整数规划典型问题实例
目标规划整数规划第三、四、五章

销地 产地 A1 A2 4
B1
B2
B3 2
B4
B5
产量
3
11 3 6 4 3
12 7 5
5
3 2 5 1 4
6
4 2 9 2 5
4
0 8 0 5 0 9
A3
销量
当产大于销时,即
a b
i 1 i j 1 m
m
n
j
加入假想销地(假想仓库),销量为
a b
i 1 i j 1
n
(二)对偶变量法(位势法) 1.基本原理
检验数的计算: 一般问题:σj = C j- CBB-1 Pj = Cj - Y Pj 运输问题: σij = C ij- CBB-1 Pij = Cij - Y Pij = Cij - (u1,u2, …,um, v1, v2, …,vn) Pij = Cij - ( ui+ vj ) 当xij 为基变量时, σij = Cij - ( ui+ vj )=0 由此,任选一个对偶变量为0,可求出其余所有 的ui, vj 。 再根据σij = Cij - ( ui+ vj )求出所有非基变量的检验 数。
A 1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
16 10 2 3 9 10 8 2 8 14 5 11 8 6 22 8 14 12 14 48
10
4
6
11
z 0 8 2 14 5 10 4 2 3 6 11 8 6 246 优点:就近供应,即优先供应运价小的业务。
4. 计划利润不少于48元。
- , P d + , P d -} Min{ P1 d16 maxZ= x1 +8 2 2x2 3 3 5x1 + 10x2 60 • 原材料使用不得超过限额 x1 - 2x2 +d1- -d1+ =0 • 产品II产量要求必须考虑 - -d + =36 4x + 4 x +d 1 2 2 2 • 设备工时问题其次考虑
整数规划实例课件

x1 x2 x3 x4 s1 0 0 1/ 41/ 4 0 3 / 2
1 0 1/6 1/6 0 1 0 1 1/4 1 4 0 3/ 2
1 0 01 1
x2 0x3 0x4 s1 1
x1 x2 x3 x4 s1 0 0 1/ 41/ 4 0 3 / 2
1 0 1/6 1/6 0 1 0 1 1/4 1 4 0 3/ 2 0 0 1/ 4 1/ 4 1 1/ 2
n
xij 1; i 1,2,..., n j0
s.t. n xij 1; j 1,2,..., n i0 ui u j nxij n 1;1 i j n xij 1,0, i 1,2,..., n, j 1,2,..., n
背包问题
背景 案例 模型
整数规划
I
B1N B 1b 0
xr arj x j br jN
xr arj x j br jN
arj arj f rj arj arj
br br f r br br
xr arj x j br jN
整数可行解
最优基可行解
xr arj x j br jN
arn 0
1 amm1 amn 0
arm1 arn 1
cB B 1b b1
br
bm
br
x1 x2 xr 0 0 0
1 1 1
0
xm xm1 xn sr 0 m1 0 n 0 0
a1m1 a1n 0
a rm 1
arn 0
1 amm1 amn 0
1 arm1
a
a
rm1
rn
项目投资:财团或银行把资金投入到若干 项目中以获得中长期的收益最大。
整数规划
数学建模 -整数规划

松弛问题 L0: max z 30x1 20x 2 2 x1 3 x 2 14.5 s.t 4 x1 x 2 16.5 x1 0, x 2 0
z 2 130 剪枝 ( IP)的最优解:x 3,x 2 1 2
最优值:Z * 130
4x1+x2=16.5
3 L3:xx21 2 z 3 130 关闭
11 L4 x1 4 ,x2 3 28543;3x2=14.5
L5 x1 2,x2 7
剪枝 z 130 5
2
L6 剪枝
无可行解
· · · · · · · · · 1 2 3 4 5 6 7
19:01
分枝定界法
分枝定界法
(1)分枝:通常,把全部可行解空间反复地分割为越 来越小的子集,称为分枝; (2)定界:并且对每个子集内的解集计算一个目标下 界(对于最小值问题),这称为定界。 (3)剪枝:在每次分枝后,凡是界限超出已知可行解 集目标值的那些子集不再进一步分枝,这样,许多子 集可不予考虑,这称剪枝。 求解生产进度问题、旅行推销员问题、工厂选址问题、 背包问题及分配问题。
对( IP) max z 30x1 20x 2 2 x1 3x 2 14.5 4 x1 x 2 16.5 s.t x 0, x 2 0 1 x1 , x 2为整数
父问题
松弛问题 ( L0 ): max z 30x1 20x 2 2 x1 3 x 2 14.5 s.t 4 x1 x 2 16.5 最优解: x1 3.5, x1 0, x 2 0
x 2 2 .5
子问题
( L1 ) max z 30x1 20x 2 ( L ) max z 30x 20x 2 1 2 2 x1 3 x 2 14.5 2 x1 3x2 14.5 4 x1 x 2 16.5 4 x1 x2 16.5 s.t s.t x1 3 x1 4 x1 0, x 2 0 x1 0, x2 0
整数规划典型问题实例

例1 原料下料问题 生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小
按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
(钢管下料) 做100套钢架,用长为2.9m,2.1m,1.5m的元钢各一根,已知原料长 为7.4m,问如何下料,所用最省?
