二项式定理常见题型

合集下载

二项式定理的高考常见题型及解题对策

二项式定理的高考常见题型及解题对策

二项式定理的高考常见题型及解题对策题型一:求二项展开式1.“n b a )(+”型的展开式例1.求4)13(xx +的展开式;2. “n b a )(-”型的展开式例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算cC C C n nnnn n n 3)1( (279313)21-++-+-;题型二:求二项展开式的特定项1. 求指定幂的系数或二项式系数(1)求单一二项式指定幂的系数 例4.(03全国)92)21(xx -展开式中9x 的系数是 ;(2) 求两个二项式乘积的展开式指定幂的系数例5.(02全国)72)2)(1-+x x (的展开式中,3x 项的系数是 ;(3) 求可化为二项式的三项展开式中指定幂的系数 例6.(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;2. 求中间项例7.(00京改编)求(103)1xx -的展开式的中间项;3. 求有理项例8.(00京改编)求103)1(xx -的展开式中有理项共有 项;4. 求系数最大或最小项(1) 特殊的系数最大或最小问题例9.(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例10.求84)21(xx +展开式中系数最大的项;题型三:利用“赋值法”及二项式性质3求部分项系数,二项式系数和例12.(99全国)若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为 ;例13.(04天津)若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;例14.设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;题型四:利用二项式定理求近似值例15.求6998.0的近似值,使误差小于001.0;题型五:利用二项式定理证明整除问题例16.(02潍坊模拟)求证:15151-能被7整除。

二项式定理的常见题型及解法特全版

二项式定理的常见题型及解法特全版

Cxy
3 7
4
4
,和第 5 项
C
二、通项公式的应用
1 .确定二项式中的有关元素
例 4.已知 (
a x 9 9 ) 的展开式中 x 3 的系数为 ,常数 a 的值为 x 2 4
r 3 r 9
解: Tr 1 令
r 9 a x C ( ) 9r ( ) r C9r (1) r 2 2 a 9r x 2 x 2
9 令 18 3x 9, 则 r 3 ,从而可以得到 x 的系数为:
C
3 9
1 21 21 ( ) 3 , 填 2 2 2
(备用题) : (05 年山东卷)已知 (3x
1
3
x
2
) n , n N 的展开式中各项系数和为 128,则展
开式中
1 的系数是( x3

1 的展开式中没有 常数项, 且 2≤n≤8, n N* , .. 3 x
n
分析:本小题主要考查二项式定理中求特定项问题。依题 ( x
1 n ) 对 n N * , 2 剟n 3 x
8 中,
只有 n 5 时,其展开式既不出现常数项,也不会出现与 x 、 x 2 乘积为常数的项。故填 5。 (备用题) (05 年湖北卷) (
C
1
5
11
(1) 5 462
(2) 一般的系数最大或最小问题 例 12.求 ( x
2 x
4
) 8 展开式中系数最大的项;
解:记第 r 项系数为 Tr ,设第 k 项系数最大,则有
Tk Tk 1 Tk Tk 1
又 Tr
C
r 1 8
.2 r 1 ,那么有

