天津大学远程教育高等数学考试试题
关于天津大学远程教育高等数学考试试题

天津大学远程教育高等数学考试试题一、单选题(共80题)1. 极限().B.C.D.2. 函数的定义域为,则函数的定义域为().A.[0,1];B.;C.;D.3. 当时,与比较,则().A.是较高阶的无穷小;B.是与等价的无穷小;C.是与同阶但不等价的无穷小;D.是较低阶无穷小.4. ( )。
D.不存在5. 设, 则A.B.C.D.6. 当时,是().A.无穷小量;B.无穷大量;C.有界变量;D.无界变量.7. 函数是()函数.A.单调B.有界C.周期D.奇8. 设则常数( )。
9. 下列函数在区间上单调增加的是().A.B.C.D.10. 设函数,则的连续区间为()A.B.C.D.11. 当时,与比较,则().A.是较高阶的无穷小量;B.是较低阶的无穷小量;C.与是同阶无穷小量,但不是等价无穷小;D.与是等价无穷小量.12. 下列函数中()是奇函数A.B.C.D.13. 如果存在,则在处().A.一定有定义;B.一定无定义;C.可以有定义,也可以无定义;D.有定义且有14. ( )。
D.不存在15. 极限 ( )。
2 416. 设,则()A.B.C.D.17. 函数的复合过程为().A.B.C.D.18. ( ).B.C.D.19. 存在是在连续的().A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.20. 已知,求().21. 函数是()函数.A.单调B.无界C.偶D.奇22. ( ).D.23. 下面各组函数中表示同一个函数的是()。
A.;B.;C.D.24. 函数是()函数.A.单调B.有界C.周期D.奇25. ()A.B.C.D.26. 设求的值为 ( ) A.B.C.D.27. 当时,与无穷小量等价的无穷小量是(). A.B.C.D.28. ( ).D.不存在29. 设,则( )A.B.C.D.30. 设,则( )A.B.C.D.31. 设,则A.B.C.32. 极限=()。
(含答案)天津大学线代2017-2018第一学期期末试题

一、填空题1、子空间412341234{[,,,]R 0,0}W x x x x x x x x =∈+=+=的维数为__________________.2、设向量组12(I),αα和 123(II),,ααα的秩均为2, 向量组124(III),,ααα的秩为3, 则向量组1234,,23−αααα的秩为___.3、设3阶方阵A 的特征值为1,2, 则223______.−+=A A E4、设矩阵21222361a −=−− −A 与矩阵diag(2,2,4)=−B 相似, 则_______.a = 5、设3阶方阵A 的全部特征值为123,,λλλ, 且123,,λλλ互异, 对应的特征向量依次为1230111,,1110k===ααα, 则参数k 的取值范围是___________.二、选择题1、设矩阵A 与B 相似, 则下列结论中错误的是( ).(A) 2A 与2B 相似 (B) A+E 与B +E 相似 (C) T A 与T B 相似 (D) T A+A 与T B +B 相似2017 ~ 2018 学年第一学期期末考试试卷 《 线性代数及其应用 》 (A 卷 共4页)12、设向量β可由向量组12,,,m ααα线性表示, 但不可由121(I),,,m − ααα线性表示, 记121(II),,,,m − αααβ, 则( ). (A) 向量m α不可由向量组(I)线性表示, 也不可由向量组(II)线性表示 (B) 向量m α不可由向量组(I)线性表示, 但可由向量组(II)线性表示 (C) 向量m α可由向量组(I)线性表示, 也可由向量组(II)线性表示 (D) 向量m α可由向量组(I)线性表示, 但不可由向量组(II)线性表示3、设A 为m n ×矩阵, 非齐次线性方程组=βAX 有唯一解, 则( ). (A) 向量β可由矩阵A 的线性无关的列向量组线性表示 (B) 向量β可由矩阵A 的线性无关的行向量组线性表示 (C) 向量β可由矩阵A 的线性相关的列向量组线性表示 (D) 向量β可由矩阵A 的线性相关的行向量组线性表示4、设A 为n 阶实对称矩阵, 则−A E 正定矩阵当且仅当A 的特征值( ). (A) 全为正数 (B) 全小于1 (C) 全大于1 (D) 全为15、设实对称矩阵A 与120210002−=−B 合同, A *为A 的伴随矩阵, 则实二次型f X ()=X T A*X 的规范形为( ). 