运筹学实验报告
运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实验报告心得

运筹学实验报告心得运筹学实验报告实验一:线性规划问题1、实验目的:?学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
?掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务?结合已学过的理论知识,建立正确的数学模型; ?应用运筹学软件求解数学模型的最优解?解读计算机运行结果,结合所学知识给出文字定性结论 3、实验仪器设备:计算机 4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“?”、“?”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:?要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;?为达到这个目标存在很多种方案;?要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
篇二:运筹学实验报告实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
运筹学实验报告

运筹学实验报告运筹学实验报告2实验内容:线性规划问题的建模和求解。
“炼油厂生产计划安排”,“长征医院的护士值班计划”两题目任选其一,每个小组最多3名同学,共同完成实验报告。
一、问题提出长征医院是长宁市的一所区级医院,该院每天各时间区段内需求的值班护士数如表1所示.该医院护士上班分五个班次,每班8h,具体上班时间为第一班2:00~10:00,第二班6:00~14:00,第三班10:00~18:00,第四班14:00~22:00,第五班18:00~2:00(次日).每名护士每周上5个班,并被安排在不同日子,有一名总护士长负责护士的值班安排计划.值班方案要做到在人员或经济上比较节省,又做到尽可能合情合理.下面是一些正在考虑中的值班方案:方案1 每名护士连续上班5天,休息2天,并从上班第一天起按从上第一班到第五班顺序安排.例如第一名护士从周一开始上班,则她于周一上第一班,周二上第二班,……,周五上第五班;另一名护士若从周三起上班,则她于周三上第一班,周四上第二班,……,周日上第五班,等等.方案2 考虑到按上述方案中每名护士在周末(周六、周日)两天内休息安排不均匀.于是规定每名护士在周六、周日两天内安排一天、且只安排一天休息,再在周一至周五期间安排4个班,同样上班的五天内分别顺序安排5个不同班次.在对第1、2方案建立线性规划模型并求解后,发现方案2虽然在安排周末休息上比较合理,但所需值班人数要比第1方案有较多增加,经济上不太合算,于是又提出了第3方案.方案3 在方案2基础上,动员一部分护士放弃周末休息,即每周在周一至周五间由总护士长给安排三天值班,加周六周日共上五个班,同样五个班分别安排不同班次.作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加a%.根据上述,帮助长征医院的总护士长分析研究:(x)对方案1、2建立使值班护士人数为最少的线性规划模型并求解;(b)对方案3,同样建立使值班护士人数为最少的线性规划模型并求解,然后回答a的值为多大时,第3方案较第2方案更经济;二、问题简述从该医院各时间段护士值班表可看出:五个时间段所需护士人数分别为18,20,19,17,12。
运筹学lingo实验报告(一)
运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
运筹学上机实验报告
运筹学上机实验报告运筹学上机实验报告一、引言运筹学是一门研究如何在有限资源下做出最优决策的学科。
通过数学建模和优化算法,可以解决许多实际问题,如生产调度、物流配送、资源分配等。
本次实验旨在通过上机实践,加深对运筹学理论的理解,并掌握运筹学在实际问题中的应用。
二、实验目的本次实验的主要目的是通过运筹学软件的使用,解决一个实际问题。
具体目标包括:1. 掌握运筹学软件的基本操作方法;2. 学会进行数学建模,将实际问题转化为数学模型;3. 运用优化算法求解数学模型,得到最优解;4. 分析并评价所得解的合理性和可行性。
三、实验过程1. 问题描述本次实验的问题是一个生产调度问题。
某工厂有3台机器和6个任务需要完成,每个任务所需时间不同。
任务之间存在一定的先后顺序,即某些任务必须在其他任务完成后才能开始。
目标是找到一个最优的调度方案,使得所有任务完成所需的总时间最短。
2. 数学建模首先,将该问题转化为数学模型。
假设任务1到任务6的完成顺序为x1到x6,其中xi表示任务i在调度中的位置。
定义变量ti表示任务i的完成时间。
则该问题可以用如下的数学模型表示:目标函数:minimize t6约束条件:t1 = 0t2 ≥ t1 + x2t3 ≥ t2 + x3t4 ≥ t1 + x4t5 ≥ max(t2 + x5, t3 + x5)t6 ≥ max(t4 + x6, t5 + x6)3. 软件操作在运筹学软件中,根据上述数学模型进行建模。
首先,定义变量和约束条件,并设置目标函数为t6的最小化。
然后,使用优化算法求解该模型,得到最优解。
4. 结果分析根据软件求解结果,得到最优调度方案为x1=1, x2=2, x3=3, x4=4, x5=5, x6=6。
对应的任务完成时间为t1=0, t2=1, t3=3, t4=5, t5=7, t6=9。
因此,所有任务完成所需的总时间最短为9个单位时间。
五、实验总结本次实验通过运筹学软件的使用,解决了一个生产调度问题。
运筹学实验报告(14p)