二项式定理的常考题型

二项式定理的常考题型

二项式定理的常考题型
二项式定理是代数中常见且重要的定理之一,它可以用来展开二项式的幂。

在数学考试中,常常会出现与二项式定理相关的题目。

下面介绍几种常见的与二项式定理相关的考题类型。

1. 二项式系数的求解:考生需要根据给定的条件,求解二项式展开
式中某一项的系数。

这类题目通常需要考生运用组合数的性质,结合二项式定理进行计算。

2. 二项式展开的特定项:考生需要根据给定的条件,求解二项式展
开式中某一特定项的值。

这类题目通常需要考生根据二项式定理按照对应的系数进行计算,并注意运用组合数的性质。

3. 二项式定理与多项式的展开:考生需要将一个多项式展开成二项
式的形式。

这类题目通常需要考生运用二项式定理的逆定理,即将一个多项式写成二项式的形式。

4. 二项式定理与数列的关系:考生需要根据给定的数列,利用二项
式定理推导数列的通项公式或者递推关系。

这类题目通常需要考生观察数列的特点,利用二项式定理进行变形推导。

除了上述常见考题类型,二项式定理还可以与其他数学概念进行结合,
如排列组合、数学归纳法等。

因此,在学习二项式定理时,需要注意将其与其他数学概念进行联系,深化对二项式定理的理解,并灵活运用于解决各类数学问题。

二项式定理应用的六种题型

二项式定理应用的六种题型

二项式定理的应用二项式定理)()(110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n ⑴这个公式叫做二项式定理.⑵展开式:等号右边的多项式叫做nb a )(+的二项展开式,展开式中一共有1+n 项.⑶二项式系数:各项的系数}),,2,1,0{(n k C kn ∈叫做二项式系数.展开式的通项n b a )(+展开式的第1+k 项叫做二项展开式的通项,记作k k n k n k b a C T -+=1.题型1求某项系数例1.二项式8312(xx-中展开式的常数项是)(答案:常数项为7)1()21(68627=-⋅=C T .例2.在62)1(xx +的展开式中,3x 的系数是)(答案:20.例3.若二项式7)1(xx -的展开式中的第四项等于7,则x 的值是)(答案:51-=x .题型2多个多项式例4.72)1()1()1(x x x ++++++ 的展开式中,3x 的系数是)(答案:3x 的系数为7048373433==+++C C C C .例5.设432231404321))()()((A x A x A x A x A a x a x a x a x ++++=++++则=2A ;=3A ;答案:4343243212)()(a a a a a a a a a A +++++=,4324314213212a a a a a a a a a a a a A +++=.例6.9)2(z y x -+的展开式中324z y x 的系数为)(.答案:324z y x 的系数为5040-.例7.求当52)23(++x x 的展开式中x 的一次项的系数为)(.分析:解法①:5252]3)2[()23(x x x x ++=++,r rrr x x C T )3()2(5251-++=,当且仅当1=r 时,1+r T 的展开式中才有x 的一次项,此时x x C T T r 3)2(421521+==+,所以x 的一次项为x C C 3244415⋅,它的系数为2403244415=⋅C C .解法②:)22)(()2()1()23(555415505554155055552C x C x C C x C x C x x x x ++++++=++=++ 故展开式中含有x 的项为x x C xC C 2402244555545=+,故展开式中x 的系数为240.例8.求式子3)21(-+xx 的常数项为)(答案:631()21(xx x x -=-+,设第1+r 项为常数项,则rr r r rr r r xC xxC T 266661)1(1()1(--+-=-=,得3026=⇒=-r r ,所以20)1(36313-=-=+C T .例9.52)1)(1(x x x -++的展开式中,4x 的系数是)(分析:已知表达式展开式中每一项由两部分相乘而成,要想凑得4x ,不妨从其中一个式子切入进行分类讨论(以)1(2x x ++为例)1:)1(2x x ++出1,则5)1(x -出4x ,该项为:44455)(11xx C =-⋅⋅⋅2:)1(2x x ++出x ,则5)1(x -出3x ,该项为:4323510)(1xx C x -=-⋅⋅⋅3:)1(2x x ++出2x ,则5)1(x -出2x ,该项为:42325210)(1x x C x =-⋅⋅⋅综上所述:合并同类项后4x 的系数是5.例10.102)1(+-x x 的展开式中3x 的系数是)(分析:本题不利于直接展开所有项,所以考虑将其转化为10个因式如何分配所出项的问题:若要凑成3x 有以下几种可能:⑴:1个2x ,1个)(x -,8个1,所得项为:3888192110901)(xC x C x C -=⋅-⋅⑵:3个)(x -,7个1,所得项为:377733101201)(x C x C -=⋅-,所以3x 的系数是210-.例11.