实验08X射线光电子能谱演示实验报告(供参考)-

合集下载

能谱实验实验报告

能谱实验实验报告

一、实验目的1. 了解能谱仪的基本原理和结构;2. 掌握能谱仪的使用方法和操作技巧;3. 学习能谱仪在物质成分分析中的应用。

二、实验原理能谱仪是一种用于分析物质成分的仪器,其原理基于X射线能量色散谱分析。

当X射线照射到样品上时,样品会发出X射线,这些X射线经过能量色散器分离成不同能量的X射线,然后由探测器检测,最后由计算机处理数据,得到样品的元素成分和含量。

三、实验仪器与材料1. 能谱仪一台;2. 样品(如金属、陶瓷等);3. 实验室常用器材(如剪刀、镊子、天平等);4. 计算机及数据采集软件。

四、实验步骤1. 打开能谱仪电源,预热30分钟;2. 将样品放置在样品台上,调整样品与能谱仪的距离,使样品处于最佳检测位置;3. 设置能谱仪参数,如电压、电流、探测器类型等;4. 开始采集数据,观察样品发出的X射线能量色散谱;5. 对采集到的数据进行处理,得到样品的元素成分和含量;6. 比较不同样品的能谱图,分析其成分差异。

五、实验结果与分析1. 样品A的能谱图显示,其主要成分是铁、铜和铝,含量分别为60%、20%和20%;2. 样品B的能谱图显示,其主要成分是钙、硅和铝,含量分别为40%、30%和30%;3. 样品C的能谱图显示,其主要成分是钾、钠和钙,含量分别为50%、20%和30%。

通过对比分析,可以看出,不同样品的能谱图存在明显差异,这与其成分和含量有关。

能谱仪在物质成分分析中具有重要作用,可以快速、准确地获取样品的元素成分和含量。

六、实验讨论1. 实验过程中,要注意样品的放置位置和能谱仪参数的设置,以保证实验结果的准确性;2. 在数据处理过程中,要熟练掌握数据采集软件的操作,以便快速、准确地获取实验数据;3. 实验结果受样品质量、实验环境和操作技能等因素的影响,需要多次重复实验,以减小误差;4. 能谱仪在物质成分分析中的应用非常广泛,如地质勘探、环境监测、医疗诊断等领域,具有很高的实用价值。

七、实验总结本次实验通过学习能谱仪的基本原理和操作方法,掌握了能谱仪在物质成分分析中的应用。

111-演示文稿-X射线光电子能谱分析

111-演示文稿-X射线光电子能谱分析

第3篇
1 )结合能随氧化态的增高而增大; 2 )氧化态越高,化学位移越大。
第 12 章 X 射线光电子能谱分析
第3篇
第 12 章 X 射线光电子能谱分析
第3篇
第 12 章 X 射线光电子能谱分析
第3篇
一、基本原理 二、实验技术 三、谱图分析 四、实际应用
第 12 章 X 射线光电子能谱分析 1 . X 射线光电子谱仪
第 12 章 X 射线光电子能谱分析
第3篇
当荷电不易消除时,要根据样品的情况进行谱仪 结合能基准的校正
内标法
基准
C1s 结合能
饱和碳氢化合物
285.00eV
非取代芳烃碳原子
284.7eV
外标法
利用谱仪真空扩散泵油中挥发物对材料表面
的污染,在谱图中获得 C1s 峰,将这种 C1s 峰的
结合能定为 284.6eV ,以此为基准对其他峰位进
第3篇
X 射线能谱仪的基本组成:
第 12 章 X 射线光电子能谱分析
第3篇
( 1 ) X 射线源: 强度和线 宽
第 12 章 X 射线光电子能谱分析
( 2 )光电子能量分析器
第3篇
半球形电子能量分析器示意图
V
1 e
r2 r1
r1 r2
E K
第 12 章 X 射线光电子能谱分析
2 .实验方法
第3篇
3)m :轨道磁量子数,决定电子云在空间伸展方向。
第 12 章 X 射线光电子能谱分析
第3篇
轨道—自旋的耦合:电子的轨道运动和自旋运动之间存
在着电磁相互作用,作用的结果是使能级分裂而产生亚
电能子级能。谱 中 , 内 层 电 子 的 运 动 状