工商管理学院2019-2020学年第二学期《管理运筹学》课程实验报告专业班级:工商管理1402学号:2019年6月30日【实验1:线性规划】(1) 对以下问题进行求解:12121212212max 32262+812,0z x x x x x x x x x x x =++≤⎧⎪≤⎪⎪-+≤⎨⎪≤⎪≥⎪⎩************************************************************************求解结果:结果分析:(1) 该问题的最优解为: 当x1=3.3333,x2=1.3333时, 此问题有最有解,max z=12.6667(2) 4个约束条件的右端项分别在什么范围变化,问题最优基不变: 当问题最优基不变时,4.0000>=b1<=7.0000 6.0000>=b2<=12.0000 -2.0000>=b3<=M1.3333>=b4<=M完成时间:2020/6/30 8:30:39************************************************************************(2)通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?************************************************************************建立的线性规划模型为:用i=1,2,3分别代表原材料C,P,H,用j=1,2,3分别代表A,B,C三种产品,设xij为生产第j 种产品使用的第i种原材料的质量。
Maxz=50*(x11+x21+x31)+35*(x12+x22+x32)+25*(x13+x23+x33)-65*(x11+x12+x13)-25*(x21+x22+x23)-35*(x31+x32+x33)x11>=0.5*(x11+x21+x31)x21<=0.25*(x11+x21+x31)x12>=0.25*(x12+x22+x32)x22<=0.5*(x12+x22+x32)xij>=0(i=1,2,3,j=1,2,3)生产A 种产品用C 0.5千克,P 0.25千克,H为60千克,B种产品用C 0. 25千克,P 0.5千克,H 0千克,不生产C产品时利润最大为903.7500元完成时间:2020/6/30 09:11************************************************************************【实验2:运输问题与指派问题】(1)对以下运输问题进行求解:************************************************************************ 求解结果与分析:完成时间:2020/6/30************************************************************************(2)对以下运输问题进行求解:设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。
运筹学实验报告
《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。
由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。
各人完成相应任务时间如下表。
请为公司制定一个总工时最小的指派方案。
实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。
又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。
方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。
规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012——2013学年第一学期
实验报告
课程名称:运筹学
实验项目:求解线性规划问题
实验类别:综合性□设计性□√验证性□专业班级:
姓名:学号:
实验地点:
实验时间:
指导教师:成绩:
一.实验目的
1、熟悉LINGO 软件的使用方法、功能;
2、学会用LINGO 软件求解一般的线性规划问题。
二.实验内容
1、某班有男同学30人,女同学20人,星期天准备去植树。
根据经验,一天中,男同学平均每人挖坑20个,或栽树30棵,或给25棵树浇水,女同学平均每人挖坑10个,或栽树20棵,或给15棵树浇水。
问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多。
建立该问题的数学模型,并求其解。
2、求解线性规划:
12
1212212max 2251228..010
,z x x x x x x s t x x x =++≥⎧⎪+≤⎪⎨≤≤⎪⎪⎩为整数
3、在高校篮球联赛中,我校男子篮球队要从8名队员中选择平均身高最高的出场
⑴ 中锋最多只能上场一个。
⑵ 至少有一名后卫 。
⑶ 如果1号队员和4号队员都上场,则6号队员不能出场
⑷ 2号队员和6号队员必须保留一个不出场。
问应当选择哪5名队员上场,才能使出场队员平均身高最高?
试写出上述问题的数学模型,并求解。
三. 模型建立
1建立模型为:设需要男生挖坑x1人,栽树x2人,浇水x3人,女生挖坑x4人,栽树x5人,浇水x6人,则建立的数学模型为:
14
12345614252536max 2010302020103020302025150,1,2,3,4,5,6=+++=⎧⎪++=⎪⎪+=+⎨⎪+=+⎪⎪>==⎩且为整数
i z x x x x x x x x x x x x x x x x x i 2.建立模型为:设j x =1表示第j 号队员上场,j x =0第j 号队员不上场,j=1,2,3,4,5,6,7,8.