求43)1()21(x x -+的展开式中2x 的系数是)(分析:因为3)21(x +的展开式的通项是3,2,1,0,2)2(33=⋅⋅=⋅m x C x C mmmmm,4)1(x -的展开式的通项是4,3,2,1,0,)1()(44=⋅-⋅=-⋅n x C x C n n nn n ,令2=+n m ,则有0=m 且2=n ,1=m 且1=n ,2=m 且0=n ,因此43)1()21(x x -+的展开式中2x 的系数等于6)1(2)1(2)1(20422311411322403-=-⋅⋅⋅+-⋅⋅⋅+-⋅⋅⋅C C C C C C .例12.求10463)11()1(xx ++展开式中的常数项是)(答案:4246例13.已知nxx x x 1)(1(32+++的展开式中没有常数项,*∈N n 且82≤≤n ,则=n 分析:n xx 1(3+的展开式的通项为rn r n r r n r n x C x x C 43---⋅=⋅⋅,通项分别与前面三项相乘可得24144,,+-+--⋅⋅⋅r n r n r n r n rn rn x C x C xC ,因为展开式中不含常数项,82≤≤n 所以r n 4≠且14-≠r n 且24-≠r n ,即8,4≠n 且7,3≠n 且6,2≠n ,所以5=n 题型3系数特征例14.在204)3(y x +的展开式中,系数为有理数的项有项.答案:6项例15.求二项式93)(x x -的展开式中的有理项.分析:62793192191)1()()(x r rrrrr xC x x C T --+-=-=,令)90(,627≤≤∈-r Z r得3=r 或9=r 当3=r 时,44393484)1(,4627x x C T r -=-==-,当9=r 时,3399910)1(,3627x x C T r -=-==-.例16.nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项,系数最大的项.分析:二项展开式的通项rrrn r x C T 21=+,由第6项与第7项的系数相等得,8226655=⇒=n C C n n ,所以展开式中二项式系数最大得项为44448511202x x C T ==,设第1+r 项系数最大,则⎩⎨⎧⋅≥⋅⋅≥⋅++--118811882222r r r r r r r r C C C C ,解之得65≤≤r 即5=r 或6,所以系数最大得项为55558617922x x C T ==或66668717922x x C T ==.例17.在nb a 2)(+的展开式中,求二项式系数最大的项.分析:二项式的幂指数是偶数n 2,则中间一项的二项式系数最大,即1122++=n nT T ,也就是第1+n 项.例18.在nxx)12(3-的展开式中,只有第5项的二项式最大,则展开式中的常数项是.分析:只有第5项的二项式最大,则512=+n,即8=n ,所以展开式中的常数项为第7项等于721(268=C .题型4求系数和常用赋值举例:⑴设nn n r r n r n n n nn nb C b a C b aC a C b a +++++=+-- 11)(,①令1==b a ,可得:nnn n n nC C C C ++++= 212②令1,1-==b a ,可得:nn n n n n n C C C C C )1(0321-+-+-= ,即13120-+++=+++n n n n n n n n C C C C C C (假设n 为偶数),再结合①可得:1131202--=+++=+++n n n n n n n n n C C C C C C ⑵设nn n xa x a x a a x x f ++++=+= 2210)12()(①令1=x ,则有:)1()112(210f a a a a nn =+⨯=++++ ,即展开式系数和②令0=x ,则有:)0()102(0f a n=+⨯=,即常数项③令1-=x ,设n 为偶数,则有:)1()1)1(2(3210-=+-⨯=++-+-f a a a a a nn ,所以)1(((13120-=+++-+++-f a a a a a a n n )),即偶次项系数和与奇次项系数和的差,由①③即可求出)n a a a +++ 20(和)131(-+++n a a a 的值例19.已知0199101052)123(a x a x a x a x x ++++=+- ,求29753121086420)()(a a a a a a a a a a a ++++-+++++的值.分析:令1=x ,得510102=+++a a a ,令1-=x ,得59753110864206)()(=++++-+++++a a a a a a a a a a a ,所以555297531210864201262)()(=⨯=++++-+++++a a a a a a a a a a a 求展开式系数和,充分利用赋值法.赋值时,一般地,对于多项式nn nx a x a x a a px x g ++++=+= 2210)1()(有以下结论:⑴)(x g 的二项式系数和为n2;⑵)(x g 的奇数项的二项式系数和=偶数项的二项式系数和12-=n ;⑶)(x g 的各项系数和为)1(g ;⑷)(x g 的奇数项的系数和为)]1()1([21-+g g ;⑸)(x g 的偶数项的系数和为)]1()1([21--g g .例20.已知1111221092)1()1()1()2)(1(-++-+-+=-+x a x a x a a x x ,则1121a a a +++ 的值为.分析:本题虽然等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2=x ,得到011210=++++a a a a ,只需要再求出0a 即可.