2(A) 222123y y y ++ (B) 222123y y y +− (C) 222123y y y −− (D) 222123y y y −−−三、1、求向量组123411210251,,,20131141− ==== − −αααα的秩和一个极大无关组, 并用该极大无关组线性表示其余向量. 2、设矩阵12212221a =A , 11b=α是1−A 的对应于特征值λ的特征向量, 求常数,a b 的值以及λ的值. 四、试问a 取何值时, 线性方程组1231231232,2(2),1x x x x a x x a x x ax a ++= ++−=−−+=− 有唯一解, 无解, 无穷多解?在有解时求其通解. 五、设123,,ααα是线性空间V 的一个基, 且11223323,,2==+=+βαβααβαα. (1) 证明123,,βββ也是V 的一个基;(2) 求由基123,,βββ到基123,,ααα的过渡矩阵; 123+2α+α3在基123(3) 求γα=ββ,,β下的坐标.六、设σ是线性空间R 3上的线性变换, 规定σ()=[,y z ,x ],T αα∀=[x ,,y z ]T 3∈R .(1) 求σ在标准基123=[1,0,0],εε=T [0,1,0],=[TT ε0,0,1]下的矩阵A ;3七、求一个正交线性替换, 将实二次型222123123121323(,,)710744f x x x x x x x x x x x x =++−−+化为标准形, 并写出其标准形. 八、设 ,αβ分别是长度为1,2 的3 元列向量, 且α 与β 正交, 记A =αβ + 4βαT T . 证明(1) r A ()≤ 2;(2) 矩阵A 可对角化.填空题: 1、2. 2、3. 3、6. 4、3. 5、2k ≠. 选择题: DBACC三、1、秩为3, 41232=+−αααα. 2、2,2,1a b λ==−=−或152,1,a b λ===.四、0,1a a ≠≠−, 唯一解[]T11123,,,1,1a a x x x =− ; 0a =, 无解; 1a =−, 无穷多解T T [3,5,0][2,3,1]k =−+−X . 五、过渡矩阵为100021011 −− ; 坐标111. 六、(1) 010001100; (2) 490241120− −. 七、123λ=λ=6,λ=12. (2) 求σ在标准基123=[1,α0,0],=T [2,α1,0],=T [α0,2,1]T 下的矩阵B .4答案。
线性代数(专) 天津大学网考复习题库及答案

有无穷多解
同 其中
3、求非齐次线性方程组 的全部解(用其特解与导出组的基础解系表示)。
解:
有无穷多解
同解方程组为
特解为 导出组的基础解系为 ,
全部解为 其中
4、求非齐次线性方程组 的全部解(用基础解系表示)。
解:
有无穷多解
同解方程组为
特解为 导出组的基础解系为 ,
全部解为 其中
(2)写出 对应的二次型 ,并判定 的正定性。
解:
(1)
对于 解 得 ,
已正交单位化
对于 解 得
单位化 令 则
(2)
正定从而 正定
4、设 求正交矩阵 ,使 为对角形。
解:
对于 解 得 ,
已正交单位化
对于 解 得
单位化 令 则
七、1、设 为 阶方阵且满足 ,证明 可逆。(证明略)
2、设 阶方阵 若 ,证明 不可逆。(证明略)
极大无关组为
5、求向量组 , , , 的秩,并求出它的一个极大无关组。
解:
令
极大无关组为
6、求向量组 , , , 的秩,并求出它的一个极大无关组。
解:令
极大无关组为
五、解线性方程组
1、求齐次线性方程组 的基础解系及通解。
解:
有无穷多解
同解方程组 基础解系为
通解为 其中
2、求齐次线性方程组 的基础解系及通解。
A、 B、 C、 或 D、
三、解矩阵方程
1、设 ,求矩阵 ,使得 。
解:由 , 可逆
2、设 ,求矩阵 ,使得 。
解:由 ,
可逆
3、设 ,求矩阵 ,使得
解:由 ,
可逆
4、设 ,求矩阵 ,使得 。
003005-3[高等数学(专)-3] 天津大学机考题库答案
![003005-3[高等数学(专)-3] 天津大学机考题库答案](https://img.taocdn.com/s3/m/3273d355b90d6c85ec3ac6c2.png)
21、求不定积分
解:
22、计算不定积分 。
解:
23、求定积分 .
