比例线段常考题型

合集下载

初三数学比例线段试题

初三数学比例线段试题

初三数学比例线段试题1.在YC市的1:40000最新旅游地图上,景点A与景点B的距离是15㎝,则它们的实际距离是()A.60000米B.6000米C.600米D.60千米【答案】B【解析】据比例尺=图上距离:实际距离,列比例式即可求得它们之间的实际距离.要注意统一单位.设它们之间的实际距离为xcm,1:40000=15:x,解得x=600000,600000cm=6000m,所以它们的实际距离为6000m,故选B.【考点】本题考查了比例线段的性质点评:解答本题要求能够根据比例尺由图上距离正确计算实际距离,注意单位的换算.2.若=2,则=()A.B.C.D.2【答案】D【解析】由=2去分母得,再整理即可得到结果。

∵=2,∴,,,则,故选D.【考点】本题考查了比例式的计算点评:解答本题的关键是由=2去分母得,再移项整理得到3.下列各组线段长度成比例的是()A.1㎝,2㎝,3㎝,4㎝B.1㎝,3㎝,4.5㎝,6.5㎝C.1.1㎝,2.2㎝,3.3㎝,4.4㎝D.1㎝,2㎝,2㎝,4㎝【答案】D【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.依次分析各项即可.A、1×4≠2×3,故错误;B、1×6.5≠3×4.5,故错误;C、1.1×4.4≠2.2×3.3,故错误;D、1×4=2×2,故错误.故选B.【考点】本题考查了比例线段点评:根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.4.把1米的线段进行黄金分割,则分成的较短的线段长为()A.B.C.D.【答案】A【解析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.根据黄金分割的定义即可求得较短的线段长。

由题意得较短的线段长为,故选A.【考点】本题考查了黄金分割点评:解答本题的关键是应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的。

专题10成比例线段(4个知识点3种题型2个易错点2种中考考法)(解析版)-初中数学北师大版9年级上册

专题10成比例线段(4个知识点3种题型2个易错点2种中考考法)(解析版)-初中数学北师大版9年级上册
2.比例中项:如果 a : b b : c ,那么 b 叫做 a 的比例中项,
【例 2】下列四组线段中,成比例线段的是( )
A.4,1,3,8 B.3,4,5,6
C.4,8,3,5
D.15,5,6,2
【答案】D
【分析】根据成比例线段的定义进行判断即可
解:A.∵ 4 :1 3 : 8 ,
∴ 4,1,3,8 不是成比例线段,不符合题意;
专题 10 成比例线段(4 个知识点 3 种题型 2 个易错点 2 种中考考法)
【目录】
倍速学习四种方法
【方法一】 脉络梳理法 知识点 1.形状相同的图形 知识点 2.两条线段的比(重点) 知识点 3.成比例线段(重点) 知识点 4.比例的性质(难点)(重点) 【方法二】 实例探索法 题型 1.比例线段的有关计算 题型 2.利用比例的性质求值 题型 3.关于写比例式的开放性问题 【方法三】 差异对比法 易错点 1 在求两条线段的比时忽略了要统一单位 易错点 2 判断线段是否成比例时,局限于字母的顺序而出错 【方法四】 仿真实战法 考法 1. 比例的性质 考法 2.成比例线段 【方法五】 成果评定法
n
CD
2.比例尺:在地图或工程图纸上,图上长度与它所表示的实际长度的比值通常叫比例尺,比例尺是两条线
段的比的一种.
注意!!!
(1) 在计算两条线段的比时,这两条线段的长度单位必须要统一。
(2) 两条线段的比是一个没有单位的正实数,该比值与线段的长度无关。 (3) 在地图或工程图纸上,图上距离与实际距离的比通常称为比例尺,因此比例尺也是两条线段的比
【学习目标】
1. 认识形状相同的图形,结合实例能识别生活中形状相同的图形。 2. 了解线段的比和成比例线段的概念,掌握两条线段的比的求法。 3. 理解并掌握比例的性质,能利用比例式变形解决一些简单的实际问题。

学姐笔记-中考数学几何经典题型比例线段

学姐笔记-中考数学几何经典题型比例线段

比例线段知识考点:本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。

由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。

精典例题:【例1】已知0543≠==zy x ,那么z y x z y x +++-= 。

分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观点求解,将已知条件转化为z x 53=,z y 54=,代入所求式子即可得解;三是设“k ”值法求解,这种方法对于解有关连比的问题十分方便有效,要掌握好这一技巧。

答案:31变式1:已知32===f e d c b a ,若032≠-+-f d b ,则3222-+--+-f d b e c a = 。

变式2:已知3:1:2::=z y x ,求yx zy x 232++-的值。

变式3:已知aac b b c b a c c b a k -+=+-=-+=,则k 的值为 。

答案:(1)32;(2)3;(3)1或-2; 【例2】如图,在△ABC 中,点E 、F 分别在AB 、AC 上,且AE =AF ,EF 的延长线交BC 的延长线于点D 。

求证:CD ∶BD =CF ∶BE 。

分析:在题设中,没有平行的条件,要证明线段成比例,可考虑添加平行线,观察图形,对照结论,需要变换比CF ∶BE ,为了变换比CF ∶BE ,可以过点C 作BE 的平行线交ED 于G ,并设法证明CG =CF 即可获证。

本例为了实现将比CF ∶BE 转换成比CD ∶BD 的目的,还有多种不同的添画平行线的方法,它们的共同特征都是构造平行线截得的线段成比例的基本图形,请你们参考图形,自己去构思证明。

例2图1GFEDCBA 例2图2 GF EDC B A例2图3GFEDC B A变式1:已知如图,D 是△ABC 的边BC 的中点,且31=BE AE ,求FCAF的值。

变式2:如图,BD ∶DC =5∶3,E 为AD 的中点,求BE ∶EF 的值。

中考专题复习由比例线段产生的函数关系问题(含答案)

中考专题复习由比例线段产生的函数关系问题(含答案)