问题分析:每一种下料方式用了多少根钢材,合理的下料方式是剩余料头的
原料钢管总根数上界:13+10+8=31
2 6x1x2x331模式排列顺序可任定
x1 x2 x3
LINGO求解整数非线性规划模型
Local optimal solution found at
iteration: 12211
Objective value:
28.00000
Variable Value Reduced Cost
现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。
对大规模问题,用模型的约束条件界定合理模式 决策变量
xi ~按第i 种模式切割的原料钢管根数(i=1,2,3) r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管 生产4米、5米、6米和8米长的钢管的数量
钢管下料问题2
目标函数(总根数) Mix1 nx2x3
约束 条件 满足需求
模式合理:每根 余料不超过3米
r1x11r1x22r1x33501 6 4 r 1 15 r2 16 r3 18 r4 119
r2x 11r2x 22r2x 33101 6 4 r1 25 r2 26 r3 28 r4 219
模 4米 6米 8米 余 式 根数 根数 根数 料
14
整数规划例题

〈运筹学〉补充例题例题 1.1 某工厂可以生产产品A和产品B两种产品。
生产单位产品A和B所需要的机时、人工工时的数量以及可利用资源总量由下表给出。
这两种产品在市场上是畅销产品。
该工厂经理要制订季度的生产计划,其目标是使工厂的销售额最大。
产品A 产品B 资源总量机器(时) 6 8 120人工(时) 10 5 100产品售价(元) 800 300MAX 800X1 +300X2ST6X1 +8X2 <= 12010X1 +5X2 <= 100X1, X2 >=0例题 1.2该工厂根据产品A和产品B的销售和竞争对手的策略,调整了两种产品的售价。
产品A和B的价格调整为600元和400元。
假设其它条件不变,请你帮助该工厂经理制订季度的生产计划,其目标仍然是使工厂的销售额最大。
X 600X1 +400X2ST6X1 +8X2 <= 12010X1 +5X2 <= 100X1, X2 >=0例题 1.3由于某些原因,该工厂面临产品原料供应的问题。
因此,工厂要全面考虑各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价等因素。
有关信息在下表中给出。
产品A 产品B 资源总量机器(时) 6 8 120人工(时) 10 5 100原材料(公斤) 11 8 130产品售价(元) 600 400MAX 600X1 +400X2ST6X1 +8X2 <= 12010X1 +5X2 <= 10011X1 +8X2 <= 130X1, X2 >=0例题 1.4随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额变为注重销售利润,因此,要考虑资源的成本。
工厂的各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价和各种资源的价格等因素。
有关信息在下表中给出。
产品A 产品B 资源总量资源价格(元/单位)机器(时) 6 8 120 5人工(时) 10 5 100 20原材料(公斤) 11 8 130 1产品售价(元) 600 400设: J为所用机器资源数量(小时);R为所用人力资源数量(小时);L为所用原材料数量(公斤)MAX 600X1 +400X2 -CST6X1 +8X2 - J = 010X1 +5X2 - R = 011X1 +8X2 - L = 0J <= 120R <= 100L <= 1305J +20R +1L - C = 0x1, x2, J,R,L>=0例题 1.5 学习了管理课程后,该企业的经理明白了产品的成本包括变动成本和固定成本。
典型的整数线性规划问题

小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0-1 模型
(IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
方法3:化为非线性规划
x1=0 或 80
x1(x1 80) 0
x2=0 或 80
x2 (x2 80) 0
x3=0 或 80
x3 (x3 80) 0
非线性规划(Non- Linear Programming,简记NLP)
NLP 虽 然 可 用 现 成 的 数 学 软 件 求 解 ( 如 LINGO, MATLAB),但是其结果常依赖于初值的选择。
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2
戊 1’07”4 1’11” 1’23”8 1’02”4
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4
运筹学整数规划例题