解:
24、计算定积分 ,其中 。
解:
令设 ,则 ,
当 时, ,当 时,
25、计算由曲线 , 所围成的平面图形的面积 ,及该图形绕着 轴旋转而成的旋转体体积 .
解:
26、计算极限 .
解:
27、求球面
解:
28、一平面
解:
由已知平面方程2x-y+z-1=0,可知已知平面 的法线向量为
17、计算由曲线 , 轴, 轴及直线 所围成的平面图形的面积 ,及该图形绕着 轴旋转而成的旋转体体积 .
解:选择 为积分变量, 与直线 的交点为
18、计算极限 。
解:
19、求函数 在区间 上的最值.
解:
令 得到
所以最大值为16,最小值为-4.
20、设 是由方程 确定的隐函数,求 .
解:方程 两边对 求导得:
; ; ; .
13、设 , ,则 时, 的( D )。
等价无穷小; 同阶,但非等价无穷小;
高阶无穷小, 低阶无穷小.
14、定积分 =( C )。
; ; ; .
15、已知 在 处连续,则 为( A )。
; ; ; .
16、设 的一个原函数为 ,则 (A)。
; ; ; .
二、填空题
1、极限 ( )。
2、函数 在区间 上的最小值是(8)。
; ; ; .
6、定积分 =( D )。
; ; ; .
7、当 时,与 等价的无穷小量是(D)。
; ; ; .
8、若函数 在 内 ,则 在 内是( D )。
单调减少的凹曲线; 单调减少的凸曲线;
天津大学线代模拟2

模拟试题2一、填空题(每小题3分,共15分)1. 向量组[][][][,,,,,,,,215,4,3,24,3,2,11111TT T 1-====432αααα T1]2-,的秩为_____,一个极大无关组为______________.2. 设2/1||33=⨯A ,则______|)(2)3(|2*12=--A A .3. 设n 阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111111A ,则||A 的所有代数余子式之和为_____. 4. 设A ,B 均为n 阶方阵,n λλλ,,, 21为B 的n 个特征值,且存在可逆矩阵P ,使E PAPAP P B +-=--11,则_____1=∑=ni i λ.5. 设二次型31212322213212224)(x x x tx x x x x x x f --++=,,是正定的,则t 的 取值范围为___________.二、选择题(每小题3分,共15分)1. 设矩阵A 与⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31130000110011B 相似,则=-+-+)2()()(E A E A A r r r ( ). (A) 7 (B) 8 (C) 9 (D) 102. 设0||=A ,21αα,是AX 0=的一个基础解系,0≠=33ααA ,则( )不是A 的特征向量.(A) 21αα+ (B) 212αα- (C) 313αα+ (D) 32α3. 设A ,B 均为n 阶方阵,且2)(2)(n/r n/r <<B A ,,则齐次线性方程组0=AX 与0=BX ().(A) 没有相同的非零解 (B) 同解(C) 只有相同零解 (D) 有相同的非零解 4. 设n n ⨯∈R A ,n m )r(<=A ,则下列说法不正确的是( ). (A) A 可经过初等行变换化为][O E m ,(B) 对任意m 为列向量β,方程组β=AX 必有无穷多解 (C) 若m 阶矩阵B ,满足O BA =,则O B = (D) T AA 为正定矩阵5. 设矩阵A 与)(diag 21n d d d ,,, 相合,则必有( ). (A) n r =)(A (B) A 是正定矩阵(C) n d d d ,,, 21是A 的特征值(D) 二次型AX X T 有标准形2222211n n y d y d y d +++三、(10分) 设齐次线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++02)1(4022)2(02321321321x x a x x x x a x ax x ,,有非零解,且三阶矩阵A 的三个特征值为224,,-,对应的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112121321321a a a a a a X X X ,,. 试确定参数a ,并求矩阵A .四、(8分) 设][3214αααα,,,=A ,非齐次线性方程组β=AX 的通解为[][]TT201-11111,,,,,,k +,其中k 为任意常数.1. 1α能否由432ααα,,线性表示?说明理由.2. 3α能否由421ααα,,线性表示?说明理由.