2020年管理运筹学实验报告
运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
管理运筹学实践报告

管理运筹学课外实践报告题目:阿木快餐店的兼职人员调配问题以及菜品的制作问题学生姓名:学号:年级专业:指导老师:完成时间:评分:背景知识众所周知,在各大高校的附近都会有一些小型的快餐店为学生送外卖。
外卖快餐店不同于一般的饭店,具有很多自己的特点例如说1、菜品独具特色。
外卖店的菜品一般不照搬别人现成的菜单或者经营品种,有自己的特色,相同的菜品也会加以搭配以符合营养的特点。
2、精心设计,由于是外送,要防止汤汁的滴漏,于是菜肴的汤汁不能过多,方便携带或搬运。
为了防止菜肴串味,要选择分格的菜盒,饭菜口味大众化以适应群众的口味要求。
3、成本差异,它一般不需要租用门面,也不需要大量的服务人员,人员的需要集中在中餐及晚餐时段。
于是全职人员不需要很多,大部分以兼职为主,在各个餐饮时段兼职,可以节省成本。
在学习了运筹学以后,我们小组特地走访了一家学校公寓附近的快餐店---阿木快餐店,调查走访并询问了有关信息,如下:阿木餐饮位于科教新村内,是一家致力服务于商务、学生等快节奏生活一族的新型快餐店。
快餐店主要为湖南师大、湖南大学的学生提供味美价廉的快餐,与其他外卖店不同的是,每餐推出若干种既定的家常口味套餐,每餐的菜式都会发生变化。
餐馆有两名全职人员。
一名是厨师,负责每天的菜品安排以及外卖打包,另一名是服务员,负责下单,其余的送外卖的人员由学生兼职。
通过实地走访,我们发现此快餐店在运输、配料、人力资源分配等方面存在着一些问题。
一、运输问题从原材料采购的路线来看,阿木快餐要从位于通程的蔬菜配送中心进行订货,而从通程配菜中心到天马阿木快餐的路程中却存在着多条线路的选择问题,而通过的地点分别为a新民路口,b桃子湖路口,c二里半,d湖南师大站部,e湖南大学内,f东方红广场,g天马山东,h阜埠河路口,i麓山南路口,j科教新村。
而相应的线路可简化为如下的图形:图中的点表示配菜运送过程中可能会经过的几个点,其中最左边表示配菜中心,最右边表示快餐店,图中点与点之间的连线表示两地之间的道路,边上所标的数字表示通过开车送原料通过这条路所需要的时间(单位:分钟)我们将用Dijkstra法为此问题求解。
运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
2020年管理运筹学实验报告

管理运筹学实验报告课程实验报告管理运筹学实验(二)专业年级课程名称指导教师学生姓名学号实验日期实验地点实验成绩教务处制xx年11月日实验项目名称实验目的及要求线性规划和运输问题综合实验1、学会运用管理运筹学软件对管理运筹学中规划问题、运输问题进行求解。
2能够运用管理运筹学知识解决相关的问题。
实验内容运用管理运筹学软件解决相关的管理运筹学中规划问题。
一、规划问题1、某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为63.5×mm的锅炉钢管,每台锅炉需要不同4长度的锅炉钢管数量如表4-12所示.库存的原材料的长度只有5500mm一种规格,问如何下料,才能使总的用料根数最少?需要多少根原材料?2、某快餐店坐落在一个旅游景点中.这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增.快餐店主要为旅客提供低价位的快餐服务.该快餐店雇佣了两名正式职工,正式职工每天工作8小时.其余工作由临时工来担任,临时工每班工作4个小时.在星期六,该快餐店从上午11时开始营业到下午10时关门.根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表4-13所示.表4-13 已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时.又知临时工每小时的工资为4元.(1)在满足对职工需求的条件下,如何安排临时工的班次,使得使用临时工的成本最小?(2)这时付给临时工的工资总额为多少?一共需要安排多少临时工的班次?请用剩余变量来说明应该安排一些临时工的3小时工作时间的班次,可使得总成本更小.3、前进电器厂生产A,B,C三种产品,有关资料如表4-14所示.表4-14 (1)在资源限量及市场容量允许的条件下,如何安排生产使获利最多?(2)说明A,B,C三种产品的市场容量的对偶价格以及材料、台时的对偶价格的含义,并对其进行灵敏度分析.如要开拓市场应当首先开拓哪种产品的市场?如要增加资源,则应在什么价位上增加机器台时数和材料数量?4、某饲料公司生产雏鸡饲料、蛋鸡饲料、肉鸡饲料三种饲料.这三种饲料是由A,B,C三种原料受资金和生产能力的限制,该公司每天只能生产30t饲料,问如何安排生产计划才能使获利最大?二、运输问题:3实验步骤1、打开管理运筹学软件,选择相应求解模块(线性规划、运输问题),再根据题目的意思,建立相应规划模型,应用软件选择相应的模块,点击后在弹出的窗口中输入相关数据并进行计算,根据计算结果和题目要求进行分析。