令1=x 可得20-=a ,所以21121=+++a a a .例21.设443322104)22(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为.分析:所求))(()()(43210432102312420a a a a a a a a a a a a a a a +-+-++++=+-++,在恒等式中令1=x 可得443210)22(+=++++a a a a a ,令1-=x 可得44321022(-=+-+-a a a a a ,所以16)22(22()()(442312420=-+=+-++a a a a a 例22.若55443322105)32(x a x a x a x a x a a x +++++=-,则||||||||||||543210a a a a a a +++++等于.分析:虽然5)32(x -的展开式系数有正有负,但5)32(x -与5)32(x +对应系数的绝对值相同,且5)32(x +展开式的系数均为正数.所以只需计算5)32(x +的展开式系数和即可.1=x 可得系数和为55,所以55432105||||||||||||=+++++a a a a a a .例23.若)(2206220N n C C n n ∈=++,且n n n x a x a a x +++=- 10)2(,则n n a a a a )1(210-+-+- 等于.分析:由2206220++=n n C C 可得262+=+n n 或202)62(=+++n n ,解得4=n ,所求表达式只需令1-=x ,可得81)]1(2[)1(4210=--=-+-+-n na a a a .例24.已知nn nx a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-29121 ,则n 的值为.分析:在恒等式中令1=x 可得系数和12)12(222221210--=+++=++++-n nn a a a a ,与条件联系可考虑先求出0a ,n a ,令0=x ,可得n a =0,展开式中n a 为最高次项系数,所以1=n a ,所以12211210---=+++++-n a a a a n n ,所以n n n -=---+291221,即3221=+n ,解得4=n .例25.55443322105)32(x a x a x a x a x a a x +++++=-,则5432105432a a a a a a +++++的值是.分析:设55443322105)32()(x a x a x a x a x a a x x f +++++=-=所以45342321454322)32(5)(x a x a x a x a a x x f ++++=⋅-=',令1=x 可得54321543210a a a a a ++++=而在55443322105)32(x a x a x a x a x a a x +++++=-中,令0=x ,可得243350-=-=a ,所以2335432543210-=+++++a a a a a a .例26.已知10102210)(x a x a x a a x g ++++= ,9910)(x b x b b x h +++= ,若)()()1()21)(1(1019x h x g x x x +-=-+,则=9a .分析:由条件中恒等式的特点可得对应项的系数相等,在)()1(10x g x -中,与9a 相关的最高次项为19x ,故以此为突破口求9a ,等式左边19x 的系数为18181919)2()2(-+-C ,而右边19x 的系数为9910109)1(-⋅+C a a ,所以181819199910109)2()2()1(-+-=-⋅+C C a a ,只需再求出10a 即可,同样选取含10a 的最高次项,即20x ,左边20x 的系数为19)2(-,右边20x 的系数为10a ,所以1910)2(-=a ,从而解得18923⨯-=a .题型5逆用例27.=++⋅+⋅+-12321666n nn n n n C C C C .答案:)17(61-n例28.=++++-n n n n n n C C C C 1321393 .答案:314-n 题型6应用例29.证明:)(98322*+∈--N n n n 能被64整除分析:21111101211111011111211111011122888981)1(888898888898)18(989983-++++-+++++++-++++++++++=--++++++=--+++++=--+=--=--n n n n n n n n n n n n n n n n n n n n n n n n n C C C n n C C C n C C C C C n n n 由于各项均能被64整除所以)(98322*+∈--N n n n 能被64整除.例30.已知*∈N n ,求证:1522221-++++n 能被31整除.分析:132122121222155152-=-=--=++++-n n n n 113131311)131(111-+⨯++⨯+=-+=--n n n n n n C C )3131(311211---++⨯+⨯=n n n n n C C 显然括号内的数为正整数,故原式能被31整除.。