五、(8分)已知[][][]4T3T2T111153113201αααα,,,,,,,,,,,,a -=== [][]TT5116421,,,,,,,b a =+=β,问a ,b 取何值时,1. β不能由4αααα,,,321线性表示;2. β可由4αααα,,,321线性表示,并写出该表达式.六、(8分)设实线性空间V 的一个基为(Ⅰ):xx x x e e e e 24231====αααα,,,x x 2.定义V 的线性变换σ:V x f x f x f ∈∀=)()('))((,σ.1. 求σ在基(Ⅰ)下的矩阵A ;2. 问是否存在V 的基,使得σ在该基下的矩阵为对角矩阵?并说明理由.七、(16分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=242221baa A 实对称,2为A 的特征值. 1. 求a ,b 的值;2. 求正交矩阵S 及对角矩阵Λ,使得ΛAS S =T ;3. 二次型X A X X 2T )(=f 是否为正定二次型?八、(1题6分,2题5分,3题5分,共16分)1. 设A ,B 均为n 阶正交方阵,n 为奇数,求证B A +与B A -至少有一个不可逆;2. 设n E AB =,求证A 的行向量组线性无关;3. 设n n B A ⨯∈R ,对称,A 的特征值全大于a ,B 的特征值全大于b ,求证B A +的特征值全大于b a +.模拟试题2答案一、填空题1. 3,421ααα,,(或431ααα,,,或432ααα,,);2. 541-;3. 1;4. n ;5. )22(,-.二、选择题1. (C);2. (C);3. (D);4. (A);5. (D).三、33⨯齐次线性方程组有非零解,则系数行列式为0,即0)1)(2(21422212=+--=--+a a a a a , 得2=a 或1-.若2=a ,则21X X =,与21X X ,是A 的属于不同特征值的特征向量矛盾!故1-=a . 当1-=a 时,][][]T3T2T1101012321,,,,,,,,=-=-=X X X ,显然32X X ,线性无关,从而321X X X ,,线性无关.令][321X X X S ,,=,则S 可逆,且)224diag(1,,-=-AS S ,因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-163222123)224d i a g (1S S A ,,. 四、由题设,知[]T201-1,,,是齐次线性方程组0=AX 的基础解系,则314)(=-=A r ,且0=+-4212ααα.1. 432120αααα-+=,则1α可由432ααα,,线性表示.2. 设3α可由421ααα,,线性表示,则)()(34214321ααααααα,,,,,r r ==,因此421ααα,,线性无关.与0=+-4212ααα矛盾!故3α不能由421ααα,,线性表示.五、令44332211ααααβx x x x +++=,即⎪⎪⎩⎪⎪⎨⎧=++++=+++=+-=+++.5)6(53432121432143214324321x a x x x b x ax x x x x x x x x x ,,,对其增广矩阵作初等行变换,可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-=01301001211011111561534321211011111~a b a a b a A . 当1=a 且3≠b 时,)~(32)(A A r r =<=,则方程组无解,此时β不能由1α ,4ααα,,32 线性表示.当1≠a 时,4)~()(==A A r r ,则方程组有唯一解,此时β可由,,,321ααα4α线性表示,且表示法唯一.1)3(2141301234---=--+=--==a b x a b a x a b x x ,,,4321013141)3(2ααααβ+--+--++---=a b a b a a b当1=a 且3=b 时,42)~()(<==A A r r ,方程组有无穷多解,此时β可由4αααα,,,321 线性表示,但表示法不唯一.431432221x x x x x x +-=-+=, 其中43x x ,任意取值,则4231221121)21()2(ααααβk k k k k k ++-+++-=,其中21k k ,任意常数.六、1. 由σ的定义,有,,,,424322311122)(22)()()(αααααααααα==+=+=+=+===xxx2xx2xe σe x x σxee σe σe从而σ在基(Ⅰ)下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=20010*********A . 2. A 的全部特征值为214321====λλλλ,.