练习 4.9 连续投资问题某公司现有资金10万元, 拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资, 并于次年收回本利115%,但要求第一年投资最低金额为4 万元, 第二. 三. 四年不限.项目B:第三年初需要投资, 到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为 5 万元.项目C:第二年初需要投资, 到第五年末能收回本利140%,但规定其投资金额或为2万元,或为 4 万元, 或为 6 万元, 或为8 万元.项目D:五年每年年初都可购买公债,于当年末归还, 并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额, 使到第五年末拥有最大的资金收益.(1)x 为项目各年月初投入向量。
(2)x ij 为i 种项目j 年的月初的投入(3)向量c中的元素cij为i 年末j种项目收回本例的百分比(4)矩阵A中元素aij为约束条件中每个变量xij的系数。
(5)Z为第5年末能拥有的资金本利最大总额。
因此目标函数为max Z 1.15 x4 A 1.28 x3B 1.40x2C 1.06 x5 D束条件应是每年年初的投资额应等于该投资者年初所拥有的资金第 1 年年初该投资者拥有10 万元资金, 故有x1A x1D 100000 .第 2 年年初该投资者手中拥有资金只有 1 6% x1D , 故有x2A x2C x2D 1.06 x1D .第3 年年初该投资者拥有资金为从D 项目收回的本金: 1.06x2D , 及从项目 A 中第1 年投资收回的本金: 1.15x1A , 故有max=1.15*x4a+1.28*x3b+1.4*x2c+1.06*x5d; x1a+x1d=100000;-1.06*x1d+x2a+x2c+x2d=0;-1.15*x1a-1.06*x2d+x3a+x3b+x3d=0; -1.15*x2a-1.06*x3d+x4a+x4d=0; -1.15*x3a-1.06*x4d+x5d=0; x2c=40000 ; x2c=60000; x2c=80000; x2c=20000; x3b>=30000; x3b<=50000;x1a>=0;x2a>=0;x3a>=0;x4a>=0;x5a>=0; x1b>=0;x2b>=0;x3b>=0;x4b>=0;x5b>=0; x1c>=0;x2c>=0;x3c>=0;x4c>=0;x5c>=0; x1d>=0;x2d>=0;x3d>=0;x4d>=0;x5d>=0;x 3A x 3B x 3D 1.15 x 1A 1.06 x 2 D同理第 4年、第 5 年有约束为 x 4A x 4D 1.15 x 2 A 1.06 x 3 D ,x5D1.15 x 3 A 1.06x 4DVariable Value Reduced Cost X4A 22900.00 0.000000X3B 50000.00 0.000000X2C 40000.00 0.000000X5D 0.000000 0.000000X1A 62264.15 0.000000X1D 37735.85 0.000000X2A 0.000000 0.000000X2D 0.000000 0.3036000E-01 X3A 0.000000 0.000000X3D 21603.77 0.000000X4D 0.000000 0.2640000E-01 X5A 0.000000 0.000000X1B 0.000000 0.000000X2B 0.000000 0.000000X4B 0.000000 0.000000X5B 0.000000 0.000000X1C 0.000000 0.000000X3C 0.000000 0.000000X4C 0.000000 0.000000X5C 0.000000 0.000000Row Slack or Surplus Dual Price1 80000.00 1.0000002 0.000000 1.4018503 0.000000 1.3225004 0.000000 1.2190005 0.000000 1.1500006 0.000000 1.0600007 0.000000 -0.8388608E+188 -20000.00 -0.1280000E+109 -40000.00 -0.1280000E+1010 -20000.00 0.1280000E+1011 20000.00 0.00000012 0.000000 0.6100000E-0113 62264.15 0.00000014 0.000000 0.00000015 0.000000 0.00000016 22900.00 0.00000017 0.000000 0.00000018 0.000000 0.00000019 0.000000 0.00000020 50000.00 0.00000021 0.000000 0.00000022 0.000000 0.00000023 0.000000 0.00000024 40000.00 0.00000025 0.000000 0.00000026 0.000000 0.00000027 0.000000 0.00000028 37735.85 0.00000029 0.000000 0.00000030 21603.77 0.00000031 0.000000 0.00000032 0.000000 0.0000004.10 某城市的消防总站将全市划分为11个防火区,现有4个消防站,图4-11 给出的是该城市各防火区域和防火站的示意图,其中1,2,3,4 ,表示消防站1,2,⋯11 表示防火区域,根据历史资料证实,各消防站可在事先规定允许的时间对所负责的区域的火灾予以扑灭,图中没有虚线连接的就表示不负责,现在总部提出:能否减少消防站的数目,仍能保证负责各地区的防火任务?如果可以的话,应该关闭哪个?练习 4.10某城市的消防站总部将全市划分为11 个防火区,现有四的。