二项式定理十大典型问题及例题

二项式定理十大典型问题及例题
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数
解:由条件知 ,即 , ,解得 ,由
,由题意 ,
则含有 的项是第 项 ,系数为 。
练:求 展开式中 的系数
解: ,令 ,则
故 的系数为 。
题型三:利用通项公式求常数项;
例:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:求二项式 的展开式中的常数项
练:写出在 的展开式中,系数最大的项系数最小的项
解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大值,从而有 的系数最小, 系数最大。
练:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项
解:由 解出 ,假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为 ,有
如果二项式的幂指数 是奇数时,则中间两项的二项式系数 , 同时取得最大值。
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
专题一
题型一:二项式定理的逆用;
例:
解: 与已知的有一些差距,
练:
解:设 ,则
题型二:利用通项公式求 的系数;
3.注意关键点:
①项数:展开式中总共有 项。
②顺序:注意正确选择 , ,其顺序不能更改。 与 是不同的。
③指数: 的指数从 逐项减到 ,是降幂排列。 的指数从 逐项减到 ,是升幂排列。各项的次数和等于 .
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 项的系数是 与 的系数(包括二项式系数)。
8、自然数n为偶数时,求证:
8、原式=
9、求 被9除的余数

二项式定理高考题型及解题(精编版)

二项式定理高考题型及解题(精编版)

二项式定理高考题型及解题(精编版)题型一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(xx +的展开式;解:原式=4)13(xx +=24)13(x x + =])3()3()3()3([144342243144042C C C C C x x x x x ++++ =)112548481(12342++++x x x x x=54112848122++++xx x x2. “n b a )(-”型的展开式 例2.求4)13(xx -的展开式;分析:解决此题,只需要把4)13(xx -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可。

本题主要考察了学生的“问题转化”能力。

3.二项式展开式的“逆用”例3.计算c C C C nn n n n n n 3)1( (279313)21-++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。

题型二:求二项展开式的特定项 1.求指定幂的系数或二项式系数 (1)求单一二项式指定幂的系数例4.92)21(xx -展开式中9x 的系数是 ;解:r r rr x x T C )21()(9291-=-+=r r r r x x C )1()21(2189--=x r r x C 3189)21(--令,9318=-x 则3=r ,从而可以得到9x 的系数为:221)21(339-=-C ,∴填221-(2) 求两个二项式乘积的展开式指定幂的系数例5.72)2)(1-+x x (的展开式中,3x 项的系数是 ; 解:在展开式中,3x 的来源有:① 第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ; ② 第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008。

二项式定理经典习题(29题)

二项式定理经典习题(29题)

一.选择题(共19小题)1.(ax+y)5的展开式中x2y3项的系数等于80,则实数a=()A.2B.±2C.D.±2.的展开式中x3的系数为()A.5B.﹣5C.15D.﹣153.已知二项式(x+)n的展开式的二项式系数之和为64,则展开式中含x3项的系数是()A.1B.C.D.34.(x﹣1)5展开式中x4项系数为()A.5B.﹣5C.10D.﹣105.的展开式中常数项为()A.﹣240B.﹣160C.240D.1606.(1+x)5展开式中x2的系数为()A.﹣10B.﹣20C.20D.107.的展开式中含x5项的系数是()A.﹣112B.112C.﹣28D.288.的展开式中x3的系数为()A.﹣160B.﹣64C.64D.1609.二项式的展开式中的常数项是()A.﹣15B.15C.20D.﹣2010.若的展开式中常数项为240,则正整数n的值为()A.6B.7C.8D.911.(x﹣1)10的展开式的第6项的系数是()A.B.C.D.12.展开式中的常数项是()A.﹣160B.﹣140C.160D.14013.(x﹣2y﹣1)5的展开式中含x2y2的项的系数为()A.﹣120B.60C.﹣60D.3014.若的展开式中第4项是常数项,则n的值为()A.14B.16C.18D.2015.设n为正整数,(2x2+)n的展开式中存在常数项,则n的最小值为()A.2B.3C.4D.516.在(2x+1)4的展开式中,x2的系数为()A.6B.12C.24D.3617.在的展开式中,的系数为()A.﹣30B.﹣20C.﹣10D.3018.的展开式中,x2的系数等于()A.﹣45B.﹣10C.10D.4519.(x+2y)(x﹣y)5的展开式中x2y4的系数为()A.﹣15B.5C.﹣20D.25二.填空题(共10小题)20.已知(a+x)(1+x)6的展开式中x2的系数为21,则a=.21.展开式中所有奇数项的二项式系数和为32,则展开式中的常数项为.(用数字作答)22.(x﹣2y+1)5展开式中含x2y项的系数为.23.的展开式中项的系数为.24.的展开式中,常数项为(用数字作答).25.(x﹣1)(x+2)8的展开式中x8的系数为(用数字作答).26.在的展开式中,xy7的系数为.27.(x2﹣y)()6的展开式中,其中不含x的项为.28.在的展开式中,常数项等于.(用数字作答)29.(x2+y+3)6中x4y的系数为(用数字作答).。

考向38 二项式定理全归纳(十五大经典题型)(原卷版)

考向38 二项式定理全归纳(十五大经典题型)(原卷版)