对于三重特征值1,有-43134)(≠=-=-E A r ,因此A 不能对角化,从而σ不能对角化,即不存在V 的基,使得σ在该基下的矩阵为对角矩阵.七、1.由A 对称,知4=b .又2是A 的特征值,则0)2(44444221|2|2=-=-----=-a aaE A , 得2=a .2. A 的特征多项式为)7()2(242422221||2+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---+--=-λλλλλλA E ,则72321===λλλ,.A 的对应于特征值722,,的特征向量为[][][].22,11,22212T3T2T1-=-==,,,,,,X X X将321X X X ,,单位化,得正交矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21222112231S ,且 ΛAS S =-=)722diag(T ,,八、 1. 由B A ,正交,知E B B E AA ==T T ,,则⎪⎩⎪⎨⎧--=-=-+=+=+BB A A B AA B AB B A B B A A B AA B AB B A T T T TT T )()(于是||||||||)1(||||22B A B A B A B A B A n -+-=-+(n 为奇数),即0||||)||||1(22=-++B A B A B A因此0||||=-+B A B A ,故0||=+B A 或0||=-B A ,从而B A +与B A -至少有一个不可逆.2. 由n E AB =,知}m i n {)()(s n r n r ,≤≤=A AB (s为A 的列数),因此)(A rn =,故A 的行向量组线性无关.3. 实对称矩阵E A a -,E B b -的特征值全为正,则E A a -,E B b -均正定,因此E B A E B E A )()()(b a b a +-+=-+-也正定,故B A +的特征值全大于b a +.。
天津大学2020年第1学期高等数学期末考试试卷

2020-2021学年第一学期 高等数学期末考试天津大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x xx →= 。
2.曲线2x xe e y -+=在点(0,1)处的曲率是 。
3.设()f x 可导,[]ln ()y f x =,则dy = 。
4.不定积分⎰=。
5.反常积分60x e dx +∞-⎰= 。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.设2,01(),,12x x f x x x ⎧<≤=⎨<<⎩在点1x =处必定 () A .连续但不可导 B .连续且可导C .不连续但可导D .不连续,故不可导2.曲线y =4x =处的切线方程是 ( )A .114y x =- B .112y x =+C .114y x =+ D .124y x =+3.下列函数在区间[1,1]-上满足罗尔定理条件的是 ( )A .21x B .3x C .x D .211x +4.设()f x 为连续函数,则下列等式中正确的是 ( )A .()()f x dx f x '=⎰B .()()df x dx f x C dx =+⎰C .()()d f x dx f x =⎰D .()()d f x dx f x dx =⎰5.已知()0232ax x dx -=⎰,则a = ( )A .1-B .0C .12 D .1三、计算题(本大题共7小题,每小题7分,共49分)1. 求函数 的极值与拐点.解:函数的定义域(-∞,+∞)。
2. 设抛物线上有两点,,在弧A B 上,求一点使的面积最大.3. 已知()x f 的一个原函数为2ln x ,则试求:()⎰'xf x dx . 确定2x y e =2(x -2)的单调区间.4.设方程2290y xy -+=确定隐函数()y y x =,求d d yx 。
天津大学15春《高等数学(专)-1》在线作业二满分答案

高等数学(专)-1 《高等数学(专)-1》在线作业二一,单选题1. 题面见图片A. AB. BC. CD. D?正确答案:A2. 题面见图片A. AB. BC. CD. D?正确答案:B3. 题面见图片A. AB. BC. CD. D?正确答案:B4. 题面见图片A. AB. BC. CD. D?正确答案:C5. 题面见图片A. AB. BC. CD. D?正确答案:D6. 题面见图片A. AB. BC. CD. D?正确答案:C7. 题面见图片A. AB. BC. CD. D?正确答案:D8. 题面见图片A. AB. BC. CD. D?正确答案:D9. 题面见图片A. AB. BC. CD. D?正确答案:B10. 题面见图片A. AB. BC. CD. D?正确答案:A11. 