X射线光电子能谱分析

X射线光电子能谱分析

X射线光电子能谱分析X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)是现代表面分析技术中的一种重要手段。

它通过利用X射线入射在样品表面,当X射线光子与样品表面原子相互作用时,光电子会由样品表面发射出来,在光电子能谱仪中被探测和分析。

XPS可以获得试样的化学组成、化学状态、电荷状态、表面价态等信息,是研究材料界面、表面电子结构和化学活性等问题的有效手段。

一、XPS原理XPS的工作原理基于电子的能量损失。

当单色X射线光子与样品表面发生相互作用时,光子会被表面原子中的一个或多个电子吸收,从而将其能量转移给被激发的电子,将其从价层挪到离子层。

这些被激发的电子称为光电子(photoelectrons),它们遵循能量守恒定律,其动能与入射X射线能量之差等于与样品表面接触的电子势垒(即逸出功)。

二、XPS仪器及实验流程XPS实验仪器由准直系统、透镜和光学系统、交变极化源、能量分辨系统和探测器等部分组成。

实验流程主要包括样品表面清洗、样品加载、真空抽气和光子能谱仪调试等步骤。

在实际实验中,需要对仪器进行校准,然后利用X射线束斑轨迹扫描测量样品的光电子能谱,分析得到有关样品表面化学状态和组分的信息。

三、XPS数据处理和解析对于XPS实验中得到的光电子能谱进行数据处理和解析,包括去噪、基线修正、能峰积分、峰位转换和峰型拟合等。

常见的XPS光电子峰是由不同价态原子轨道势能引起的能级分裂和化学键形成导致的电子态密度变化引起的能级位移等。

通过对峰的形状和位置进行拟合,可以得到样品中化学元素的表面分布和含量,以及化学键的结果和壳层电子转移等信息。

四、XPS应用领域XPS在材料科学、表面物理和化学等领域有广泛的应用。

在表面和界面科学中,XPS可以用于研究材料表面结构、表面吸附反应、薄膜生长和界面电子结构等。

在电化学和电子器件领域,XPS可以用于研究材料电子结构、光伏材料表面化学性质以及界面反应等。

材料试验方法X射线衍射X射线光电子能谱

材料试验方法X射线衍射X射线光电子能谱
Page 38
根据晶粒大小还可以计算出晶胞的堆 垛层数
N=D101/d101=21.5/0.352=61
根据晶粒大小,还可以计算纳米粉体 的比表面积
当已知纳米材料的晶体密度r和晶粒大小 利用公式s=6/rD进行比表面计算
Page 39
小角X射线衍射
在纳米多层膜材料中,两薄膜层材料反 复重叠,形成调制界面 周期良好的调制界面,产生相干衍射, 形成明锐的衍射峰 对于制备良好的小周期纳米多层膜可以 用小角度XRD方法测定其调幅周期 大周期多层膜调制界面的XRD衍射峰因衍 射角度太小而无法观察
Testing & Fra bibliotekaterials
标准卡片索引的使用
• 数字索引 Hanawalt法,是一种按d 值强弱顺序编排的数字索引,对完全未 知待测样品进行相分析时使用。
• 字母索引 戴维 K法,已知样品中 某些元素做相分析时用,先推测出可能 的化合物,然后根据英文名称查对确定。
图5 X射线衍射法对矿物中药磁石的物相分析图谱
Page 42
已二胺处理前后粘土的XRD曲线
处理土的晶面间距(d001)由原来的
13.1Å膨胀到14.0Å说明有机阳离子与 粘土晶层间的水合阳离子进行了交换
Page 43
应力的测定
残余应力是指当产生应力的各种因素不复 存在时,由于形变,相变,温度或体积变 化不均匀而存留在构件内部并自身保持平 衡的应力
3. 平均晶粒尺寸测定
D = k / cos ( 谢乐方程 )
其中:D为晶粒的尺寸(单位为Å ,系垂直于hkl晶面 方向的晶粒大小); 为衍射峰的布拉格角; 为X射线波长(单位为Å ); 为衍射峰的宽度(弧度单位); k为常数(与的定义有关, 用积分宽计算晶粒大小时,k = 1; 用半高宽计算时,则取k = 0.9。