中考专题复习由比例线段产生的函数关系问题课前导学(一)图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A的坐标为(3, 4),点B是x轴正半轴上的一个动点,设OB=x,AB=y,那么我们在直角三角形ABH中用勾股定理,就可以得到y关于x的函数关系式.类型二,图形的翻折.已知矩形OABC在坐标平面内如图2所示,AB=5,点O沿直线EF翻折后,点O的对应点D落在AB边上,设AD=x,OE=y,那么在直角三角形AED中用勾股定理就可以得到y关于x的函数关系式.图1 图2由比例线段产生的函数关系问题,在两种类型的题目中比较常用.一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.课前导学(二)图形运动的过程中,求面积随某个量变化的函数关系,是中考数学的热点问题.计算面积常见的有四种方法,一是规则图形的面积用面积公式;二是不规则图形的面积通过割补进行计算;三是同高(或同底)三角形的面积比等于对应边(或高)的比;四是相似三角形的面积比等于相似比的平方.前两种方法容易想到,但是灵活使用第三种和第四种方法,可以使得运算简单.一般情况下,在求出面积S关于自变量x的函数关系后,会提出在什么情况下(x为何值时),S取得最大值或最小值.关于面积的最值问题,有许多经典的结论.例1、周长一定的矩形,当正方形时,面积最大.例2、面积一定的矩形,当正方形时,周长最小.例3、周长一定的正多边形,当边数越大时,面积越大,极限值是圆.例4、如图1,锐角△ABC的内接矩形DEFG的面积为y,AD=x,当点D是AB的中点时,面积y最大.例5、如图2,点P在直线AB上方的抛物线上一点,当点P位于AB的中点E的正上方时,△PAB的面积最大.例6、如图3,△ABC中,∠A和对边BC是确定的,当AB=AC时,△ABC的面积最大.图1 图2 图3例 1 如图1,图2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,正方形ABCD的边长为2,四边形ABFE的面积为y,设AP =x,求y关于x的函数表达式;(2)GB⊥EF对于图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.图1 图2例 2 如图1,△ABC为等边三角形,边长为a,点F在BC边上,DF⊥AB,EF⊥AC,垂足分别为D、E.(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取得最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF求此圆的直径(用含a的式子表示).图1例 3 如图1,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm,点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动.以MN为边在BC的上方作正方形MNGH.点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S.当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围;(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连结DP,当t为何值时,△CPD是等腰三角形?图1例 4 如图1,曲线y1是抛物线的一部分,与x轴交于A、B两点,与y轴交于点C,且表达式为2123)y x x=--(x≤3),曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点C作CD//x轴交曲线y1于点D,连结AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.图1答案例 1 2014年湖南省常德市中考第26题如图1,图2,已知四边形ABCD 为正方形,在射线AC 上有一动点P ,作PE ⊥AD (或延长线)于E ,作PF ⊥DC (或延长线)于F ,作射线BP 交EF 于G .(1)在图1中,正方形ABCD 的边长为2,四边形ABFE 的面积为y ,设AP =x ,求y 关于x 的函数表达式;(2)GB ⊥EF 对于图1,图2都是成立的,请任选一图形给出证明; (3)请根据图2证明:△FGC ∽△PFB .图1 图2解:(1)如图3,延长EP 交BC 于M ,延长FP 交AB 于N ,那么四边形AEPN 和四边形CFPM 是正方形.由AP =x ,可得正方形AEPN 的边长为2x .所以FC =DE =22x -.由于S△DEF=12DF DE ⋅=1(2)2x ,S △BCF=12BC FC ⋅=12(2)2⨯⨯, 所以y =S 四边形ABFE =S 正方形ABCD -S △DEF -S △BCF=4(2)x x -(2)x =21+24x .图3 图4(2)如图4,因为tan ∠EFP =PE PF ,tan ∠PBN =NPNB,且PE =NP ,PF =NB ,所以∠EFP =∠PBN .又因为∠1=∠2,∠1+∠PBN =90°,所以∠2+∠EFP =90°.所以GB ⊥EF .(3)如图5,由于GB ⊥EF ,∠BCF =90°,所以B 、C 、G 、F 四点共圆. 所以∠FCG =∠PBF ,∠CGB =∠CFB .又因为∠CGF =∠CGB +90°,∠BFP =∠CFB +90°,所以∠CGF =∠BFP . 所以△FGC ∽△PFB .图5 图6 图7例 2 2014年湖南省湘潭市中考第25题如图1,△ABC 为等边三角形,边长为a ,点F 在BC 边上,DF ⊥AB ,EF ⊥AC ,垂足分别为D 、E .(1)求证:△BDF ∽△CEF ;(2)若a =4,设BF =m ,四边形ADFE 面积为S ,求出S 与m 之间的函数关系,并探究当m 为何值时S 取得最大值;(3)已知A 、D 、F 、E 四点共圆,已知tan ∠EDF =a 的式子表示).图1 解:(1)如图1,因为∠B =∠C =60°,∠BDF =∠CEF =90°,所以△BDF ∽△CEF .(2)如图2,当等边三角形ABC 的边长a =4时,S △ABC =在Rt △BDF 中,∠B =60°,BF =m ,所以12BD m =,2FD =.所以S △BDF =12BD FD ⋅2.在Rt △CEF 中,∠C =60°,CF =4-m ,所以1(4)2CE m =-,)FE m =-.所以S △CEF =12CE FE ⋅=2)8m -. 因此S =S 四边形ADFE =S △ABC -S △BDF -S △CEF=22)88m m --=24m +=22)m -+所以当m =2时,S 取得最大值,最大值为F 是BC 的中点(如图3).(3)如图4,由于A 、D 、F 、E 四点共圆,所以∠EAF =∠EDF . 因为∠AEF =90°,所以AF 是圆的直径.在Rt △EAF 中,由于tan ∠EAF =EF EA EF ,EA =2x .在Rt △ECF 中,∠C =60°,所以EFEC=EC =x . 由AC =EA +EC =a ,得2x +x =a .所以x =13a .所以在Rt △EAF 中,EF ,EA =23a ,由勾股定理,得圆的直径AF .图2 图3 图4例 3 2014年湖南省郴州市中考第25题如图1,在Rt △ABC 中,∠BAC =90°,∠B =60°,BC =16cm ,AD 是斜边BC 上的高,垂足为D ,BE =1cm ,点M 从点B 出发沿BC 方向以1cm/s 的速度运动,点N 从点E 出发,与点M 同时同方向以相同的速度运动.以MN 为边在BC 的上方作正方形MNGH .点M 到达点D 时停止运动,点N 到达点C 时停止运动.设运动时间为t (s ).(1)当t 为何值时,点G 刚好落在线段AD 上?(2)设正方形MNGH 与Rt △ABC 重叠部分的图形的面积为S .当重叠部分的图形是正方形时,求出S 关于t 的函数关系式并写出自变量t 的取值范围;(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连结DP,当t为何值时,△CPD是等腰三角形?图1解:(1)如图2,当点G刚好落在线段AD上时,DN=0.而DN=BD-BM-MN=4-t-1=3-t,所以3-t=0.解得t=3.图2 图3(2)重叠部分的图形是正方形,存在两种情况:①当HM在AD的左侧时,正方形MNGH的大小不变,边长为1,S=1.如图3,当H落在AB上时,BM=HM tan30t<4.②如图4,当HM在AD上时,正方形的边长为t-3,S=(t-3)2.如图5,当G落在AC上时,AH=HG tan303)t-.由AD=3)(3)43t=.所以4≤t≤3.-+-=解得3t t图4 图5 (3)等腰三角形CPD存在两种情况:①如图6,当PC=PD时,点P在DC的垂直平分线上,N是DC的中点.此时t =3+6=9.②如图7,当CP =CD =12时,在Rt △CPN 中,由cos30°=CN CP =CN =t =15-图6 图7例 4 2015年湖南省常德市中考第25题如图1,曲线y 1是抛物线的一部分,与x 轴交于A 、B 两点,与y 轴交于点C ,且表达式为2123)y x x =--(x ≤3),曲线y 2与曲线y 1关于直线x =3对称.(1)求A 、B 、C 三点的坐标和曲线y 2的表达式;(2)过点C 作CD //x 轴交曲线y 1于点D ,连结AD ,在曲线y 2上有一点M ,使得四边形ACDM 为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M 的横坐标;(3)设直线CM 与x 轴交于点N ,试问在线段MN 下方的曲线y 2上是否存在一点P ,使△PMN 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.图1解:(1)由2123)1)(3)y x x x x =--=+-,得A (-1, 0)、B (3, 0)、C (0, .因为A (-1, 0)、B (3, 0) 关于直线x =3的对称点为A ′(7, 0)、B (3, 0),所以抛物线y 2的表达式为227)(3)1021)y x x x x =--=-+(x >3). (2)由CD //x 轴,可知C 、D 关于抛物线y 1的对称轴x =1对称,所以D(2,.如图2,由A (-1, 0)、C (0,、D (2,,可得AC =DC =2.因此点C 在AD 的垂直平分线上.如果四边形ACDM 的对角线互相垂直平分,那么四边形ACDM 是菱形,此时点M 在x 轴上,不在抛物线y 2上.因此只存在MC 垂直平分AD 的情况.图2 图3如图2,如图3,过点A 、M 分别作x 轴的垂线,与直线CD 分别交于点G 、H ,那么∠ADG =∠CMH .由于tan ∠ADG =AG DG ADC =30°.因此MH =.设M 2(x x ,那么2(x -=.整理,得x 2-13x +24=0.解得x =M 的横坐标为x =(3)如图2,如图3,由于∠ADC =30°,当CM ⊥AD 时,∠OCN =30°.所以ON =1,N (1, 0).所以直线CN 为y =如图4,过点P 作x 轴的垂线,垂足为K ,PK 交MN 于E ,过点M 作y 轴的垂线交PK 于F .所以S △PMN =S △PME +S △PNE =1()2PE MF NK +.因为MF +NK 为定值,因此当PE 最大时,△PMN 的面积最大.设P2(m ,E (m ,那么PE =2-=2-=2132m ⎫-⎪⎝⎭.所以当132m =时,PE 取得最大值,△PMN 面积最大.此时P 13(,2.图4 图5。