题面见图片A. AB. BC. CD. D?正确答案:A12. 题面见图片A. AB. BC. CD. D?正确答案:A13. 题面见图片A. AB. BC. CD. D?正确答案:B14. 题面见图片A. AB. BC. CD. D?正确答案:B15. 题面见图片A. AB. BC. CD. D?正确答案:D16. 题面见图片A. AB. BC. CD. D?正确答案:A17. 题面见图片A. AB. BC. CD. D?正确答案:C18. 题面见图片A. AB. BC. CD. D?正确答案:A19. 题面见图片A. AB. BC. CD. D?正确答案:D20. 题面见图片A. AB. BC. CD. D?正确答案:A====================================================================== ======================================================================。
高等数学天大教材答案

高等数学天大教材答案高等数学是大学数学课程中的一门重要学科,它包含了微积分、线性代数、概率统计等内容。
对于天大(天津大学)的学生们来说,掌握高等数学的知识是非常重要的。
然而,由于课程内容繁杂,有时候学生在学习过程中可能会遇到一些困难,需要参考教材答案来帮助自己理解和解决问题。
以下是《高等数学》天大教材中的一些习题的答案,供学生们参考和学习。
1. 微积分1.1. 极限与连续1.1.1. 习题一:(1) 设函数\[f(x) = \begin{cases} x^2+1, & x<0 \\ 2x+3, & x \geq 0\end{cases}\],求极限\[\lim_{x \to 0} f(x)\]的值。
答案:由于\[x \to 0^- \]时,函数\[f(x) = x^2+1 \];而\[x \to 0^+ \]时,函数\[f(x) = 2x+3 \]。
因此,\[\lim_{x \to 0^-} f(x) = 0^2+1 = 1 \],\[\lim_{x \to 0^+} f(x) = 2 \cdot 0 + 3 = 3 \]。
由左右极限相等,则\[\lim_{x \to 0} f(x) = 1 = 3 \]。
1.1.2. 习题二:(1) 已知函数\[f(x) = \frac{x^2-x}{x-1} \],求\[\lim_{x \to 1} f(x)\]的值。
答案:将函数\[f(x) = \frac{x^2 - x}{x - 1} \]进行因式分解,得\[f(x)= \frac{x(x-1)}{x-1} = x \]。
因此,\[\lim_{x \to 1} f(x) = \lim_{x \to 1} x= 1 \]。
1.2. 导数与微分1.2.1. 习题一:(1) 求函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]的导函数。
答案:对函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]逐项求导,得\[f'(x) = 3x^2 - 6x + 2 \]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津大学远程教育高等数学考试试题
一、单选题(共80题)
1. 极限().
A.1
B.
C.
D.
2. 函数的定义域为,则函数的定义域为().
A.[0,1];
B.;
C.;
D.
3. 当时,与比较,则().
A.是较高阶的无穷小;
B.是与等价的无穷小;
C.是与同阶但不等价的无穷小;
D.是较低阶无穷小.
4. ( )。
A.-1
B.0
C.1
D.不存在
5. 设, 则
A.
B.
C.
D.
6. 当时,是().
A.无穷小量;
B.无穷大量;
C.有界变量;
D.无界变量.
7. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
8. 设则常数( )。
A.0
B.-1
C.-2
D.-3
9. 下列函数在区间上单调增加的是().
A.
B.
C.
D.
10. 设函数,则的连续区间为()
A.
B.
C.
D.
11. 当时,与比较,则().
A.是较高阶的无穷小量;
B.是较低阶的无穷小量;
C.与是同阶无穷小量,但不是等价无穷小;
D.与是等价无穷小量.
12. 下列函数中()是奇函数
A.
B.
C.
D.
13. 如果存在,则在处().
A.一定有定义;
B.一定无定义;
C.可以有定义,也可以无定义;
D.有定义且有
14. ( )。
A.0
B.1
C.2
D.不存在
15. 极限 ( )。
A.1/2
B.1
C.0
D.1/4
16. 设,则()
A.
B.
C.
D.
17. 函数的复合过程为().