X射线光电子能谱分析

X射线光电子能谱分析

8.2.2 振动精细结构
对于同一电子能级, 对于同一电子能级,分子还可能有许多不同的 振动能级, 振动能级,因此实际测得的紫外光电子能谱图既 有结合能峰,又有振动精细结构。 有结合能峰,又有振动精细结构。
Ek = hv − I
光 电 子 动 能 入 射 光 子 能 量 绝 热 电 离 能
(a) n
§8.4
俄歇电子能谱(AES) 俄歇电子能谱(AES)
•1925年法国的物理学家俄歇(P.Auger)在用X射线研究光 1925年法国的物理学家俄歇( 1925年法国的物理学家俄歇 )在用X 电效应时就已发现俄歇电子,并对现象给予了正确的解释。 电效应时就已发现俄歇电子,并对现象给予了正确的解释。 •1968年L.A.Harris采用微分电子线路,使俄歇电子能谱开始 1968年 采用微分电子线路, 1968 采用微分电子线路 进入实用阶段。 进入实用阶段。 •1969年,Palmberg、Bohn和Tracey引进了筒镜能量分析器, 1969年 Palmberg、Bohn和Tracey引进了筒镜能量分析器 引进了筒镜能量分析器, 1969 提高了灵敏度和分析速度,使俄歇电子能谱被广泛应用。 提高了灵敏度和分析速度,使俄歇电子能谱被广泛应用。
hv = Ek + Eb +φ
0k时固体能带中充 0k时固体能带中充 满电子的最高能级
功函数
为防止样品上正电荷积累, 为防止样品上正电荷积累,固体样品必须保持 和谱仪的良好电接触,两者费米能级一致。 和谱仪的良好电接触,两者费米能级一致。 实际测到的电子动能为: 实际测到的电子动能为:
' Ek = Ek −(φsp −φs )
俄歇电子能谱的基本机理是:入射电子束或X 俄歇电子能谱的基本机理是:入射电子束或X射 线使原子内层能级电子电离, 线使原子内层能级电子电离,外层电子产生无辐 射俄歇跃迁,发射俄歇电子, 射俄歇跃迁,发射俄歇电子,用电子能谱仪在真 空中对它们进行探测。 空中对它们进行探测。

XPS实验报告

XPS实验报告

X射线光电子能谱实验报告一、实验目的1.学习和了解X射线光电子能谱的基本原理;2.学习使用X射线光电子能谱仪测量待测样品的谱图并进行解析。

二、实验原理1、光电效应(光致发射/光电离)如下图⽰。

不同能级上的电⼦具有不同的结合能。

当⼀束能量为hν的⼊射光⼦与样品中的原⼦相互作⽤时,单个光⼦把全部能量交给原⼦中某壳层(能级)上⼀个受束缚的电⼦。

如果光⼦的能量⼤于,电⼦将脱离原来受束缚的能级,剩余的能量转化为电⼦的结合能Eb该电⼦的动能(E)。

k光⼦与材料相互作⽤时,从原⼦中各个能级发射出的光电⼦数目是不同的,有⼀定的⼏率。

光电效应的⼏率⽤光电截⾯s表⽰:某能级的电⼦对⼊射光⼦的有效能量转移⾯积,或⼀定能量的光⼦从某个能级激发出⼀个光电⼦的⼏率。

光电效应截⾯s越⼤,说明该能级上的电⼦越容易被光激发。

与同原⼦其他壳层上的电⼦相⽐,它的光电⼦峰的强度就⼤。

2、俄歇电⼦的发射在X射线照射下,原⼦中的⼀个内层电⼦发⽣光致电离发射后,在内层留下⼀个空位(原⼦成了离⼦,处于激发态)激发态离⼦向低能转化发⽣驰豫:(1)通过辐射跃迁释放能量,产⽣X射线荧光。

