数学建模线性规划和整数规划实验

合集下载

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。

整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。

在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。

以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。

1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。

目标函数可以是最小化或最大化某个线性表达式。

b. 定义约束条件:其次,需要定义线性规划问题的约束条件。

约束条件可以是等式或不等式形式的线性表达式。

c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。

d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。

e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。

b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。

c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。

d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。

例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为200元。

生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。

工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。

求解如何安排生产,使得利润最大化。

1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。

数学建模线性规划与整数规划

数学建模线性规划与整数规划

数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。

线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。

本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。

一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。

线性规划的求解可以通过单纯形法或内点法等算法实现。

通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。

二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。

然而,由于整数规划问题的整数约束,其求解难度大大增加。

求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析运筹学与优化是一门研究如何利用数学方法来优化决策的学科。

在运筹学与优化领域中,整数规划和线性规划是两种常用的数学模型。

本文将对整数规划和线性规划进行比较和分析,探讨它们在应用中的异同点以及各自的优势和劣势。

首先,我们来看整数规划。

整数规划是一种求解含有整数变量的优化问题的数学方法。

在整数规划中,决策变量必须取整数值,这导致整数规划比线性规划要更加复杂。

整数规划可以用来解决很多实际问题,例如生产调度问题、资源分配问题和路线选择问题等。

整数规划的一个重要应用领域是物流运输问题。

在物流运输中,有时需要决定在某一段时间内应该购买多少辆卡车,以满足快速变化的运输需求。

这个问题可以被建模为一个整数规划问题,目标是最小化成本或最大化利润。

与整数规划相比,线性规划是一种在决策变量可以取任意实数值的情况下求解优化问题的方法。

线性规划在运筹学与优化中被广泛应用。

线性规划的求解方法相对较为简单,可以通过线性规划软件来求解。

线性规划常被用来解决资源分配问题、产品混合问题和生产计划问题等。

一个典型的线性规划问题是生产计划问题,其中目标是最大化产量或最小化生产成本,同时满足一系列约束条件,例如原料和人力资源的限制。

整数规划和线性规划在应用中有一些明显的异同点。

首先,整数规划相对于线性规划来说更加复杂,因为整数规划需要考虑决策变量取整数值的限制。

这使得整数规划的问题规模更大,求解难度更高。

其次,整数规划可以更好地描述某些实际问题,例如一些离散决策问题,而线性规划更适用于某些具有连续决策变量的问题。

此外,整数规划常常需要更长的计算时间来求解,而线性规划则可以在较短的时间内得到结果。

尽管整数规划和线性规划在应用中有一些区别,它们也有一些共同之处。

首先,整数规划和线性规划都是数学模型,通过最大化或最小化某个特定的目标函数来进行决策。

其次,整数规划和线性规划都可以通过数学方法来求解。

虽然整数规划的求解方法相对复杂一些,但仍然可以被有效地求解出来。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。

线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。

其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。

在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。

例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。

二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。

整数规划模型常用于离散决策问题,如项目选择、设备配置等。

例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。

三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。

该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。

动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。

例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。

在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。

四、图论模型图论是研究图和网络的数学理论。

图论模型常用于解决网络优化、路径规划、最短路径等问题。

例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。

可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。

五、回归分析模型回归分析是研究变量之间关系的一种统计方法。

回归分析模型通常用于预测和建立变量之间的数学关系。

例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。

可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。

六、排队论模型排队论是研究排队系统的数学理论。

排队论模型常用于优化服务质量、降低排队成本等问题。

求解整数规划实验报告

求解整数规划实验报告

求解整数规划实验报告1. 引言整数规划是运筹学领域的重要分支,广泛应用于实际问题中。

本实验旨在研究和探索整数规划的求解方法,并通过实验验证算法的有效性和效率。

2. 实验目的本实验的主要目的如下:1. 了解整数规划的概念和基本原理;2. 学习并掌握整数规划的求解算法;3. 探索整数规划的应用实例,并进行模型构建;4. 运用求解工具求解整数规划模型,并进行结果分析。