A.
B.
C.
D.
18. ( ).
A.1
B.
C.
D.
19. 存在是在连续的().
A.充分条件,但不是必要条件;
B.必要条件,但不是充分条件;
C.充分必要条件;
D.既不是充分条件也不是必要条件.
20. 已知,求().
A.3
B.2
C.1
D.0
21. 函数是()函数.
A.单调
B.无界
C.偶
D.奇
22. ( ).
A.0
B.1
C.2
D.
23. 下面各组函数中表示同一个函数的是()。
A.;
B.;
C.
D.
24. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
25. ()
A.
B.
C.
D.
26. 设求的值为 ( )
A.
B.
C.
D.
27. 当时,与无穷小量等价的无穷小量是().
A.
B.
C.
D.
28. ( ).
A.-1
B.0
C.1
D.不存在
29. 设,则( )
A.
B.
C.
D.
30. 设,则( )
A.
B.
C.
D.
31. 设,则
A.
B.
C.
D.1
32. 极限=()。
A.1
B.
C.
D.
33. 设是可微函数,则?/span( )
A.
B.
C.
D.?/span
34. 设?/span则等于()
A.
B.
C.
D.
35. 极限?/span( ).
A.1/2
B.1/3
C.1/6
D.0
36. 极限
A.
B.
C.
D.
37. ()
A.1
B.2
C.0
D.3
38. 已知,则( )。
A.2
B.
C.
D.
39. 设,且,则=()。
A.
B.
C.e
D.1
40. 设,其中b为常数,f存在二阶导数,则是()
A.
B.
C.
D.
41. 若,则()
A.0
B.1
C.-ln2
D.1/ln2
42. 若则 ( )。
A.-1
B.1
C.2
D.-2
43. 函数单调增加区间是()
A.(-∞,-1)
B.( -1,1)
C.(1,+∞)
D.(-∞,-1)和(1,+∞)
44. 为()时与相切。
A.
B.
C.
D.
45. 函数的单调减的范围是()。
A.
B.
C.
D.
46. 下列等式中,不正确的是()。
A.
B.
C.
D.
47. 设则
A.1
B.
C.
D.
48. 函数在上的最小值是( ).
A.1
B.2
C.
D.
49. 若在区间内恒有,,则函数的曲线为()
A.上凹且上升
B.上凹且下降
C.下凹且上升
D.下凹且下降
50. 极限=()。
A.1;
B.2;
C.3;
D.4.
51. ,函数的微分是()
A.
B.
C.
D.
52. 若,则 ( )
A.
B.
C.
D.0
.
53. 函数的极大值为()。
A.
B.
C.
D.
54. 曲线在(1,1)处的切线方程为().
A.
B.
C.
D.
55. 若由方程确定,则( ).
A.
B.
C.
D.
.
56. 函数在区间的最大值与最小值分别是()
A.15,4
B.13,2
C.15,2
D.13,4
57. 定积分(?)
A.
B.
C.
D.0
58. 求的不定积分()
A.
B.
C.
D.
59. 若函数,则(?)
A.
B.
C.
D.
.
60. (?)
A.
B.
C.
D.
61. 设函数,则(?)
A.
B.
C.
D.
62. (?)
A.
B.
C.
D.
63.
A.
B.
C.
D.
64. (?)
A.0
B.1
C.
D.
65.
A.
B.
C.0
D.
66. (?)
A.
B.
C.
D.
67. ()
A.
B.0
C.
D.
68. (?)
A.
B.
C.
D.
69. ()
A.
B.
C.
D.
70. 若,则()
A.
B.
C.
D.
.
71. (?)
A.
B.
C.
D.
72.
A.
B.
C.
D.
73.
A.
B.
C.
D.
.
74. 已知,则(?)
A.
B.
C.
D.
75. 极限()
A.-1
B.0
C.1
D.2
76. ()
A.
B.
C.
D.
77. 设函数,则(?).
A.; -3
B.
C.
D.
78. 设,则(?).
A.
B.
C.
D.
79. 设,则()
A.1
B.0
C.2
D.3
80. 设,则二阶偏导数().
A.
B.
C.0
D.。