波⻓在X射线区,能量为两个能级的能量差。

(2)通过⾮辐射跃迁使另⼀个电⼦激发成为⾃由电⼦。

此电⼦为俄歇电⼦。

3、原⼦能级的划分原⼦中单个电⼦的运动状态可以⽤量⼦数n,l,ml ,ms来表⽰主量⼦数n:电⼦的能量主要取决于n。

n的取值为1,2,3,…,等整数;分别对应着K,L,M,N…等壳层;角量⼦数l:决定了电⼦云的⼏何形状。

l的取值为0,1,2,…,(n-1),等整数;对应着s,p,d,f等能级。

磁量⼦数ml :决定了电⼦云在空间伸展的⽅向,在给定l,ml后,可以取在区间[-l,+l]内的任何整数,共有(2l+1)个。

⾃旋量⼦数m s:表⽰电⼦绕其⾃⾝轴的旋转取向,与上述3个量⼦数⽆关;只能取+½或者-½两个值。

原子中电子既有轨道运动又有自旋运动。

X射线光电子能谱演示实验

实验报告 X射线光电子能谱演示实验36一、实验目的通过X射线光电子能谱(XPS, X-ray Photoelectron Spectroscopy)的理论、仪器工作原理、测试方法及简单图谱分析方法的学习,了解并掌握该表面分析测试手段的特点及应用。

二、实验内容1.了解XPS设备基本组成、XPS样品的准备;2.了解测试参数的设定、样品测试过程;3.学习图谱分析方法:元素化学状态分析、元素定量分析。

三、实验原理已知光源MgKα激发光能量E K=1253.6eV,光电子动能E K可由XPS仪器测试得到,仪器逸出功φ为常数,由XPS基本方程E K = hν - E B - φ计算可得到固体中电子的结合能E B。

由元素的结合能可确定元素的化学状态。

由元素灵敏度因子法,由元素谱峰的强度I及相对灵敏度因子S,按下式可确定某元素A的相对原子浓度C A(%)。

四、实验步骤1. 了解实验仪器组成:2. 样品预处理:(1)溶剂清洗或长时间抽真空除表面污染物;(2)氩离子刻蚀除表面污物;(3)擦磨、刮剥和研磨;(4)真空加热。

3. 样品安装:将头发丝样品用导电胶带黏在样品托上。

4. 校正样品电荷:(1)消除法:用电子中和枪或在导电样品托上制备超薄样品;(2)矫正法:镀金法、外标法、内标法、二次内标法、混合法、氩注入法等。

5. 抽真空。

6. 测样。

五、实验结果及讨论1.通过头发丝的特征图谱可以得到,该样品含有:C、O、Si三种元素。

表1 发丝样品表面元素XPS测试数据六、思考题1.XPS表面分析为什么需要超高真空?答:XPS涉及到X射线光束与待分析的样品表面的相互作用,测量光电子。

若入射束要到达样品并要检测到出射的电子,则其在样品区域中的平均自由程必须大于所涉及到的仪器的物理尺寸,否则散射会引起实验结果的失真。

要在物理上实现这一尺度,就意味着需使用真空。

根据气体动力学基本理论,对于几十厘米量级尺度的设备,压力需在10-7到10-8 torr高真空范围内(空气中~1 μm)。

能谱材料实验报告(3篇)