3. 实验过程3.1 整数规划的概念和基本原理整数规划是指决策变量为整数的线性规划问题。

与线性规划相比,整数规划在模型的约束条件中要求决策变量为整数。

3.2 整数规划的求解算法常见的整数规划求解算法有分支定界法、割平面法等。

本实验主要采用分支定界法进行求解。

分支定界法是一种基于深度优先搜索的算法,其核心思想是通过不断分割问题的可行域,将整数规划问题转化为一系列子问题,以便找到最优解。

3.3 模型构建与求解工具选择本实验选择了某航空公司飞机调度问题作为研究对象。

在该问题中,需要确定飞机的起飞和降落时间以及机组成员的配备情况,以最小化总飞行成本为目标。

采用Python作为实验的编程语言,并使用PuLP库进行整数规划模型的构建和求解。

3.4 计算实验及结果分析首先,根据问题描述构建了完整的整数规划模型,并利用PuLP库求解得到最优解。

然后,通过对比不同约束条件下的模型求解结果,分析影响结果的关键因素。

最后,对实验结果进行总结,并提出改进措施和优化建议。

4. 实验结果与分析通过对某航空公司飞机调度问题的求解,得到了最优的飞行计划和配备方案,有效降低了航空公司的飞行成本。

同时,通过对比不同约束条件下的模型求解结果,发现起飞时间和降落时间的限制对最终成本的影响较大。

因此,建议航空公司在制定飞行计划时,合理安排飞机的起飞和降落时间,以减少不必要的成本。

5. 总结与展望本实验通过对整数规划的研究和实践,深入理解了整数规划的概念、原理和求解方法。

同时,通过实验还发现了整数规划在实际问题中的应用价值,并掌握了使用PuLP库求解整数规划模型的方法。

数学中的线性规划与整数规划

数学中的线性规划与整数规划

数学中的线性规划与整数规划线性规划和整数规划是数学中两个重要的优化问题。

它们在实际生活和工业生产中有着广泛的应用。

本文将简要介绍线性规划和整数规划的概念、应用以及解决方法。

一、线性规划线性规划是一种优化问题,其目标是在给定的约束条件下,找到一个线性函数的最大值或最小值。

线性规划可以用来解决诸如资源优化分配、生产计划、物流运输等问题。

首先,我们来定义线性规划的标准形式:```最大化: c^Tx约束条件:Ax ≤ bx ≥ 0```其中,`c`是一个n维列向量,`x`是一个n维列向量表示决策变量,`A`是一个m×n维矩阵,`b`是一个m维列向量。

上述的不等式约束可以包括等式约束。

通过线性规划,我们希望找到一个满足所有约束的向量`x`,使得目标函数`c^Tx`达到最大或最小值。

解决线性规划问题的方法有多种,例如单纯形法、内点法等。

其中,单纯形法是应用广泛的一种方法。

它通过不断地移动顶点来搜索可行解的集合,直到找到最优解为止。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量`x`必须取整数值。

整数规划可以更准确地描述实际问题,并且在某些情况下具有更好的可解性。

例如,在生产计划问题中,决策变量可以表示生产的数量,由于生产数量必须为整数,因此整数规划更适用于此类问题。

整数规划的求解相对于线性规划更加困难。

由于整数规划问题是NP困难问题,没有多项式时间内的高效算法可以解决一般情况下的整数规划问题。

因此,为了获得近似最优解,通常需要使用一些启发式算法,如分支定界法、割平面法等。

三、线性规划与整数规划的应用线性规划和整数规划在实际生活和工业生产中有着广泛的应用。

以下列举几个常见的应用领域:1. 生产计划:通过线性规划和整数规划,可以确定产品的生产量、原材料的采购量以及生产时间表,以实现最佳的生产效益。

2. 物流运输:线性规划和整数规划可以用来优化货物的配送路线和运输方案,减少物流成本,提高配送效率。

北京工业大学-薛毅老师-工程数据建模-实验2-线性规划和整数规划

北京工业大学-薛毅老师-工程数据建模-实验2-线性规划和整数规划

2. 线性规划和整数规划实验2.1 基本实验1. 生产计划安排某工厂生产A,B,C三种产品,其所需劳动力、材料等有关数据见表2.1所示。

表2.1 不同产品的消耗定额(1)确定获利最大的生产方案;(2)产品A、B、C的利润分别在什么范围内变动时,上述最优方案不变;(3)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元,问该厂要不要购进原材料扩大生产,以购多少为宜?(4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产?解答:(1)获利最大的生产方案为:生产A产品5件,B产品0件,C产品3件,获利为27。

(2)产品A利润在2.4-4.8元之间变动,最优生产计划不变。

(3)运行程序X1 0.000000 1.800000X2 0.000000 1.400000X3 9.000000 0.000000Row Slack or Surplus Dual Price1 36.00000 1.0000002 0.000000 0.8000000从程序运行结果可得到:当A、B为0,而C 9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位。