初三数学比例线段练习题

初三数学比例线段练习题

比例线段成比例线段 类型一:线段的比考点说明:陕西各大学校对于线段的比基本在月考或期中期考考试中会出一道选择题以此来检验学生的掌握情况,容易度为:比较容易,没有出现过难题,一般属于送分题。

【易】1.若a :b=b :c=c :d=1:2,则a :d=( ) A.1:2 B. 1:4 C. 1:6 D. 1:8【易】2.已知y x =53,则(x+y):(x −y)= . 【易】3.已知5x =3y =4z,则z y 3x z -y 2x +++= .【中】4.已知y 2-x 3y 5x +=21,则y x= ,y-x y x += .【中】5.如果b a =32,且a ≠2,b ≠3,那么5-b a 1b -a ++= .【中】6.若ba =43,cb =23,dc =54,则22db ac +等于多少?【难】7.已知a+b=x c ,b+c=x a ,a+c=xb,求x 的值类型二:成比例线段【易】1.已知mn=ab≠0,则下列各式中错误的是( ) A.a m =nb B. b m =n a C. m a =b n D.n m =ba【易】2.已知线段a ,b ,c 满足c 2=ab ,a=4,b=9,则c=______【易】3.在一张比例尺为1:15000的平面图上,一块多边形地区的其中一边长为5cm ,那么这块地区实际上和这一边相对应的长度为( ) A.750cm B.75000cm C.3000cm D.300cm【中】4.有同一三角形地块的甲,乙两地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一块的三角形面积比是( ) A.25:1 B.5:1 C.251 D.51 【中】5.如图,四条线段的长分别为9,5,x 、1(其中x 为正实数),用它们拼成两个相似的直角三角形,且AB 与CD 是其中的两条线段,则x 可取值的个数为( )A.1个B.3个C.6个D.9个【难】6.已知a ,b ,c ,d 四条线段成比例,其中a=3cm ,b=(x-1)cm ,c=5cm ,d=(x+1)cm ,求x 的值比例线段的性质类型一:比例线段的性质考点说明:考试一般以选填形式出题,大题中则是把知识点与三角形的边长之间的关系结合在一起考查学生。

初三数学黄金比例的练习题

初三数学黄金比例的练习题

初三数学黄金比例的练习题【正文】黄金比例是数学中的一个重要概念,它是指一条分割线段被分为两部分时,整个线段与较大部分的比值等于较大部分与较小部分的比值。

黄金比例常常出现在艺术、建筑和自然界中,被认为是一种比例美。

在初三数学中,黄金比例的练习题是一种常见的题型,旨在帮助学生巩固和应用黄金比例的概念。

下面将提供一些黄金比例的练习题,供同学们练习和思考。

1. 请计算下列线段中,黄金比例的比值:a) AB = 6厘米, BC = 4厘米;b) DE = 9厘米, EF = 6厘米;c) GH = 15毫米, HI = 10毫米。

2. 请绘制一个线段AB,将它分割成两部分,使得整个线段与较大部分的比值等于较大部分与较小部分的比值。

3. 一根棒高为20厘米,将其分割成两部分,使得较长部分与整个棒的比值是黄金比例。

求较长部分的长度。

4. 一家公司的总利润为300万元,根据黄金比例,将利润按比例分配给员工和公司。

如果员工获得的利润与公司获得的利润的比值为黄金比例,请计算员工获得的利润。

以上是一些初三数学黄金比例的练习题,同学们可以按照以下步骤进行解答:步骤一:理解黄金比例的概念和计算方法。

黄金比例的计算公式为(a+b)/a = a/b,其中a为整体的长度,b为较短部分的长度。

步骤二:根据给定的线段长度,将其代入黄金比例的计算公式中,求解未知变量。

计算过程需要注意单位的转换和四舍五入。

步骤三:对于绘制分割线段的问题,可以利用画图工具,或者用纸和尺子进行实际绘制。

根据黄金比例的定义,将线段分割成两部分,确保较大部分与整个线段的比值等于较大部分与较小部分的比值。

步骤四:对于利润分配的问题,需要将总利润按照黄金比例进行分割,计算出员工获得的利润。

通过完成这些练习题,同学们可以更好地理解和掌握黄金比例的概念和应用。

同时,在解答问题的过程中,要注意思维的灵活性和逻辑的合理性,灵活应用数学知识,培养解决问题的能力。

黄金比例作为数学中的一个重要概念,不仅与艺术、建筑和自然界有关,也有着广泛的实际应用。

中考数学专题复习:成比例线段

中考数学专题复习:成比例线段

中考数学专题复习:成比例线段一、选择题1.在比例尺为1:2000的地图上测得A 、B 两地间的图上距离为5cm ,则A 、B 两地间的实际距离为( )A.10mB.25mC.100mD.10000m2.在一张比例尺为1:5000000的地图上,甲、乙两地相距70毫米,此两地实际距离为( ) A.3.5千米 B.35千米 C.350千米 D.3500千米 3.下列各组中得四条线段成比例的是( )A.4cm 、2cm 、1cm 、3cmB.1cm 、2cm 、3cm 、5cmC.3cm 、4cm 、5cm 、6cmD.1cm 、2cm 、2cm 、4cm 4.已知线段a=2,b=4,线段c 为a ,b 的比例中项,则c 为( )A.3B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