第1篇一、实验目的1. 了解能谱材料的基本原理和应用。

2. 掌握能谱分析的基本方法和技术。

3. 学习如何通过能谱分析确定材料中的元素成分及其化学状态。

4. 提高对材料科学实验操作技能的掌握。

二、实验原理能谱分析是一种利用高能电子或X射线照射材料,激发出光电子或俄歇电子,通过分析这些电子的能量分布来获取材料表面或内部元素成分和化学状态的方法。

常见的能谱分析技术包括X射线光电子能谱(XPS)和俄歇电子能谱(AES)。

X射线光电子能谱(XPS)原理:当X射线照射到材料表面时,会激发出光电子。

这些光电子的能量与其所对应的原子轨道中的电子结合能有关,通过测量光电子的能量,可以确定材料表面的元素成分及其化学状态。

俄歇电子能谱(AES)原理:当材料表面受到电子或X射线的激发时,会发射出俄歇电子。

俄歇电子的能量与其所对应的原子轨道中的电子结合能有关,通过测量俄歇电子的能量,可以确定材料中的元素成分及其化学状态。

三、实验仪器与材料1. 仪器:- X射线光电子能谱仪- 俄歇电子能谱仪- 样品台- 样品夹具- 计算机及数据采集系统2. 材料:- 待测样品- 标准样品四、实验步骤1. 准备样品:将待测样品固定在样品台上,确保样品表面平整、干净。

2. XPS分析:- 对样品进行X射线照射,激发出光电子。

- 测量光电子的能量分布,通过对比标准样品的能谱,确定样品中的元素成分及其化学状态。

3. AES分析:- 对样品进行电子或X射线照射,激发出俄歇电子。

- 测量俄歇电子的能量分布,通过对比标准样品的能谱,确定样品中的元素成分及其化学状态。

4. 数据处理与分析:- 对采集到的数据进行分析,包括能谱拟合、峰面积计算等。

- 将分析结果与标准样品进行对比,确定样品中的元素成分及其化学状态。

五、实验结果与分析1. XPS分析结果:- 样品表面元素成分:X、Y、Z等。

- 元素化学状态:X2p、Y3d、Z4f等。

2. AES分析结果:- 样品表面元素成分:X、Y、Z等。

X射线光电子能谱分析

一、X射线光电子能谱的测量原理X射线光电子能谱(X-ray photoelectron Spectroscopy,简称XPS)也就是化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis,简称ESCA),它是目前最广泛应用的表面分析方法之一,主要用于成分和化学态的分析。

用单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用,光致电离产生了光电子,这些光电子从产生之处输运到表面,然后克服逸出功而发射,这就是X射线光电子发射的三步过程。

用能量分析器分析光电子的动能,得到的就是x射线光电子能谱。

根据测得的光电子动能可以确定表面存在什么元素以及该元素原子所处的化学状态,这就是x射线光电子谱的定性分析。

根据具有某种能量的光电子数量,便可知道某种元素在表面的含量,这就是x射线光电子谱的定量分析。

为什么得到的是表面信息呢?这是因为:光电子发射过程的后两步,与俄歇电子从产生处输运到表面然后克服逸出功而发射出去的过程是完全一样的,只有深度极浅范围内产生的光电子,才能够能量无损地输运到表面,用来进行分析的光电子能量范围与俄歇电子能量范围大致相同。

所以和俄歇谱一样,从X射线光电子谱得到的也是表面的信息,信息深度与俄歇谱相同。

如果用离子束溅射剥蚀表面,用X射线光电子谱进行分析,两者交替进行,还可得到元素及其化学状态的深度分布,这就是深度剖面分析。

X射线电子能谱仪、俄歇谱仪和二次离子谱仪是三种最重要的表面成分分析仪器。

X射线光电子能谱仪的最大特色是可以获得丰富的化学信息,三者相比,它对样品的损伤是最轻微的,定量也是最好的。

它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。

不过近年来这方面已取得一定进展,分析者已可用约100 μm直径的小面积进行分析。

最近英国VG公司制成可成像的X射线光电子谱仪,称为“ESCASCOPE”,除了可以得到ES-CA谱外,还可得到ESCA像,其空间分辨率可达到10μm,被认为是表面分析技术的一项重要突破。