运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
管理运筹学实验报告(三次实验)

湖北科技学院管理运筹学实验报告年级 10级专业工商管理学生姓名学号指导教师吴睿经济与管理学院工商管理系2012年3月《管理运筹学》实验报告(一)实验时间:实验地点:经管院实验室专业班级:10工管姓名:学号:成绩:【实验内容】线性规划问题的计算机求解【实验目的】1、掌握线性规划问题的计算机求解方法;2、通过“管理运筹学”软件(2.5版)等教学软件的应用,深化和拓展学生对线性规划理论知识的认识,提高学生的科学素养,培养学生利用计算机技术解决实际问题的能力。
【实验要求】1、记录实验结果、填写实验结论、保存实验输出结果,课后打印上交;2、填写实验报告按时保质保量上交。
【实验过程】(一)安装并了解“管理运筹学”2.0版软件(参阅教材P434的附录说明);(二)实验分组及内容安排A组(学号为单号者用):1、第二章例1中(P10、28)若单位产品Ⅰ可获利80元,单位产品Ⅱ可获利20元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。
2、第二章例2中(P16、32)若A,B两种原料至少为450吨,而公司共有650个加工工时,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。
3、第二章习题第8题(1)中(参见P26、35)若某公司准备把160万元投资到基金A和B,而其他条件不变,则用计算机软件求得此时总的投资风险指数为,购买基金A和B的数量分别为和。
4、请用计算机软件求解第四章习题6(P59)中的问题。
可求得应该每天安排生产雏鸡饲料、蛋鸡饲料、肉鸡饲料各吨、吨、吨,所获最大利润为百元。
B组(学号为双号者用):1、第二章例1中(P10、28)若原料A的资源限制为500kg,原料B的资源限制为200kg,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。
2、第二章例2中(P16、32)若每吨原料A的价格为1万元,每吨原料B的价格为4万元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。
管理运筹学上机实习报告
管理运筹学上机实习报告实习目的:通过实习掌握线性规划的运输问题的计算机求解; 掌握“运输问题检验数”的应用和经济意义计算软件求解某建材公司所属的三个水泥厂321,,A A A ,生产水泥销往四个销售点4321,,,B B B B 。
已知水泥的日产量(百吨),各销售点的日销量(百吨)以及各工厂运往各销售点的单位运价(百元/百吨)如下表7-23所示表7-235423469429157412378 3214321销量产量产地销地A A A B B B B在QM 中的求解步骤 1、选择运输规划模块2、新建一个项目3、设置标题、产地个数、销地个数4输入单位运价、产量和销量5、选择初始调运方案的方法(西北角法、最小元素法、V ogel’s)6、点击“SoLve”进行求解7、计算的迭代过程目的:通过实习掌握纯整数线性规划和混合整数线性规划的计算机求解;掌握0-1规划的的计算机求解及实际建模应用要求:写书实习报告计算机求解以8.1的例8.2题说明QM 求解纯整数规划的过程。
⎪⎪⎩⎪⎪⎨⎧≥≤+≤++=整数,0,13522445.1020max 2121212121x x x x x x x x st x x z1、 在QM 软件包选择整数规划模块点击“Module ”按钮,在下拉式菜单中,选择“integer programming ”回车。
2、 新建一个项目(选择“New ”,并按回车键)3、设置标题、约束条件数、变量数和选择最大最小4输入目标函数系数、约束条件5点击“Slove”按钮进行求解。
6、在“Window”窗口中查看迭代过程、图形(两个变量)等信息。
目的:通过实习掌握指派问题的计算机求解;掌握指派问题的流程和应用要求:写书实习报告某高校拟开设文学、艺术、音乐、美术四个学术讲座。
每个讲座每周下午举行一次。
经调查知,每周星期一至星期五不能出席某一讲座的学生数如下表:问:座的学生总数。
目的:通过实习掌握多目标线性规划问题计算机求解步骤;学会分析多目标线性规划问题的求解结果要求:写书实习报告目标规划的计算机求解一家生产某种产品的公司在生产周期内的正常生产时间为100小时。
运筹学实验报告
实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