12345678)
126781462612345678max 1/5(1.92 1.90 1.88 1.86 1.85 1.83 1.80 1.781121501,1,2,3,4,5,6,7,8.
=++++++++<=⎧⎪++>=⎪⎪++<=⎨+<=⎪⎪+++++++=⎪===⎩j j z x x x x x x x x x x x x x x x x x x x x x x x x x x x orx j
四. 模型求解(含经调试后正确的源程序)
1、(1)编写程序如下
model :
max =20*x1+10*x4;
x1+x2+x3=30;
x4+x5+x6=20;
20*x1+10*x4-30*x2-20*x5=0;
30*x2+20*x5-25*x3-15*x6=0;
@gin(x1);
@gin(x2);
@gin(x3);
@gin(x4);
@gin(x5);
@gin(x6);
end
(2)编写程序如下:
model :
max =x1+2*x2;
2*x1+5*x2>12;
x1+2*x2<8;
x2<10;
@gin(x1);
@gin(x2);
end
(3)编写程序如下
model:
max=1/5*(1.92*x1+1.90*x2+1.88*x3+1.86*x4+1.85*x5+1.83*x6+1.80*x7+1.78 *x8);
x1+x2<=1;
x6+x7+x8>=1;
x1+x1+x6<=2;
x2+x6<=1;
x1+x2+x3+x4+x5+x6+x7+x8=5 ;
@bin(x1);
@bin(x2);
@bin(x3);
@bin(x4);
@bin(x5);
@bin(x6);
@bin(x7);
@bin(x8);
end
五.结果分析
1、(1)结果为:
Global optimal solution found.
Objective value: 340.0000
Objective bound: 340.0000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 138
Variable Value Reduced Cost
X1 15.00000 -20.00000
X4 4.000000 -10.00000
X2 8.000000 0.000000
X3 7.000000 0.000000
X5 5.000000 0.000000
X6 11.00000 0.000000
Row Slack or Surplus Dual Price
1 340.0000 1.000000
2 0.000000 0.000000
3 0.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
该线性规划问题最优解为:X1=15,X2=8,x3=7,x4=4,x5=5,x6=11;
最优值为:z*=340
即:安排15个男生挖坑,8个男生栽树,7个男生浇水,4个女生挖坑,5个女生栽树,11个女生浇水,一天最多植树340棵。
2、结果为:
Global optimal solution found.
Objective value: 8.000000
Objective bound: 8.000000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 1
Variable Value Reduced Cost X1 0.000000 -1.000000
X2 4.000000 -2.000000
Row Slack or Surplus Dual Price 1 8.000000 1.000000
2 8.000000 0.000000
3 0.000000 0.000000
4 6.000000 0.000000
结论:该整数规划问题最优解为: 120,4x x ==;
最优值为:z*=8
(3)结果为:
Global optimal solution found.
Objective value: 1.862000
Objective bound: 1.862000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Variable Value Reduced Cost X1 1.000000 -0.3840000
X2 0.000000 -0.3800000
X3 1.000000 -0.3760000
X4 1.000000 -0.3720000
X5 1.000000 -0.3700000
X6 0.000000 -0.3660000
X7 1.000000 -0.3600000
X8 0.000000 -0.3560000
Row Slack or Surplus Dual Price
1 1.862000 1.000000
2 0.000000 0.000000
3 0.000000 0.000000
4 0.000000 0.000000
5 1.000000 0.000000
6 0.000000 0.000000
最优解为:x1=1 x2=0 x3=1 x4=1 x5=1 x6=0 x7=1 x8=0
最优值:z*=1.862.
六.实验总结
本实验利用LINGO软件方便简洁的求出了线性规划问题的解,同时利用LINGO 对问题的灵敏度进行了分析,使得我们在以后的计算中更加的方便简捷。
在本次实验中我们可以发现LINGO软件运用起来简便快捷,在我们求解线性规划问题的时候可以快速的给出答案便于计算。
对于整数线性规划问题,只要我们对问题建立好数学模型,再利用数学软件就可以对问题进行求解,得出最优解和值。
学生签名:。