5.将式子ab=cd(a ,b ,c ,d 都不等于0)写成比例式,错误的是( ) A. a c = d b B. c b = a d C. d a = b c D. a b = c d6.已知a=0.2,b=1.6,c=4,d=12,则下列各式中正确的是( )A.a ∶b=c ∶dB.a ∶c=d ∶bC.a ∶b=d ∶cD.b ∶a=d ∶c 7.下列各组线段的长度成比例的是( )A.1 cm ,2 cm ,3 cm ,4 cmB.2 cm ,3 cm ,4 cm ,5 cmC.0.3 m ,0.6 m ,0.5 m ,0.9 mD.30 cm ,20 cm ,90 cm ,60 cm 8.两条直角边为6和8的直角三角形斜边与斜边上的高之比为( ) A.3∶4 B.4∶3 C.25∶12 D.12∶25 二、填空题9.判断下列线段是否成比例,若是,请写出比例式.(1)a=3 m ,b=5 m ,c=4.5 cm ,d=7.5 cm ;____________________ (2)a=7 cm ,b=4 cm ,c=d=27 cm ;____________________ (3)a=1.1 cm ,b=2.2 cm ,c=3.3 cm ,d=5.5 cm.____________________ 10.已知2a +3b a +2b= 125,则 ab =________.11.如图,已知ADDB=AEEC,AD=6.4 cm,DB=4.8 cm,EC=4.2 cm,则AC=______cm.12.已知a,b,c,d四条线段成比例,其中a=3cm,b=(x-1)cm,c=5cm,d=(x+1)cm,则x=________.13.已知点P是线段AB上的点,且AP∶PB=1∶2,则AP∶AB=________.14.已知三条线段的长分别为1cm,2cm,2cm,如果另外一条线段与它们是成比例线段,则另外一条线段的长为________.三、解答题15.已知错误!未找到引用源。