(2)掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务:(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:步骤一:打开管理运筹学软件,并选择线性规划,显示如下界面:步骤二:求目标函数值为最小值的唯一最优解,题目为课本上P47习题一1.1(a):步骤三:求目标函数值为最大值的唯一最优解,此题为P47习题一1.1(c):步骤四:求目标函数值为最大值有无穷多最优解:步骤五:求目标函数值为最大值无可行解,题目为课本P47习题一1.1(a):步骤六:求目标函数值为最大值无界解,此题为课本P47习题一1.1(d)5、实验心得:线性规划问题主要要确定决策变量,约束条件,目标函数。
其中,决策变量为可控的连续变量,目标函数和约束条件都是线性的,这类模型为线性规划问题的数学模型。
通过实验,我们学会了除了用笔算的方式求线性规划问题,懂得了用借助计算机求得问题,可以检验我们的计算结果。
应该开说,这个试验比较简单,计算过程不复杂,结果简略的可分为五种:最小值的唯一最优解,最大值的唯一最优解,最大值的无界解,最大值的无可行解,最大值的无穷多最优解。
应该来说,线性规划问题是整个运筹学最基本、最简单的问题。
实验二:整数规划与运输问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
(2)掌握利用计算机软件求解最优物资调运方案的方法。
(3)掌握利用计算机软件求解整数规划的方法。
2、实验任务(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)运输问题:步骤一:打开管理运筹学软件,并选择运输问题,显示如下界面:步骤二:根据产销平衡表与单位运价表,求出产销平衡运输问题的最佳运输方案,此题为课本运输问题的例题:步骤三:根据产销平衡表与单位运价表,求出产销不平衡(产量大于销量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-36:步骤四:根据产销平衡表与单位运价表,求出产销不平衡(销量大于产量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-37:(2)整数规划问题:步骤一:打开管理运筹学软件,并选择整数规划,显示如下界面:步骤二:根据整数规划模型,求出0-1整数规划问题的最优解:步骤三:根据整数规划模型,求出纯整数规划的最优值,此题为课本P107整数规划与分配问题的例题:步骤四:根据整数规划模型,求出混合整数规划的最优值:5、实验心得:整数规划与分配问题主要包括二个部分:运输问题,整数规划问题。
管理运筹学实验报告
管理运筹学实验报告
《管理运筹学实验报告》
在管理领域中,管理运筹学是一门重要的学科,它通过运用数学、统计学和计
算机科学的方法来解决管理问题。
在本次实验中,我们将探讨管理运筹学在实
际应用中的效果,并对其进行评估和分析。
首先,我们选择了一个实际的管理问题作为研究对象,即公司的生产调度问题。
通过对公司的生产流程进行分析,我们发现存在一些效率低下的情况,导致了
生产成本的增加和资源的浪费。
因此,我们希望通过管理运筹学的方法来优化
生产调度,提高生产效率和降低成本。
在实验中,我们使用了线性规划、排队论和模拟等方法来建立数学模型,并通
过计算机软件进行模拟和优化。
通过对不同方案的比较和分析,我们得出了一
些有益的结论和建议。
例如,我们发现通过调整生产调度顺序和资源分配,可
以显著提高生产效率,减少生产时间和成本。
此外,我们还对实验结果进行了评估和分析。
通过对比实际生产数据和模拟结果,我们发现模型的预测能力较强,可以较好地反映实际情况。
同时,我们还
对模型的灵敏度和稳定性进行了测试,发现模型在一定范围内具有较好的稳定
性和鲁棒性。
综合以上实验结果,我们得出了一些结论和建议。
管理运筹学的方法可以有效
地解决管理问题,提高生产效率和降低成本。
但是在实际应用中,需要结合实
际情况和不断优化模型,才能取得最佳效果。
总之,本次实验对管理运筹学的实际应用进行了探讨和评估,为管理决策提供
了一些有益的参考和建议。
希望通过这次实验,我们可以更好地理解和应用管
理运筹学的方法,为企业的管理工作提供更有效的支持。
运筹学实验报告
运筹学实验报告本实验以贝叶斯决策理论为基础,设计并实施了模拟环境中的运筹学模拟实验,旨在培养运筹学有关概念,理论知识和策略的实际应用能力。
模拟的环境由六个决策项目组成,包括产品研发、外包协作者、宣传媒介、营销策略、市场投资和位置选择,其中营销策略对其他项目影响最大。
参与实验的学生分布在多个小组中,每个小组被要求分配一定的资源来进行策略决策。
每个参与者在决策前首先要收集大量信息,σ分析当前主要问题、弄清收益损失情况、评估决策效果,以及比较各种替代方案的成本、风险和收益,发挥洞察力和创造力,结合实际条件选择最有利的决策策略。
在实验实施中,我们采用了虚拟银行的贝叶斯决策模型,以决策策略为轴心,把预期收获、收容器管理、应急控制、情景建模等混合作为一体,结合贝叶斯决策技术,对所有参与者开展有关决策管理的实践演练和评估指导,以增强学生对运筹学管理模式的熟悉程度和把握能力,并取得理想的模拟结果。
