, ∴△CDM 为等边三角形. ∴∠CMD =60°,CD =CM , ∴∠CME =120°, ∴∠CME =∠BDC . ∵CE =CA , ∴∠CAE =∠E . ∵∠CAE =∠CBD , ∴∠E =∠CBD . 在△CME 和△CDB 中,⎩⎨⎧∠E =∠CBD ,∠CME =∠CDB ,CM =CD ,∴△CME ≌△CDB (AAS ). ∴ME =BD .25.(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∴∠BAD+∠DBA=90°.∴∠CAE=∠DBA.又∵AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AD+AE=EC+BD,即DE=BD+CE.(2)解:成立.证明如下:∵∠BDA=∠BAC,∴∠DAB+∠DBA=∠DAB+∠CAE,∴∠DBA=∠CAE.又∵∠BDA=∠AEC,AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AE+AD=BD+CE.(3)解:△DEF是等边三角形.理由如下:由(2)知△BDA≌△AEC,∴∠BAD=∠ACE,AD=EC. 又∵△ABF和△ACF是等边三角形,∴FC=F A,∠AFC=∠FCA=∠F AB=60°.∴∠BAD+∠F AB=∠ACE+∠FCA,即∠DAF=∠ECF.∴△F AD≌△FCE(SAS).∴FD=FE,∠DF A=∠EFC.又∵∠EFC+∠AFE=60°,∴∠DF A+∠AFE=60°.∴∠DFE=60°.∴△DEF是等边三角形.11。