比例线段-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

比例线段-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

比例线段【知识梳理】一.比例的性质(1)比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(2)常用的性质有:①内项之积等于外项之积.若=,则ad=bc.②合比性质.若=,则=.③分比性质.若=,则=.④合分比性质.若=,则=.⑤等比性质.若==…=(b+d+…+n≠0),则=.二.比例线段(1)对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如ab =cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.(2)判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.三.黄金分割(1)黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC =AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.(2)黄金三角形:黄金三角形是一个等腰三角形,其腰与底的长度比为黄金比值.黄金三角形分两种:①等腰三角形,两个底角为72°,顶角为36°.这样的三角形的底与一腰之长之比为黄金比:;②等腰三角形,两个底角为36°,顶角为108°;这种三角形一腰与底边之长之比为黄金比:.(3)黄金矩形:黄金矩形的宽与长之比确切值为.【考点剖析】一.比例的性质(共15小题)1.(2018秋•浦东新区期中)已知3x=5y(y≠0),则下列比例式成立的是()A.=B.=C.=D.=【分析】直接利用比例的性质得出x,y之间关系进而得出答案.【解答】解:A、=,可以化成:xy=15,故此选项错误;B、=,可以化成:3x=5y,故此选项正确;C、=,可以化成:5x=3y,故此选项错误;D、=,可以化成:5x=3y,故此选项错误.故选:B.【点评】此题主要考查了比例的性质,正确掌握比例的基本性质是解题关键.2.(2023•青浦区一模)已知三个数1、3、4,如果再添上一个数,使它们能组成一个比例式,那么这个数可以是()A.6B.8C.10D.12【分析】根据比例的性质分别判断即可.【解答】解:1:3=4:12,故选:D.【点评】此题主要考查了比例的性质,正确把握比例的性质是解题关键.3.(2023•普陀区一模)已知,x+y=10,那么x﹣y=.【分析】直接利用已知代入求出y的值,即可得出x的值,进而得出答案.【解答】解:∵,x+y=10,∴x=y,则y+y=10,解得:y=4,那么x﹣y=6﹣4=2.故答案为:2.【点评】此题主要考查了比例的性质,正确将已知代入是解题关键.4.(2022秋•奉贤区期中)已知:==,2x﹣3y+4z=33,求代数式3x﹣2y+z的值.【分析】设比值为k,用k表示出x、y、z,然后代入等式求出k,从而得到x、y、z,再代入代数式进行计算即可得解.【解答】解:设===k,则x=2k,y=3k,z=4k,∵2x﹣3y+4z=33,∴4k﹣9k+16k=33,解得k=3,∴x=6,y=9,z=12,∴3x﹣2y+z=3×6﹣2×9+12=18﹣18+12=12.【点评】本题考查了比例的性质,利用“设k法”表示出x、y、z求解更简便.5.(2022秋•金山区校级期末)根据4a=5b,可以组成的比例有()A.B.C.D.【分析】根据比例的性质,进行计算即可解答.【解答】解:A、∵=,∴5a=4b,故A不符合题意;B、∵=,∴5a=4b,故B不符合题意;C、∵=,∴4a=5b,故C符合题意;D、∵=,故D不符合题意.故选:C.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.6.(2022秋•浦东新区期中)已知=,那么的值为()A.B.C.D.﹣【分析】利用比例的性质,进行计算即可解答.【解答】解:∵=,∴=1﹣=1﹣=,故选:B.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.7.(2022秋•嘉定区校级期末)如果2a=3b(a、b都不等于零),那么=.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵2a=3b(a、b都不等于零),∴设a=3x,则b=2x,那么==.故答案为:.【点评】本题考查了比例的性质,掌握正确表示出a,b的值是关键.8.(2022秋•奉贤区期中)已知,且2a﹣3b+c=28,求代数式a+b﹣c的值.【分析】利用设k法,进行计算即可解答.【解答】解:设===k,则a=2k,b=5k,c=7k,∵2a﹣3b+c=28,∴4k﹣15k+7k=28,解得:k=﹣7,∴a=﹣14,b=﹣35,c=﹣49,∴a+b﹣c=﹣14+(﹣35)﹣(﹣49)=﹣49+49=0,∴代数式a+b﹣c的值为0.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.9.(2022秋•上海月考)已知a、b、c分别是△ABC的三条边的边长,且a:b:c=5:7:8,3a﹣2b+c=9,求△ABC的周长.【分析】设a=5k,b=7k,c=8k,再代入等式3a﹣2b+c=9,求出k的值,从而得到a、b、c的值,然后根据三角形周长公式进行计算,即可得解.【解答】解:设a=5k,b=7k,c=8k,代入3a﹣2b+c=9得,15k﹣14k+8k=9,解得:k=1,则a=5,b=7,c=8,所以△ABC的周长是:5+7+8=20.【点评】本题考查了比例的性质以及代数式求值,解决此类题目时利用“设k法”求解更简便.10.(2022秋•虹口区期中)已知:==≠0,且a+b+c=36,求a、b、c的值.【分析】可设===k(k≠0),可得a=3k,b=4k,c=5k,再根据a+b+c=36可得关于k的方程,解方程求出k,进一步求得a、b、c的值.【解答】解:设===k≠0,则a=3k,b=4k,c=5k,∵a+b+c=36,∴3k+4k+5k=36,解得k=3,则a=3k=9,b=4k=12,c=5k=15.【点评】此题考查了比例的性质,设k法得到关于k的方程是解题的关键.11.(2021秋•徐汇区校级月考)已知,求的值.【分析】先设===k,可得x=2k,y=3k,z=4k,再把x、y、z的值都代入所求式子计算即可.【解答】解:设===k,则x=2k,y=3k,z=4k,==11.【点评】本题考查了比例的性质.解题的关键是先假设设===k,可得x=2k,y=3k,z=4k,降低计算难度.12.(2021秋•奉贤区校级期中)已知:a:b:c=3:4:5.(1)求代数式的值;(2)如果3a﹣b+c=10,求a、b、c的值.【分析】设a=3k,b=4k,c=5k,(1)把a=3k,b=4k,c=5k代入代数式中进行分式的混合运算即可;(2)把a=3k,b=4k,c=5k代入3a﹣b+c=10得到关于k的方程,求出k,从而得到a、b、c的值.【解答】解:∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,(1)==;(2)∵3a﹣b+c=10,∴9k﹣4k+5k=10,解得k=1,∴a=3,b=4,c=5.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.13.(2022秋•奉贤区期中)已知实数a、b、c满足,且a﹣3b+2c=﹣8.求的值.【分析】设a=3k,b=5k,c=4k,根据a﹣3b+2c=﹣8,得k=2,a=6,b=10,c=8,即可求出答案.【解答】解:∵,∴设a=3k,b=5k,c=4k,∵a﹣3b+2c=﹣8,∴3k﹣15k+8k=﹣8,∴k=2,∴a=6,b=10,c=8,∴==1.【点评】本题考查了比例的基本性质,根据已知条件列方程是关键.14.(2021秋•奉贤区校级期中)已知实数x、y、z满足==,且x﹣2y+3z=﹣2.求:的值.【分析】设===k(k≠0),得出x=3k,y=5k,z=2k,再根据x﹣2y+3z=﹣2,求出k的值,从而得出x、y、z的值,然后代入要求的式子进行计算即可得出答案.【解答】解:∵==,设===k(k≠0),∴x=3k,y=5k,z=2k,∵x﹣2y+3z=﹣2,∴3k﹣10k+6k=﹣2,∴k=2,∴x=6,y=10,z=4,∴==2.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.15.(2022秋•嘉定区期中)已知==≠0,且5x+y﹣2z=10,求x、y、z值【分析】首先设x=2a,y=3a,z=4a,然后再代入5x+y﹣2z=10,可得a的值,进而可得答案.【解答】解:设x=2a,y=3a,z=4a,∵5x+y﹣2z=10,∴10a+3a﹣8a=10,5a=10,a=2,∴x=4,y=6,z=8.【点评】此题主要考查了比例的性质,关键是掌握用同一未知数表示各未知数.二.比例线段(共10小题)16.(2021秋•徐汇区校级期中)下列各组的四条线段a,b,c,d是成比例线段的是()A.a=4,b=6,c=5,d=10B.a=1,b=2,c=3,d=4C.,b=3,c=2,D.a=2,,,【分析】根据比例线段的定义即如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对选项一一分析,即可得出答案.【解答】解:A.4×10≠6×5,故不符合题意,B.1×4≠2×3,故不符合题意,C.≠2×3,故不符合题意,D.,故符合题意,故选:D.【点评】此题考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.同时注意单位要统一.17.(2023•长宁区一模)已知线段a、b、c、d是成比例线段,如果a=1,b=2,c=3,那么d的值是()A.8B.6C.4D.1【分析】根据成比例线段的概念可得a:c=c:b,可求d的值.【解答】解:∵线段a、b、c、d是成比例线段,a=1,b=2,c=3,∴a:b=c:d,即1:2=3:d,解得:d=6.故选:B.【点评】此题考查了比例线段,掌握比例线段的定义是解题的关键.18.(2023•宝山区一模)已知线段a、b,如果a:b=2:3,那么下列各式中一定正确的是()A.2a=3b B.a+b=5C.D.【分析】根据比例的性质进行判断即可.【解答】解:A、由a:b=2:3,得3a=2b,故本选项错误,不符合题意;B、当a=4,b=6时,a:b=2:3,但是a+b=10,故本选项错误,不符合题意;C、由a:b=2:3,得=,故本选项正确,符合题意;D、当a=4,b=6时,a:b=2:3,但是=,故本选项错误,不符合题意.故选:C.【点评】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.19.(2022秋•嘉定区期中)如果mn=pq,那么下列比例式正确的是()A.B.C.D.【分析】从选项判断,把每一个比例式化成等积式即可解答.【解答】解:A、∵,∴mq=pn,故不符合题意;B、∵,∴qm=pn,故不符合题意;C、∵,∴mn=pq,故符合题意;D、∵,∴pm=qn,故不符合题意,故选:C.【点评】本题考查了比例的性质,把比例式化成等积式是解题的关键.20.(2021秋•金山区期末)在比例尺是1:200000的地图上,两地的距离是6cm,那么这两地的实际距离为()A.1.2km B.12km C.120km D.1200km【分析】设这两地的实际距离为xcm,根据比例尺的定义列出方程,然后求解即可得出答案.【解答】解:设这两地的实际距离为xcm.由题意得:=,解得x=1200000,经检验,x=1200000是分式方程的解,1200000cm=12km,故选:B.【点评】本题考查比例线段,比例尺的定义,解题的关键是熟练掌握比例尺性质,属于中考常考题型.21.(2020秋•静安区期末)已知线段x,y满足=,求的值.【分析】先根据比例的基本性质得到y(2x+y)=x(x﹣y),可得x2﹣3xy﹣y2=0,再把y当作已知数,解关于x的方程即可求得的值.【解答】解:∵=,∴y(2x+y)=x(x﹣y),则x2﹣3xy﹣y2=0,解得x1=y,x2=y(负值舍去).故的值为.【点评】考查了比例线段,关键是熟练掌握比例的基本性质,得到x=y是解题的难点.22.(2023•金山区一模)下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、∵1×4≠2×3,∴四条线段不成比例,不符合题意;B、∵2×5≠3×4C、∵2×6=3×4,∴四条线段成比例,符合题意;D、∵3×9≠4×6,∴四条线段成比例,不符合题意;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.23.(2021秋•黄浦区期末)4和9的比例中项是()A.6B.±6C.D.【分析】根据比例的基本性质:两外项之积等于两内项之积求解.【解答】解:根据比例中项的概念结合比例的基本性质得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,解得x=±6.故选:B.【点评】本题考查了比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.求比例中项根据比例的基本性质进行计算.24.