在实验实施中,让参与的学生认识到制定决策的重要性,深入了解决策的各个细节,从而掌握运筹学的技术。
同时,实践演练也使学生从实际情景中了解收容器管理、批量生产等重要理论方面,并促进他们进一步洞悉目标决策的实现方法,帮助他们加强对运筹学管理理论的认识和理解,以及实战能力。
结果表明,运筹学模拟实验有效地让参与学生了解运筹学方法和技术,特别是贝叶斯决策理论,从而加强他们应用此种技术的实践能力。
实验的另一个好处是学生们要在实际模拟情况中发挥协作能力和提出问题,并综合考虑许多要素,以制定最佳的策略,这有助于培养学生的创新能力和团队合作精神。
综上所述,本次运筹学模拟实验取得了良好的效果,切实培养了学生对运筹管理理论知识和实战能力的掌握,以及运用贝叶斯决策理论和团队合作精神的良好培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理运筹学实验报告
课程实验报告
管理运筹学实验(二)
专业年级课程名称指导教师学生姓名学号
实验日期实验地点实验成绩
教务处制xx年11月日
实验项目名称实验目的及要求
线性规划和运输问题综合实验
1、学会运用管理运筹学软件对管理运筹学中规划问题、运输问题进行求解。
2能够运用管理运筹学知识解决相关的问题。
实验内容
运用管理运筹学软件解决相关的管理运筹学中规划问题。
一、规划问题1、某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为63.5×mm的锅炉钢管,每台锅炉需要不同4长度的锅炉钢管数量如表4-12所示.
库存的原材料的长度只有5500mm一种规格,问如何下料,才能使总的用料根数最少?需要多少根原材料?2、某快餐店坐落在一个旅游景点中.这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增.快餐店主要为旅客提供低价位的快餐服务.该快餐店雇佣了两名正式职工,正式职工每天工作8小时.其余工作由临时工来担任,临时工每班工作4个小时.在星期六,该快餐店从上午11时开始营
业到下午10时关门.根据游客就餐情况,在星期六每个营业小时所
需职工数(包括正式工和临时工)如表4-13所示.表4-13 已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4
个小时后,休息1个小时,而后再工作4个小时.又知临时工每小时的工资为4元.(1)在满足对职工需求的条件下,如何安排临时工的
班次,使得使用临时工的成本最小?(2)这时付给临时工的工资总额为多少?一共需要安排多少临时工的班次?请用剩余变量来说明应该安
排一些临时工的3小时工作时间的班次,可使得总成本更小.3、前
进电器厂生产A,B,C三种产品,有关资料如表4-14所示.表4-14 (1)在资源限量及市场容量允许的条件下,如何安排生产使获利最多?(2)说明A,B,C三种产品的市场容量的对偶价格以及材料、台时的对偶价格的含义,并对其进行灵敏度分析.如要开拓市场应当首先开拓哪种产品的市场?如要增加资源,则应在什么价位上增加机器台
时数和材料数量?4、某饲料公司生产雏鸡饲料、蛋鸡饲料、肉鸡饲料三种饲料.这三种饲料是由A,B,C三种原料
受资金和生产能力的限制,该公司每天只能生产30t饲料,问如
何安排生产计划才能使获利最大?二、运输问题:
3
实验步骤
1、打开管理运筹学软件,选择
相应求解模块(线性规划、运输问题),再根据题目的意思,建立相应规划模型,应用软件选择相应的模块,点击后在弹出的窗口中输入相关数据并进行计算,根据计算结果和题目要求进行分析。
2、输出结果,利用Ctrl+Alt+A截图制作实验报告册。
上交实验报告册给老师,发电子版管理运筹学2.0lindo6.1excelxx
实验环境
一、规划问题
实验结果与分析
设按14种方案下料的原材料的根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,则可列出下面的数学模型:minf=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14s.t.2x1+x2+x3+x4≥80x2+3x5+2x6+2x7+x8+x9
+x10≥350x3+x6+2x8+x9+3x11+2x12+x13≥420x4+x7+x9+2x10+x12+2x13+3x14≥10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0
用管理运筹学软件我们可以求得此问题的解为x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333
最优值为300。
2.解:从上午11时到下午10时分成11个班次,设xi表示第i班次安排的临时工的人数,模型如下。