6.1整数规划问题

二、整数规划解的理论
对整数规划问题: max z = CX AX = b s (IP).t X ≥ 0 x 为整数 j
max z = CX AX = b s.t X ≥0
(IP)问题的松弛问题
对( IP )问题: max z = CX AX = b s .t X ≥ 0 x j 为整数
( )若松弛问题的最优解 X * 为整数解 4 则 X * 也是 IP 的最优解
其松弛问题为: max z = CX AX = b s .t X ≥ 0
() IP 的可行解域 1
(2 IP 的最优值 )
≤
松弛问题的可行解域
松弛问题的最优值
若松弛问题无可行解,则IP 无可行解
松弛问题的最优值是原整数规划 的目标函数值的上界
(3)若松弛问题可以找到一 个整数解 X,
则X 的目标函数值是 IP 最优值的下界
1 解: 设 x i = 0
带第 i 件物品 不带第 i 件物品
m
数学模型:
Z表示所带物品的总价值
m Z = ∑ci xi ax
m b x ≤b s.t ∑ i i i= 1 xi = 0,1 , i = 1 2,Lm ,
i =1
m
Z =
∑c
带第 i 件
i
=∑c xi =来自 i m i =1x1 , x 2 L , x n ≥ 0 x1 , x2 L, xn = 0,1
例
max z = 30 x 1 + 20 x 2 2 x 1 + 3 x 2 ≤ 14 × 2x + x ≤ 9 1 2 s .t x1 ≥ 0, x 2 ≥ 0 x 1 , x 2 为整数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s . t . 1 . 5 x1 3 x 2 5 x 3 600
280 x1 250 x 2 400 x 3 60000
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型 其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
模型求解
Max
整数规划(Integer Programming,简记IP)
IP可用LINDO直接求解
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3 “gin 3”表示“前3个变量为 整数”,等价于: gin x1 gin x2 gin x3
汽车厂生产计划
模型建立
钢材
小型
1.5
中型
3 250
大型
5 400
现有量
600 60000
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
Max z 2 x1 3 x 2 4 x 3
时间 280
利润
2
3
4
s . t . 1 . 5 x1 3 x 2 5 x 3 600
钢管下料问题1 目标2(总根数) Min Z 2 x 1 x 2 x 3 x 4 x 5 x 6 x 7 约束条 件不变
4 x 1 3 x 2 2 x 3 x 4 x 5 50
x 2 2 x 4 x 5 3 x 6 20
x 3 x 5 2 x 7 15
1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与 LP最优值632.2581相差不大。 2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数 值z,通过比较可能得到更优的解。
• 但必须检验它们是否满足约束条件。为什么?
3) 模型中增加条件:x1, x2, x3 均为整数,重新求解。
z 2 x1 3 x 2 4 x 3
s . t . 1 . 5 x1 3 x 2 5 x 3 600
280 x1 250 x 2 400 x 3 60000
x1 , x 2 , x 3为非负整数
IP 结果输出
OBJECTIVE FUNCTION VALUE 1) 632.0000 VARIABLE VALUE REDUCED COST X1 64.000000 -2.000000 X2 168.000000 -3.000000 X3 0.000000 -4.000000
2. 所用原料钢管总根数最少
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z 1 3 x 1 x 2 3 x 3 3 x 4 x 5 x 6 3 x 7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
建立模型:
m ax
f
cx
i i 1
7
i
7 bi x i b i 1 x1 x 2 x 3 2 s .t . x 4 x 5 1 x x 1 7 6 x i 0 或 1, i 1, 2, . . . , 7
6米20根
问题1. 如何下料最节省 ? 问题2. 客户增加需求:
由于采用不同切割模式太多,会增加生产和管理成本, 规定切割模式不能超过3种。如何下料最节省?