(4)设D产品为,则有:maxs.t.,,,LINGO中程序:max = 3*x1 +x2+ 4*x3+3*x4;6*x1 + 3*x2+5*x3 +8*x4<= 45;3*x1 + 4*x2+5*x3 +2*x4<= 30;@gin(x1);@gin(x2);@gin(x3);@gin(x4);end程序运行结果如下:Global optimal solution found.Objective value: 27.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 5.000000 -3.000000X2 0.000000 -1.000000X3 3.000000 -4.000000X4 0.000000 -3.000000从上表程序运行结果来看,产品D不值得生产。

运筹学实验总结

运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。

在这学期的运筹学课程中,我们进行了一系列实验。

这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。

在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。

实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。

我选择了一个典型的生产调度问题作为实验题目。

通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。

通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。

实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。

在这个实验中,我选择了货物配送路线问题作为研究对象。

通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。

这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。

实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。

在这个实验中,我们学习了动态规划的基本原理和设计思想。

我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。

这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。

实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。

在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。

通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。

实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

在这个实验中,我选择了装箱问题作为研究对象。

通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。

这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、线性规划和整数规划实验1、加工奶制品的生产计划(1)一奶制品加工厂用牛奶生产A1, A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克A1产品,或者在乙车间用8小时加工成4千克A2 产品.根据市场需求,生产的A1、A2产品全部能售出,且每千克A1产品获利24元,每千克A2产品获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100 千克A1产品,乙车间的设备的加工能力可以认为没有上限限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (i)若用35元可以买到1桶牛奶,是否应作这项投资?若投资,每天最多购买多少桶牛奶?(ii)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(iii)由于市场需求变化,每千克A1产品的获利增加到30元,是否应改变生产计划?(2)进一步,为增加工厂获利,开发奶制品深加工技术.用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1可获44元,每千克B2可获32元.试为该厂制订一个生产销售计划,使每天获利最大,并进一步讨论以下问题:(i)若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间,是否应作这项投资?若每天投资150元,或赚回多少?(ii)每千克高级奶制品B1, B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调整?解:由已知可得1桶牛奶,在甲车间经过十二小时加工完成可生产3千克的A1,利润为72元;在乙车间经八小时加工完成可生产四千克的A2,利润为64元。

利用lingo软件,编写如下程序:model:max=24*3*x1+16*4*x2;s.t.12*x1+8*x2≤480;x1+x2≤50;3*x1≤100;X1≥0,x2≥0end求解结果及灵敏度分析为:Objective value: 3360.000Total solver iterations: 2Variable Value Reduced CostX1 20.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 2.0000003 0.000000 48.000004 40.00000 0.000000Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 72.00000 24.00000 8.000000X2 64.00000 8.000000 16.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 53.33333 80.000003 50.00000 10.00000 6.6666674 100.0000 INFINITY 40.00000 分析结果:1)从结果可以看出在供应甲车间20桶、乙车间30桶的条件下,获利可以达到最大3360元。

ⅰ)从计算结果可以看出,多增加一桶可以获利48元,大于35元,因此可以做此项投资,在结果显示中,修改相关参数,可得还可以再购买10桶。

ⅱ)从结果中可以看出,增加一小时劳动时间可以增加利润两元,因此,若聘用临时工人以增加劳动时间,工人每小时的工资应不超过2元钱。

ⅱⅰ)从程序的运行结果看,A产品系数变化范围为64到96,当A1产品获利增加到30元时,系数变化为30*3=90<96,因此,不用改变生产计划。

2)由题意可知,对产品做进一步的深加工,设用以生产A1的为A1桶,A2的为A2桶,其中加工成B1B2的千克数位x和y千克,编写如下程序:max=72*A1+64*A2+8.2*X+5*Y;A1+A2<=50;12*A1+8*A2+2*X+2*Y<=480;3*A1<=100;3*A1-X>=0;3*A2-Y>=0;运行以上程序,得到如下结果:Global optimal solution found.Objective value: 3460.800Total solver iterations: 3Variable Value Reduced CostA1 8.000000 0.000000A2 42.00000 0.000000X 24.00000 0.000000Y 0.000000 1.520000Row Slack or Surplus Dual Price1 3460.800 1.0000002 0.000000 37.920003 0.000000 3.2600004 76.00000 0.0000005 0.000000 -1.6800006 126.0000 0.000000从上面的结果可以看出,50桶牛奶中,8桶用于生产产品A1,42桶用于生产产品A2,且其中用以加工B1产品的A1为24千克,而A2不需要,可获得的最大利润为3460.8元。