考向38二项式定理全归纳经典题型一:求二项展开式中的参数 经典题型二:求二项展开式中的常数项 经典题型三:求二项展开式中的有理项 经典题型四:求二项展开式中的特定项系数 经典题型五:求三项展开式中的指定项经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 经典题型七:求二项式系数最值 经典题型八:求项的系数最值经典题型九:求二项展开式中的二项式系数和、各项系数和 经典题型十:求奇数项或偶数项系数和 经典题型十一:整数和余数问题 经典题型十二:近似计算问题 经典题型十三:证明组合恒等式 经典题型十四:二项式定理与数列求和 经典题型十五:杨辉三角(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).(2022·浙江·高考真题)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理 一般地,对于任意正整数,都有:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数r n C (r =0,1,2,…,n )叫做二项式系数, (2)二项式()n a b +的展开式的特点: ①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:①()②(4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯ 公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项和()n b a +的二项展开式的第r +1项是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是(只需把b -看成b 代入二项式定理). 2、二项式展开式中的最值问题 (1)二项式系数的性质①每一行两端都是1,即0nn n C C =;其余每个数都等于它“肩上”两个数的和,即nn b a )(+011()(1)(1)n n n r r n r rn n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅*N n ∈122(1)1n r r n n n n x C x C x C x x +=++++++rn C r n r r n C a b -r n r r n C b a -1(1)r r n r rr n T C a b -+=-11m m m n nn C C C -+=+. ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122rn n n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅=.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来. 知识点3、二项式展开式中系数和有关问题 常用赋值举例:(1)设,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令,可得:②令11a b ==,,可得:,即:(假设为偶数),再结合①可得: .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++.③奇数项的系数和与偶数项的系数和()011222nn n n r n r rn nnn n n n a b C a C a b C a b C a b C b ---+=++++++1a b ==012n n n n n C C C =+++()012301nnn n n nn C C C C C =-+-+-02131n n n n n n n n C C C C C C -+++=+++n 0213112n n n n n n n n n C C C C C C --+++=+++=(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++=;偶数项的系数和为135(1)(1)2f f a a a --+++=. (可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配) (ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++=;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配) 若1210121()n n n n f x a a x a x a x a x --=+++++,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.1、求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围().(1)第项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程. 2、解题技巧:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-,偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.经典题型一:求二项展开式中的参数0,1,2,,k n =m1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ( ) A .2 B .-2C .8D .-82.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =( )A .-1B .1C .±1D .23.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ( )A .2B .-2C .2或-2D .4经典题型二:求二项展开式中的常数项4.(2022·广东广州·高三阶段练习)若2nx x ⎛⎝的展开式中第2项与第6项的二项式系数相等,则该展开式中的常数项为( ) A .160-B .160C .1120-D .11205.(2022·福建省漳州第一中学模拟预测)已知53a x x ⎛⎝(a 为常数)的展开式中所有项系数的和与二项式系数的和相等,则该展开式中的常数项为( ) A .-90B .-10C .10D .906.(2022·山东青岛·高三开学考试)在62x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .80B .80-C .160D .160-7.(2022·全国·高三专题练习)已知二项式1nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为64,则展开式中常数项为( ) A .120-B .20-C .15D .20经典题型三:求二项展开式中的有理项8.(2022·江苏南通·高三阶段练习)21031(2x x的二项展开式中有理项有( ) A .3项B .4项C .5项D .6项9.(2022·全国·高三专题练习(理))若65(32)n x x 的展开式中有且仅有三个有理项,则正整数n 的取值为( ) A .4B .6或8C .7或8D .810.(2022·重庆市第十一中学校高三阶段练习)已知二项式()nx n N x *⎛∈ ⎝的展开式中,二项式系数之和为64,则展开式中有理项的系数之和为( ) A .119B .168C .365D .52011.(2022·全国·高三专题练习)在243(2x x的展开式中,有理项共有( ) A .3项B .4项C .5项D .6项12.(2022·全国·高三专题练习(理))若21nx x ⎫⎪⎭展开式中只有第四项的系数最大,则展开式中有理项的项数为( ) A .1B .2C .3D .4经典题型四:求二项展开式中的特定项系数13.(2022·湖北·高三开学考试)已知二项式13nx x ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为( ) A .405-B .405C .81-D .8114.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( ) A .454B .458-C .358D .715.(2022·全国·高三专题练习)在2()n x x -的展开式中,若二项式系数的和为32,则1x的系数为( ) A .80-B .80C .40-D .4016.(2022·全国·高三专题练习(理))()()()239111x x x ++++⋅⋅⋅++的展开式中2x 的系数是( ) A .45B .84C .120D .21017.(2022·全国·高三专题练习)若()1nx +的展开式中,某一项的系数为7,则展开式中第三项的系数是( ) A .7B .21C .35D .21或35经典题型五:求三项展开式中的指定项18.(2022·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )A .5B .-5C .15D .-1519.(2022·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .1152020.(2022·全国·高三专题练习)()423x y z +-的展开式中,所有不含z 的项的系数之和为( ) A .16B .32C .27D .8121.(2022·全国·高三专题练习)()421x y x ++的展开式中22y x的系数为( )A .4B .6C .8D .1222.(2022·全国·高三专题练习)在()5223x x --的展开式中含10x 和含2x 的项的系数之和为( ) A .674-B .675-C .1080-D .148523.(2022·全国·高三专题练习)()635x y -的展开式中,22x y 的系数为( )A .135-B .75-C .75D .135经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 24.(2022·浙江邵外高三阶段练习)()()6x y x y +-的展开式中34x y 的系数是________.(用数字作答)25.(2022·全国·高三专题练习)()6213x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为__________.26.(2022·全国·清华附中朝阳学校模拟预测)232345012345(1)(23)x x a a x a x a x a x a x +-=+++++,则4a =_________.27.