钢管下料
切割模式
按照客户需要在一根原料钢管上安排切割的一种组合。 余料1米 余料3米 余料3米
4米1根 4米1根
6米1根 6米1根
8米1根 6米1根
8米1根
8米1根
合理切割模式的余料应小于客户需要钢管的最小尺寸
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
6米钢管根数 0 1 0 2 1 3 0 8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
m in f 0 .1 x1 0 .3 x 2 0 .9 x 3 0 x 4 1 .1 x 5 0 .2 x 6 0 .8 x 7 0 .4 x 8
x8
2 x1 x 2 x 3 x 4 1 0 0 2 x 2 3 x3 3 x5 2 x6 x7 1 0 0 s .t . x1 x 3 3 x 4 2 x 6 3 x 7 4 x 8 1 0 0 x 0, i 1, 2, 3, 4, 5, 6, 7 , 8, x 取 整 i i
例3 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
小型 钢材(吨) 劳动时间(小时) 利润(万元) 1.5 280 2 中型 3 250 3 大型 5 400 4 现有量 600 60000
• 制订月生产计划,使工厂的利润最大。 • 如果生产某一类型汽车,则至少要生产80辆, 那么最优的生产计划应作何改变?
IP 的最优解x1=64,x2=168,x3=0,最优值z=632
汽车厂生产计划
• 若生产某类汽车,则至少生产80辆,求生产计划。
Max z 2 x1 3 x 2 4 x 3
x 1 0 , x 2 0 , x 3 80
x 1 0 , x 2 80 , x 3 0
约束
满足需求
4 x 1 3 x 2 2 x 3 x 4 x 5 50
x 2 2 x 4 x 5 3 x 6 20 x 3 x 5 2 x 7 15
整数约束: xi 为整数
最优解:x2=12, x5=15, 其余为0; 最优值:27。
按模式2切割12根,按模式5切割15根,余料27米
整数线性规划及0-1规划
例1 原料下料问题 生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小 按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
(钢管下料) 做100套钢架,用长为2.9m,2.1m,1.5m的元钢各一根,已知原料长 为7.4m,问如何下料,所用最省? 问题分析:每一种下料方式用了多少根钢材,合理的下料方式是剩余料头的 长度不能超过最短原料需求(1.5m),可首先利用lingo搜索出全部的下料方式, 然后从中筛选出符合条件的方式: 模型建立:设xi为按第i种方式下料的根数,i=1,…,8, 建立如下模型:
xi 为整数
按模式2切割15根, 按模式5切割5根, 按模式7切割5根, 共25根,余料35米
最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。
与目标1的结果“共切割 27根,余料27米” 相比 虽余料增加8米,但减少了2根
当余料没有用处时,通常以总根数最少为目标
钢管下料问题2
26 x 1 x 2 x 3 31
模式排列顺序可任定 x1 x 2 x 3
LINGO求解整数非线性规划模型
Local optimal solution found at iteration: 12211 Objective value: 28.00000 Variable Value Reduced Cost X1 10.00000 0.000000 X2 10.00000 2.000000 X3 8.000000 1.000000 R11 3.000000 0.000000 R12 2.000000 0.000000 R13 0.000000 0.000000 R21 0.000000 0.000000 R22 1.000000 0.000000 R23 0.000000 0.000000 R31 1.000000 0.000000 R32 1.000000 0.000000 R33 0.000000 0.000000 R41 0.000000 0.000000 R42 0.000000 0.000000 R43 2.000000 0.000000
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
4 50 5 10 6 20 8 15 26 19
需求:4米50根,5米10 根,6米20根,8米15根 原料钢管总根数下界:
特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢管总根数上界:13+10+8=31
模式1:每根原料钢管切割成3 根4米和1根6米钢管,共10根; 模式2:每根原料钢管切割成2 根4米、1根5米和1根6米钢管, 共10根; 模式3:每根原料钢管切割成2 根8米钢管,共8根。 原料钢管总根数为28根。
例2(选址问题)
A,B,C三个区,7个位置M1,…,M7,约束: (1)在A区从M1,M2,M3中选择至多两个; (2)在B区从M4,M5中选择至少一个; (3)在C区,从M6,M7中选择至少一个。 已知,M1..M7分别投资为200,300,350,250,350,200,400,预计每年 获利50,80,12-,70,100,60,120,总资金1200,问如何建立? 模型分析:典型的0-1规划问题,设选择M1,…,M7的投资分别为bi万元,每年 获利ci万元,总资金b万元,设0-1变量xi(i=1,…,7)为:1(选择)或0(不选择)