ⅰ)从结果可以看出,每增加一桶牛奶可赚钱37.92元大于30,每增加一小时可赚钱3.26元大于3,因此应做此项投资。

若投入150元,可买5桶,所得利润分别为:39.6和13元。

ⅱ)从灵敏度分析可知,B1和B2获利10%的波动对生产销售计划没有影响,而B1获利减少10%对生产销售计划有影响。

2、下料问题用长度为500厘米的条材,截成长度分别为98厘米和78厘米二种毛坯,要求共截出长98厘米的毛坯10000根,78厘米的20000根,问怎样截法,(1)使得所用的原料最少?(2)使得所剩余的边料最少?试分析两种问题的答案是否相同.解:由已知可得现有500厘米的条材,要截出98厘米和78厘米两种不同的长度的条材,可选择的模式如下表所示:(1)欲使所用原料最少,建立如下数学模型,其中xi为采用第i中模式的切割根数:min=x1+x2+x3+x4+x5+x6;5*x1+4*x2+3*x3+2*x4+x5>=10000;x2+2*x3+3*x4+5*x5+6*x6>=20000;运行结果如下:Global optimal solution found.Objective value: 5200.000Total solver iterations: 2Variable Value Reduced CostX1 1200.000 0.000000X2 0.000000 0.4000000E-01X3 0.000000 0.8000000E-01X4 0.000000 0.1200000X5 4000.000 0.000000X6 0.000000 0.4000000E-01Row Slack or Surplus Dual Price1 5200.000 -1.0000002 0.000000 -0.20000003 0.000000 -0.1600000从运行结果可以看出,欲使所用原料最少,应采用第一种模式的截法1200根,第五种模式的截法4000根,做简单计算可得余料为60000cm。

(2)欲使剩余的边料最少,建立如下数学模型,并运行相应程序:min=10*x1+30*x2+50*x3+70*x4+12*x5+32*x6;5*x1+4*x2+3*x3+2*x4+x5>=10000;x2+2*x3+3*x4+5*x5+6*x6>=20000;运行程序,结果如下:Global optimal solution found.Objective value: 60000.00Total solver iterations: 2Variable Value Reduced CostX1 1200.000 0.000000X2 0.000000 20.00000X3 0.000000 40.00000X4 0.000000 60.00000X5 4000.000 0.000000X6 0.000000 20.00000Row Slack or Surplus Dual Price1 60000.00 -1.0000002 0.000000 -2.0000003 0.000000 -2.000000从运行结果可以看出,最少边料依旧是60000cm,采用第一种模式裁1200根,采用第5中模式裁4000根,这与欲使使用原料最少的结果是一致的。

3、投资问题假设投资者有如下四个投资的机会.(A)在三年内,投资人应在每年的年初投资,每年每元投资可获利息0.2元,每年取息后可重新将本息投入生息.(B)在三年内,投资人应在第一年年初投资,每两年每元投资可获利息0.5元.两年后取息,可重新将本息投入生息.这种投资最多不得超过20万元.(C)在三年内,投资人应在第二年年初投资,两年后每元可获利息0.6元,这种投资最多不得超过15万元.(D)在三年内,投资人应在第三年年初投资,一年内每元可获利息0.4元,这种投资不得超过10万元.假定在这三年为一期的投资中,每期的开始有30万元的资金可供投资,投资人应怎样决定投资计划,才能在第三年底获得最高的收益.解:用xiA,xiB,xiC,xiD(i=1,2,3)表示第i年初给项目A,B,C,D的投资金额,则max 1.2x3A+1.6x2C+1.4x3Ds.t.x1A+x1B=301.2x1A=x2A+x2Cx3B+x3A+x3D=1.2x2A+1.5x1Bx1B≤20x2C≤15x3D≤10程序如下:MODEL:1]max=1.2*X3a+1.6*X2c+1.4*X3d;2]X1a+X1b=30;3]X2a+X2c-1.2*X1a=0;4]X3b+X3a+X3d-1.2*X2a-1.5*X1b=0;5]@bnd(0,X1b,20);6]@bnd(0,X2c,15);7]@bnd(0,X3d,10);END运行结果如下:Global optimal solution found at iteration: 4Objective value: 57.50000Variable Value Reduced CostX3A 16.25000 0.000000X2C 15.00000 -0.1000000X3D 10.00000 -0.2000000X1A 12.50000 0.000000X1B 17.50000 0.000000X2A 0.000000 0.6000000E-01X3B 0.000000 1.200000Row Slack or Surplus Dual Price1 57.50000 1.0000002 0.000000 1.8000003 0.000000 1.5000004 0.000000 1.200000因此,第一年在机会A上投资12.5万元,在机会B上投资17.5万元,第二年在机会C 上投资15万元,第三年在机会A上投资16.25万元,在机会D上投资10万元,可获得最大收益57.5万元。

相关文档
最新文档