minf=16(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11)s.t.x1+1≥9x1+x2+1≥9x1+x2+x3+2≥9x1+x2+x3+x4+2≥3x2+x3+x4+x5+1
≥3x3+x4+x5+x6+2≥3x4+x5+x6+x7+1≥6x5+x6+x7+x8+
2≥12x6+x7+x8+x9+2≥12x7+x8+x9+x10+1≥7x8+x9+x10
+x11+1≥7x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0 用管理运筹学软件我们可以求得此问题的解如下。
x1=8,x2=0,
x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0,最优值为320。
(1)在满足对职工需求的条件下,11时安排8个临时工,时新安排1个在13临时工,14时新安排1个临时工,16时新安排4个临时工,18时新安排6个临时工可使临时工的总成本最小。
(2)这时付给临时工的工资总额为80元,一共需要安排20个临时工的班次。
根据剩余变量的数字分析可知,可以让11时安排的8个人工做
3小时,时13安排的1个人工作3小时,可使得总成本更小。
3.解:设生产A、B、C三种产品的数量分别为x1,x2,x3,则
可建立下面的数学模型。
maxz=10x1+12x2+14x3s.t.x1+1.5x2+
4x3≤20002x1+1.2x2+x3≤1000x1≤200x2≤250x3≤100x1,x2,x3≥0
用管理运筹学软件我们可以求得此问题的解如下。
x1=200,x2=250,x3=100,最优值为6400。
(1)在资源数量及市场容量允许的条件下,生产A200件,250件,100件,BC可使生产获利最多。
(2)A、B、C的市场容量的对偶价格分别为10元,12元,14元。
材料、台时的对偶
价格均为0。
说明A的市场容量增加一件就可使总利润增加10元,B的市场容量增加一件就可使总利润增加12元,C的市场容量增加一
件就可使总利润增加14元。
但增加一千克的材料或增加一个台时数
都不能使总利润增加。
如果要开拓市场应当首先开拓C产品的市场,如果要增加资源,则应在0价位上增加材料数量和机器台时数。
4.解:设xij表示第i种类型的鸡需要第j种饲料的量,可建立下面的数学模型。
maxz=9(x11+x12+x13)+7(x21+x22+x23)+8(x31+x32+
x33)?5.5(x11+x21+x31)?4(x12+x22+x32)?5(x13+x23+
x33)s.t.x11≥0.5(x11+x12+x13)x12≤0.2(x11+x12+x13)x21
≥0.3(x21+x22+x23)x23≤0.3(x21+x22+x23)x33≥0.5(x31+
x32+x33)x11+x21+x31≤30x12+x22+x32≤30x13+x23+x33≤
30xij≥0,i,j=1,2,3
用管理运筹学软件我们可以求得此问题的解如下。
x11=30,x12=10,x13=10,x21=0,x22=0,x23=0,x31=0,x32=20,x33=20,最优值为335,即生产雏鸡饲料50吨,不生产蛋鸡饲料,生产肉鸡饲料40吨。
二、运输问题:1
设Xij表示从产地Ai调运到Bj的运输量(i=1、2、3;j=1、2、3、4、5),所以此运输问题的线性规划的模型如下:
Minf=10x11+15x12+20x13+20x14+40x15+20x21+40x22+15x23+30x24+ 30x25+30x31+35x32+40x33+55x34+25x35约束条件:
x11+x12+x13+x14+x15=50x21+x22+x23+x24x25=100x31+x32+x33+x34
+x35=150x11+x21+x31=25x12+x22+x32=115x13+x23+x33=60x14+x24+
x34=30x15+x25+x35=70xij>=0(i=1、2、3;j=1、2、3、4、5)把数据
输入“管理运筹学”软件的运输问题程序里,得最优解:方案一:x11=15,x12=35,x13=0,x14=0x15=0X21=10,x22=0,x23=60,x24=30,x2 5=0X31=0,x32=80,x33=0,x34=0,x35=70方案二:
x11=0,x12=50,x13=0,x14=0,x15=0X21=10,x22=0,x23=60,x24=30,x2 5=0X31=15,x32=65,x33=0,x34=0,x35=70
3
把数据输入“管理运筹学”软件的运输问题程序里,得最优解:x11=0,x12=16,x13=0,x14=4,x15=17x21=23,x22=0,x23=0,x24=11,x2 5=0x31=0,x32=0,x33=25,x34=4,x35=0
教师评语及评分。