(完整版)X射线光电子能谱分析

Ek = hν- EB –Ws
结合能( EB):电子克服原子核束缚和周围电子的作 用,到达费米能级所需要的能量。
XPS的基本原理
2. 光电离几率和XPS的信息深度 (1)光电离几率 ➢ 定义
光电离几率(光电离截面):一定能量的光子在与原 子作用时,从某个能级激发出一个电子的几率; ➢ 影响因素 与电子壳层平均半径,入射光子能量,原子序数有 关;
➢ AES大都用电子作激发源,因为电子激发得到的 俄歇电子谱强度较大。
光电子能谱仪实验技术
1.X射线激发源
XPS中最常用的X射线源主要由灯丝、栅极和阳极 靶构成。
X射线源的主要指标是强度和线宽,一般采用K 线,因为它是X射线发射谱中强度最大的。在X射线 光电子能谱中最重要的两个X射线源是Mg和Al的特征 K射线.
种基于光电效应的电子能谱,它是利 用X射线光子激发出物质表面原子的内 层电子,通过对这些电子进行能量分 析而获得的一种能谱。
这种能谱最初是被用来进行化学分析 ,因此它还有一个名称,即化学分析
电子能谱( ESCA,全称为Electron Spectroscopy for Chemical Analysis)
XPS的基本原理
化学位移 1. 定义
由于化合物结构的变化和元素氧化状态的变化引 起谱峰有规律的位移称为化学位移 2. 化学位移现象起因及规律 (1)原因
内层电子一方面受到原子核强烈的库仑作用而具 有一定的结合能,另一方面又受到外层电子的屏蔽 作用。因而元素的价态改变或周围元素的电负性改 变,则内层电子的结合能改变。
XPS的基本原理
➢ 与氧化态关系
光电子能谱仪实验技术
光电子能谱仪的结构 电子能谱仪主要由激发源、电子能量分析
光电子能谱仪实验技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验08X射线光电子能谱演示实验报告(供参考)-
实验9 X射线光电子能谱演示实验报告

0911101学生编号1120112254姓名王佳妮分数
1实验目的
通过X射线光电子能谱学(XPS,X射线光电子能谱学)理论、仪器工作原理、测试方法和简单图谱分析学习方法
2,实验内容
1。

了解XPS设备的基本组成,XPS样品的制备;2.了解测试参数的设置和样品测试过程;
3。

学习图谱分析方法:元素化学状态分析和元素定量分析
3,实验原理
已知光源MgK?激发光能EK=1253.6eV,光电子动能EK可以用XPS仪器测量,仪器的功函数?是一个常数,它是由XPS基本方程EK = h决定的。

- EB?可以计算固体中电子的结合能EB元素的化学状态可以由它的结合能决定。

元素A的相对原子浓度CA(%)可由元素灵敏度因子法、元素光谱峰的强度I和相对灵敏度因子S按下式确定
4、实验步骤
请在演示实验中注意观察、归纳和总结
5。

实验结果和讨论
请按要求处理测试数据,并以表格形式列出。

请参考下表
1
表1 ****样品表面元素XPS测试数据
元素C1s
峰结合能/eV
285.4
光谱峰强度/CPS
6890
原子百分比浓度/%
为什么XPS表面分析需要超高真空?如果
的真空度不高,发射的电子会与空气分子碰撞,电子的能量会减少,作用在待分析样品表面的能量也会减少,从而影响实验结果。

2.哪些表面性质可以2。

表面分析应用于?
表面元素的组成、元素的价态及其在表层的分布
3。

请理解XPS仪器两个重要性能指标的灵敏度、分辨率和相关性
灵敏度高,但分辨率低,扫描电压较高。

相反,扫描电压低,灵敏度低,但分辨率高。

2
表1
3。

相关文档
最新文档