(2021秋•奉贤区校级期中)已知:线段a、b、c,且.(1)求的值;(2)如线段a、b、c满足3a﹣4b+5c=54,求a﹣2b+c的值.【分析】(1)设===k,则a=3k,b=4k,c=5k,代入所求代数式即可;(2)把a=3k,b=4k,c=5k代入3a﹣4b+5c=54求出k,把k值代入所求代数式即可.【解答】解:设===k,则a=3k,b=4k,c=5k,(1)===;(2)∵3a﹣4b+5c=54,∴9k﹣16k+25k=54,解得:k=3,∴a﹣2b+c=3k﹣8k+5k=0.【点评】本题主要考查了比例线段,设===k得到a=3k,b=4k,c=5k是解决问题的关键.25.(2021秋•宝山区校级月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.【分析】(1)设===k,易得a=5k,b=4k,c=6k,然后把它们分别代入中,再进行分式的运算即可;(2)根据三角形周长定义得到5k+4k+6k=90,解关于k的方程求出k,然后计算5k、4k和6k即可.【解答】解:(1)设===k,则a=5k,b=4k,c=6k,所以==;(2)5k+4k+6k=90,解得k=6,所以a=30,b=24,c=36.【点评】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.三.黄金分割(共7小题)26.(2023•长宁区一模)已知P是线段AB的黄金分割点,且AP>BP,那么的值为()A.B.C.D.【分析】利用黄金分割的定义,进行计算即可解答.【解答】解:∵P是线段AB的黄金分割点,且AP>BP,∴=,∴==,∴=﹣1=﹣1==,故选:C.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.27.(2022秋•徐汇区期末)已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)【分析】先由黄金分割的比值求出BP=AQ=5(﹣1),再由PQ=AQ+BP﹣AB进行计算即可.【解答】解:如图,∵点P、Q是线段AB的黄金分割点,AB=10,∴BP=AQ=AB=5(﹣1),∴PQ=AQ+BP﹣AB=10(﹣1)﹣10=10(﹣2),故选:B.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,熟记黄金比是解题的关键.28.(2021秋•金山区期末)如果点P是线段AB的黄金分割点,且AP<BP,那么的值等于()A.+1B.﹣1C.D.【分析】由黄金分割的定义得=,即可得出答案.【解答】解:∵点P是线段AB的黄金分割点(AP<BP),∴===,故选:D.【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.29.(2022秋•嘉定区期中)已知点A、B、C在一条直线上,AB=1,且AC2=BC•AB,求AC的长.【分析】分三种情况:当点C在线段AB上,当点C在线段AB的延长线时,当点C在线段BA的延长线时,然后分别进行计算即可解答.【解答】解:分三种情况:当点C在线段AB上,如图:∵AC2=BC•AB,∴点C是AB的黄金分割点,∴AC=AB=×1=;当点C在线段AB的延长线时,如图:设AC=x,则BC=AC﹣AB=x﹣1,∵AC2=BC•AB,∴x2=(x﹣1)•1,整理得:x2﹣x+1=0,∴原方程没有实数根;当点C在线段BA的延长线时,如图:设AC=x,则BC=AC+AB=x+1,∵AC2=BC•AB,∴x2=(x+1)•1,整理得:x2﹣x﹣1=0,解得:x1=,x2=(不符合题意,舍去),∴AC的长为;综上所述,AC的长为或.【点评】本题考查了黄金分割,分三种情况讨论是解题的关键.30.(2022秋•宝山区校级月考)已知点C在线段AB上,且满足AC2=AB•BC.(1)若AB=1,求AC的长;(2)若AC比BC大2,求AB的长.【分析】(1)根据已知可得点C是线段AB的黄金分割点,从而可得AC=AB,然后进行计算即可解答;(2)根据已知可设AC=x,则BC=x﹣2,从而可得AB=2x﹣2,然后根据AC2=AB•BC,可得x2=(2x﹣2)(x﹣2),从而进行计算即可解答.【解答】解:(1)∵点C在线段AB上,且满足AC2=AB•BC,∴点C是线段AB的黄金分割点,∴AC=AB=,∴AC的长为;(2)∵AC比BC大2,∴设AC=x,则BC=x﹣2,∴AB=AC+BC=2x﹣2,∵AC2=AB•BC,∴x2=(2x﹣2)(x﹣2),解得:x1=3+,x2=3﹣(舍去),∴AB=2x﹣2=2+4,∴AB的长为2+4.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.31.(2020秋•闵行区期末)古希腊艺术家发现当人的头顶至肚脐的长度(上半身的长度)与肚脐至足底的长度(下半身的长度)的比值为“黄金分割数”时,人体的身材是最优美的.一位女士身高为154cm,她上半身的长度为62cm,为了使自己的身材显得更为优美,计划选择一双合适的高跟鞋,使自己的下半身长度增加.你认为选择鞋跟高为多少厘米的高跟鞋最佳?()A.4cm B.6cm C.8cm D.10cm【分析】她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,利用黄金分割的定义得到≈0.618,然后解方程即可.【解答】解:∵一位女士身高为154cm,她上半身的长度为62cm,∴她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,根据题意得≈0.618,解得x≈8.3(cm).经检验x=8.3为原方程的解,所以选择鞋跟高为8厘米的高跟鞋最佳.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC≈0.618AB,并且线段AB的黄金分割点有两个.也考查了解分式方程.32.(2019秋•嘉定区校级月考)已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.【分析】在直角△ABD中根据勾股定理计算出AD=,则AE=AD﹣DE=﹣1,再利用画法得到AC=AE =﹣1,即AC =AB ,然后根据黄金分割的定义得到点C 就是线段AB 的黄金分割点.【解答】证明:∵AB =2,BD =AB ,∴BD =1.∵BD ⊥AB 于点B ,∴AD ==, ∴AE =AD ﹣DE =﹣1, ∴AC =AE =﹣1,∴AC =AB ,∴点C 就是线段AB 的黄金分割点.【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC =AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.【过关检测】一、单选题【答案】C【分析】能否构成一个比例式,根据“两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段”判断即可.【详解】A .21=,能组成一个比例式,不合题意;B .12=⨯,能组成一个比例式,不合题意;C .1,2 不能组成一个比例式,符合题意;D .12=故选:C【点睛】本题考查了成比例的线段,熟知:两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段. 2.(2022秋·上海浦东新·九年级校考期中)下列各组线段中,成比例线段的组是( )A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm 【答案】A【分析】根据比例线段的定义可各选项分别进行判断即可.【详解】解:A 、0.260.34⨯=⨯,是成比例线段,故本选项符合题意;B 、1834⨯≠⨯,不是成比例线段,故本选项不符合题意;C 、3845⨯≠⨯,不是成比例线段,故本选项不符合题意;D 、1.5624⨯≠⨯,不是成比例线段,故本选项不符合题意.故选:A【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.【答案】B【分析】利用比例中项的平方等于两个外项的积,进行计算即可.【详解】解:由题意,得:24936b ac ==⨯=,∵0b >,∴6b =;故选B .【点睛】本题考查比例选段.熟练掌握比例中项的平方等于两个外项的积,是解题的关键.【答案】B【分析】把各个选项的比例式转化为乘积式,可得结论.【详解】解:A 、由a b c d =推出ad bc =,本选项不符合题意; B 、由a b d c =推出ac bd =,本选项符合题意; C 、由a d cb =推出ab cd =,本选项不符合题意; D 、由a cb d =推出ad bc =,本选项不符合题意. 故选:B .【点睛】本题考查比例线段,比例的性质,解题的关键是掌握比例的性质.【答案】A【分析】设1AB =,BC x =,则1AC x =−,由比例中项得出2BC AC AB =,代入解一元二次方程即可解答.【详解】解:设1AB =,BC x =,则1AC x =−,∵BC 是AC 和AB 的比例中项,∴2BC AC AB =,即21x x =−,∴210x x +−=,解得:1x =2x ,即BC =,∴1AC ==,∴ BC AB=,故A 符合题意;BC AC ==,故B 不符合题意;AC AB =,故C 不符合题意;AC BC =,故D 不符合题意;故选:A .【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.【答案】C【分析】根据比例的性质进行判断即可.【详解】解:A 、由:2:3a b =,得32a b =,故本选项错误,不符合题意;B 、当4a =,6b =时,:2:3a b =,但是10a b +=,故本选项错误,不符合题意;C 、由:2:3a b =,得52a b a +=,故本选项正确,符合题意; D 、当4a =,6b =时,:2:3a b =,但是3728a b +=+,故本选项错误,不符合题意.故选:C .【点睛】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.二、填空题【答案】3 【分析】由23x y =,设2,3(0)==≠x k y k k ,然后再代入求解即可; 【详解】解:∵23x y =,设2,3(0)==≠x k y k k , ∴235=33x y k k y k ++=,故答案为:53.【点睛】本题考查比例的性质,设2,3(0)==≠x k y k k 是解题关键. 8.(2021秋·上海·九年级校考阶段练习)在比例尺为1:60000的地图上A 、B 两处的距离是4cm ,那么A 、B 两处实际距离是______km .【答案】2.4【分析】设A 、B 两处的实际距离是cm x ,根据比例尺的定义列式计算即可得解,然后再化为千米即可.【详解】解:设A 、B 两处的实际距离是cm x ,根据题意得:4:1:60000x =解得:240000x =,240000cm 2.4km =,故答案为:2.4.【点睛】本题考查了比例,主要利用了比例尺的定义,计算时要注意单位之间的换算.9.(2021秋·上海·九年级校考阶段练习)已知():1:2x y y +=,则:x y 的值为______.【答案】12−/0.5− 【分析】根据比例的基本性质,求得2y x =−,即可得到答案.【详解】解:∵():1:2x y y +=, ∴()2x y y +=, 解得2y x =−,∴1:2x y =−, 故答案为:12−【点睛】此题考查了比例,熟练掌握比例的基本性质是解题的关键.【答案】52/2.5/22【分析】直接利用已知把a ,b 用同一未知数表示,进而计算得出答案;【详解】解:23a b =(a b 、都不等于零),∴设3a x =,则2b x =, 那么32522a b x x bx ++==; 故答案为:52.【点睛】此题主要考查了比例的性质,正确表示出a ,b 的值是解题关键. 11.(2021秋·上海青浦·九年级校考期中)已知线段4a =厘米、9c =厘米,如果线段a 是线段c 和b 的比例中项,那么线段b =______厘米.【答案】169【分析】根据比例中项的定义得到::c a a b =,然后利用比例性质计算即可.【详解】解:∵线段a 是线段c 和b 的比例中项,∴::c a a b =, 即9:44:b =,∴169b =.故答案为: 169.【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.特别的是若::c a a b =,则a 是c 和b 12.(2023·上海金山·统考一模)如图,已知上海东方明珠电视塔塔尖A 到地面底部B 的距离是468米,第二球体点P 处恰好是整个塔高的一个黄金分割点(点A 、B 、P 在一直线),且BP AP >,那么底部B 到球体P 之间的距离是_________米(结果保留根号)【答案】234)【分析】根据黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值⎝⎭叫做黄金比. 【详解】解:∵点P 是线段AB 上的一个黄金分割点,且468AB =米,BP AP >,∴468234)BP ==米.故答案为:234).【点睛】本题考查了黄金分割的概念,熟记黄金分割的定义是解题的关键. 13.(2023·上海杨浦·统考一模)已知点P 是线段MN的黄金分割点()MP NP >,如果10MN =,那么线段MP =___________.