(2022·全国·高三专题练习)已知522a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中的各项系数和为3-,则该展开式中的常数项为______.28.(2022·河北邢台·高三开学考试)()631x x x ⎛+ ⎝展开式中的3x 项的系数是______.29.(2022·浙江·杭十四中高三阶段练习)25()y x x x y ⎛⎫⎪⎭+ ⎝+的展开式中24x y 的系数为___________.(用数字作答)30.(2022·四川·树德中学高三阶段练习(理)) 6211(1)x x ⎛⎫++ ⎪⎝⎭展开式中3x 的系数为______.31.(2022·全国·高三专题练习)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.32.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.经典题型七:求二项式系数最值33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .1034.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是( ) A .3280xB .4560xC .3280x 和4560xD .5672x 和4560x35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为( ) A .5B .6C .7D .836.(2022·全国·高三专题练习)5a x x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为( ) A .2B .3C .4D .2-经典题型八:求项的系数最值37.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.38.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项. 39.(2022·全国·高三专题练习)若4()x xn 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.经典题型九:求二项展开式中的二项式系数和、各项系数和40.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++,则1237a a a a ++++=_________.(用数字作答)41.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为( )A .2B .0C .1D .-142.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++,则20202019201820171023420202021a a a a a a ++++++=( )A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯43.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++,则( )A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑经典题型十:求奇数项或偶数项系数和44.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++x x a a x a x a x ,则1357a a a a +++=_______,1a =________.45.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.46.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)n n n x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.47.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-经典题型十一:整数和余数问题48.(2022·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.49.(2022·河北·石家庄二中模拟预测)20222除以7的余数为_______. 50.(2022·福建漳州·三模)711除以6的余数是___________.51.(2022·全国·高三专题练习)091827899995555C C C C ++++被7除的余数是____________.52.(2022·天津市第七中学模拟预测)已知n 为满足()12320222022202220222022C C C C 3T a a =+++++≥能被9整除的正整数a 的最小值,则()()221nxx x -+-的展开式中含10x 的项的系数为______.53.(2022·全国·高三专题练习)若1002100012100(21)x a a x a x a x +=++++,则()1359923a a a a ++++-被8整除的余数为___________.54.(2022·浙江·高三专题练习)设a ∈Z ,且0≤a ≤16,若42021+a 能被17整除,则a 的值为 _____.经典题型十二:近似计算问题55.(2022·河南南阳·高三期末(理))81.02≈__________(小数点后保留三位小数). 56.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.57.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.经典题型十三:证明组合恒等式58.(2022·全国·高三专题练习)(1)设m 、*n N ∈,m n ≤,求证:1111m mn n n C C m +++=+; (2)请利用二项式定理证明:()2*3213,n n n n N >+≥∈.59.(2022·江苏省天一中学高三阶段练习)已知*0()()nk k n n k f x C x n N ==∈∑.(1)若456()()2()3()g x f x f x f x =++,求()g x 中含4x 项的系数; (2)求:012112323n m m m m n C C C nC -++++++++.60.(2022·江苏·泰州中学高三阶段练习)(1)设()(12),()n f x x f x =+展开式中2x 的系数是40,求n 的值;(2)求证:11(1)0(2,)nk k n k kC n n N +*=-=≥∈∑经典题型十四:二项式定理与数列求和61.(2022·全国·高三专题练习(理))令n a 为()11n x ++的展开式中含1n x -项的系数,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为( )A .()32n n + B .()12n n + C .1n n + D .21nn + 62.(2022·全国·高三专题练习)已知等差数列{}n a 的第5项是61x x ⎛⎫- ⎪⎝⎭展开式中的常数项,则28a a +=( ) A .20B .20-C .40D .40-63.(2022·河北保定·二模)若n 为等差数列4,2,0,--中的第7项,则二项式21(2)n x x-展开式的中间项系数为( )A .1120B .1120-C .1792D .1792-64.(2022·江西新余·二模(理))已知等差数列{}n a 的第5项是6122x y x ⎛⎫-+ ⎪⎝⎭展开式中的常数项,则该数列的前9项的和为( ) A .160B .160-C .1440D .1440-经典题型十五:杨辉三角65.(2022·全国·高三专题练习)如图所示的杨辉三角中,从第2行开始,每一行除两端的数字是1以外,其他每一个数字都是它肩上两个数字之和在此数阵中,若对于正整数n ,第2n 行中最大的数为x ,第21n 行中最大的数为y ,且137x y =,则n 的值为______.66.(2022·全国·高三专题练习)“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发引一组平行线,从上往下每条线上各数之和依次为:1,1,2,3,5,8,13,…,则第10条斜线上,各数之和为______.67.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.68.(2022·全国·高三专题练习)如图,在杨辉三角形中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10, ,记此数列的前n项之和为n S,则23S 的值为__________.1.(2022·北京·高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-2.(2020·山东·高考真题)在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是( )A .56B .56-C .70D .70-3.(2020·北京·高考真题)在5(2)x 的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020·全国·高考真题(理))25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2022·天津·高考真题)523x x ⎫⎪⎭的展开式中的常数项为______.6.(2021·天津·高考真题)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2020·天津·高考真题)在522x x ⎛ ⎝⎭的展开式中,2x 的系数是_________. 8.(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).9.(2021·浙江·高考真题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.10.(2020·浙江·高考真题)设52345123456(12)x a a x a x a x a x a x +=+++++,则5a =________;123a a a ++=________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,·1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。

⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

6.二项式定理的十一种考题的解法: 【题型一:二项式定理的逆用】【例1】:12321666 .nn n n n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n n n n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,123211221666(666)6nn n n n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666n n n n n n n n C C C C =+⋅+⋅++⋅-=+-=-【练1】:1231393 .n nn n n n C C C C -++++=解:设1231393n nn n n n n S C C C C -=++++,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-(13)14133n n n S +--∴==【题型二:利用通项公式求n x 的系数】【例2】:在二项式n+的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

【练2】:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r rr r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

【题型三:利用通项公式求常数项】 【例3】:求二项式210(x 的展开式中的常数项?解:5202102110101()()2r r r r r r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==【练3】:求二项式61(2)2x x -的展开式中的常数项?解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C xx ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-【练4】:若21()n x x +的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx--==,令2120n -=,得6n =. 【题型四:利用通项公式,再讨论而确定有理数项】【例4】:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。

【题型五:奇数项的二项式系数和=偶数项的二项式系数和】 【例5】:若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n nn a a a a a -+-+⋅⋅⋅+-=② 将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。

【练5】:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。

解:024*******r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462nT C x -+==⋅,611561462T x -+=⋅【题型六:最大系数,最大项】【例6】:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少? 解:46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。

【练6】:在2()na b +的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112n n T T ++=,也就是第1n +项。

【练7】:在(2n x 的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则152n +=,即8n =,所以展开式中常数项为第七项等于6281()72C =【例7】:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。

【例8】:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+ 1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==【练8】:在10(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1102rr r r T C x +=⋅111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤,7r ∴=,展开式中系数最大的项为7777810215360.T C x x == 【题型七:含有三项变两项】【例9】:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。

相关文档
最新文档