【答案】5/5−+【分析】根据黄金分割点的概念列式求解即可.【详解】解:∵点P 是线段MN 的黄金分割点,>MP PN ,10MN =,∴105PM ===,故答案为:5.【点睛】此题考查了黄金分割点的概念,解题的关键是熟练掌握黄金分割点的概念.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.14.(2023·上海崇明·统考一模)点P 是线段MN 的黄金分割点,如果10cm MN =,那么较长线段MP 的长是__________cm.【答案】()5【分析】根据黄金分割点的定义,得到MP MN=,求解即可.【详解】解:由题意,得:MP MN=,即:10MP =,∴()5cm MP =;故答案为:()5.【点睛】本题考查黄金分割点.熟练掌握黄金分割点的定义,是解题的关键.【答案】1:3【分析】根据32a b =设3,2a k b k ==,代入计算即可.【详解】解:∵32a b =∴设3,2a k b k ==,∴(a ﹣b ):a =(32):31:3k k k −=故答案为:1:3【点睛】本题主要考查了比例的性质,熟练掌握比例的性质是解答本题的关键. 16.(2022秋·九年级单元测试)已知线段AB =2cm ,点C 是线段AB 的黄金分割点,则线段AC 等于__________cm【答案】或【分析】分AC >BC 、AC <BC 两种情况,根据黄金比值计算即可.【详解】当AC >BC 时,AC=21当AC <BC 时,AC=AB-AB=23−=∴线段AC (cm )或cm ).(cm )或cm ).【点睛】本题考查的是黄金分割,掌握黄金比值是解题的关键.【答案】【分析】根据折叠的性质以及矩形的性质可证四边形ABEF 是正方形,可得EF =BE ,进一步即可求出EF 与CE 的比值.【详解】解:根据折叠,可知AB =AF ,BE =FE ,∠BAE =∠FAE ,在矩形ABCD 中,∠BAF =∠B =90°,∴∠BAE =∠FAE =45°,∴∠AEB =45°,∴BA =BE ,∴AB =BE =EF =FA ,又∵∠B =90°,∴四边形ABEF 是正方形,∴EF =BE =AB ,∵矩形ABCD 是黄金矩形,∴A BB C =,∴EF EC ,故答案为:.【点睛】本题考查了黄金分割,矩形的性质,正方形的判定和性质,熟练掌握黄金分割是解题的关键.【答案】5【分析】根据CD 是∠ACB 的平分线,由三角形的面积可得出BD BC AD AC =,可得出AB BC AC DA AC +=①;由CE 是∠ACB 的外角平分线, 得出BE BC AE AC =,进而得出AB BC AC AE AC −=②,两式相加即可得出结论. 【详解】解:∵CD 是∠ACB 的平分线,∴BDC BDC ADC ADC S S BD BC S AD S AC ∆∆∆∆==, ∴BD BC AD AC =∴BD DA BC AC DA AC ++=,即AB BC AC AD AC +=①; ∵CE 是∠ACB 的外角平分线,∴BE BC AE AC = ∴BE AE BC AC AE AC −−=,即AB BC AC AE AC −=②; ①+②,得22 2.55AB AB BC AC BC AC BC AD AE AC AC AC +−+=+==⨯=.故答案为:5.【点睛】此题主要考查了比例的应用,熟练掌握比的性质是解答此题的关键.三、解答题19.(2020秋·九年级校考课时练习)已知线段AB=10cm ,点C 是AB 上的黄金分割点,求AC 的长是多少厘米?【答案】(5)cm 或(15−cm【分析】根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段;则AC =105=或AC =10−(5)=15−【详解】解:根据黄金分割点的概念,应有两种情况,当AC 是较长线段时,AC =105=;当AC 是较短线段时,则AC =10−(5)=15−故答案为:(5)cm 或(15−cm .【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.【答案】11【分析】通过设k 法,设234x y z k ===,则2x k =,3y k =,4z k =,再利用消元的思想代入分式求值.【详解】解:设234x y z k ===,则2x k =,3y k =,4z k =, 552341144234x y z k k k x y z k k k −+⨯−+==−−⨯−−.【点睛】本题主要考查求分式的值,熟练掌握消元的思想是解决本题的关键.【分析】设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,即可求出k 的值,从而可求出a 、b 、c 的值,最后由三角形周长的计算公式求解即可.【详解】根据题意可设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,得:352789k k k ⨯−⨯+=,解得:1k =,∴578a b c ===,,, ∴△ABC 的周长=a+b+c=5+7+8=20.【点睛】本题主要考查比例的性质.解决此类题目时一般利用“设k 法”更简便.【答案】4【分析】设345x y z k ===,则3,4,5x k y k z k ===,再根据232x y z −+=−求出k 的值,然后得出x ,y ,z 的值,从而得出x y z +−的值. 【详解】解:设345x y z k ===,则3,4,5x k y k z k ===,代入232x y z −+=−,得233452k k k ⋅−⋅+=−,解得2k =,6,8,10x y z ∴===,68104x+y -z ∴=+−=. 【点睛】本题考查了比例的性质,解题的关键是设345x y z k ===,得出k 的值.【答案】(1)证明见解析;(2)=AD BC. 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P 为黄金分割点,可得PC BC,再根据中位线的性质即可求解. 【详解】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心,所以点E 、F 为AO 、DO 的中点,所以EF 为AOD △的中位线,所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G ,所以12G G //AD .(2)因为点P 为黄金分割点,所以PC BC, 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =,因为AD//PQ ,所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC. 【点睛】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【答案】(1)9y =;(2)3y =. 【分析】(1)由比例的性质对比例式进行变形,然后去括号、移项、合并同类项可得到x=9y ,即可解答;(2)由比例的性质对比例式进行变形从而得到3y 2+2xy-x 2=0,然后分解得(3y-x )(y+x )=0,即可解答. 【详解】解:(1)由332x y x y +=−,得2(3)3()x y x y +=−, 即2633x y x y +=−,解得9y x =,∴9x y =.(2)由3x y x x y y +=−,得(3)()y x y x x y +=−, 即22320y xy x +−=,解得3x y =或x y =−(不合题意,舍去),∴3x y =.【点睛】本题重点考查比例线段,解答本题的关键在于了解比例的性质并且对比例式进行变形. 25.(2020秋·上海宝山·九年级统考阶段练习)如图,点D 、E 分别在ABC ∆的边AB 、AC 上,DE BC ∥. (1)若2ADE S ∆=,7.5BCE S ∆=,求BDE S ∆;(2)若BDE S m ∆=,BCE S n ∆=,求ABC S ∆.(用m ,n 表示)【答案】(1)3BDE S ∆=;(2)2ABC n S n m ∆=−。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线分线段成比例知识梳理平行线分线段成比例定理及其推论1. 平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEEDC B A3.比例线段的性质 等比性质:如果)0(≠++++====n f d b nmf e d c b a , 那么ban f d b m e c a =++++++++合、分比性质:a c abcd b d b d±±=⇔=.一、填空题1. 比例尺为1:50000的地图上,两城市间的图上距离为20cm ,则这两城市的实际距离 是 km.2. 图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .3. 正方形的边长与对角线的比为: .4. 已知b 是a ,c 的比例中项,且a=3cm ,c=6cm ,则b= cm5. 如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________.6. 线段a=2cm ,b=3cm ,c=1cm , 那么a 、b 、c 的第四比例项d=____ .7. 在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .8. 若2:3:=y x ,2:3:=z y . 则=z y x :: .9. 若a ∶3 = b ∶4 = c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .10. 已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = . 11. 已知x ∶4 = y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .12. 若43===f e d c b a , 则______=++++f d b e c a .13. 若9810z y x ==, 则 ______=+++zy zy x . 14. 若322=-y y x , 则_____=yx.15. 如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE= . 16. 若P 为AB 的黄金分割点,且AP >PB ,若AB =8cm ,则AP =_______. PB = . 二、选择题1. 已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( ) A. 9∶400 B. 9∶40 C. 9∶4 D. 90∶42. 下列线段能成比例线段的是( )A.1cm,2cm,3cm,4cm.B.1cm,2cm,22cm,2cm.C.2cm,5cm,3cm,1cm.D.2cm,5cm,3cm,4cm 3. 下面4条线段,不能成比例的是( )A .4,2,6,3====d c b aB .3,6,2,1====d c b aC .10,5,6,4====d c b aD .32,15,5,2====d c b a4. 如果线段a =4,b =16,c =8,那么a 、b 、c 的第四项是( ) A. 8 B. 16 C. 24 D. 325. 在比例尺为1:400000的地图上,量得AB 两地距离是24cm ,则A 、B 两地实际距离( )A 、960mB 、9600mC 、96000mD 、960000m6. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是 ( ) A 、12米 B 、11米 C 、10米 D 、9米7. 两直角边为3和4的直角三角形的斜边和斜边上高线的比是 ( ) A. 5:3 B. 5:4 C. 5:12 D. 25:12 8. 已知32=b a ,则bb a +的值为 ( ) A. 23 B. 34C. 35D. 539. 已知x ∶y ∶z =1∶2∶3,且2x+y -3z = -15,则x 的值为 ( )A C DB EA. -2B. 2C. 3D. -310. 如果 a:b=12:8,且b 是a 和c 的比例中项,那么b:c 等于( )A. 4:3B. 3:2C. 2:3D. 3:411. 在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度为( )A. 0.226kmB. 2.66kmC. 26.6kmD. 266km12. 已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( ) A. (2 5 –2)cm B. (6-2 5 )cm C. ( 5 –1)cm D. (3- 5 )cm 三、解答题1. 若c b a 432==,求c b a ::的值.2. 已知10:5:3::=c b a ,且16=-+b c a , 求c b a -+23的值.3. 已知743c b a ==,且0≠⋅⋅c b a , 求cb ac b a 432234-+-+的值. 4. 若k cb a dd b a c d c a b d c b a =++=++=++=++, 求k 的值.专题讲解专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。

EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长。

OFED CBA【巩固】如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。

QPFED CBA专题二、定理及推论与中点有关的问题 【例4】(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =, 连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AFFC FD+ 的值为( ) A.52 B.1 C.32D.2 (1)MEDC BA(2)F EDCBA【例5】 如图,在ABC ∆中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .E AO(1)当1A 2AE C =时,求AOAD 的值;(2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想.【例6】 如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点. (1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。

求证:AF EF =。

FEDCBA【例7】 如图,ABC ∆中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P 。

若2AD DE =,求证:3AP AB =。

PEDCBA【巩固】如图, ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224a D E a a ⎛⎫=+= ⎪⎝⎭; 若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;…………若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.专题三、利用平行线转化比例【例8】如图,在四边形ABCD 中,AC 与BD 相交于点O ,直线l 平行于BD ,且与AB 、DC 、BC 、AD 及AC 的延长线分别相交于点M 、N 、R 、S 和P . 求证:PM PN PR PS ⋅=⋅lSR PNMO DC BA【巩固】已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.E nD n E3D 3E 2D 2E 1D 1C B AG FECDBA【例9】 已知:P 为ABC ∆的中位线MN 上任意一点,BP 、CP 的延长线分别交对边AC 、AB 于D 、E ,求证:1AD AEDC EB+= PNME D CBA【例10】 在ABC ∆中,底边BC 上的两点E 、F 把BC 三等分,BM 是AC 上的中 线,AE 、AF 分别交BM 于G 、H 两点,求证:::5:3:2BG GH HM =MH G FECBA【例11】 如图,M 、N 为ABC ∆边BC 上的两点,且满足BM MN NC ==,一条 平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F . 求证:3EF DE =.F NMED CBA【例12】 已知:如图,在梯形ABCD 中,//AB CD ,M 是AB 的中点,分别连 接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F .(1)求证://EF CD(2)若AB a =,CD b =,求EF 的长.FEMDCBA【巩固】如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且梯形AEFD 与梯形EBCF 的周长相等,求EF 的长。

F E DCBA【例13】 如图,ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连接OE 交BC 于点F ,若A B a A D c B E b ===,,,求BF 的值。

相关文档
最新文档