互斥对立事件知识点+练习题

合集下载

第10章概率专题1 互斥事件与对立事件及其概率-新教材高中数学必修(第二册)常考题型专题练习

第10章概率专题1 互斥事件与对立事件及其概率-新教材高中数学必修(第二册)常考题型专题练习

互斥事件与对立事件及其概率的算法【知识总结】1、互斥事件:指A∩B为不可能事件;事件A与事件B互斥,即事件A与事件B不能同时发生;A∩B=∅;P(A∪B)=P(A)+P(B)。

2、对立事件:A∩B为不可能事件,A∪B为必然事件;事件A与事件B对立,即事件A与事件B有且仅有一个发生;A∩B=∅,A∪B= ;概率计算P(A∪B)=1,P(A)=1-P(B)。

3、事件A与事件B互斥,事件A与事件B不一定对立;反之,事件A与事件B对立,事件A与事件B则一定互斥。

【巩固练习】1、某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是()A.恰有2名男生与恰有4名男生B.至少有3名男生与全是男生C.至少有1名男生与全是女生D.至少有1名男生与至少有1名女生【答案】C【解析】“恰有2名男生”与“恰有4名男生”是互斥事件,但不是对立事件,排除A项;“至少有3名男生”与“全是男生”可以同时发生,不是互斥事件,排除B项;“至少有1名男生”与“全是女生”不可能同时发生,且必有一个发生,是对立事件,C项正确;“至少有1名男生”与“至少有1名女生”可以同时发生,不互斥,排除D项.故选:C.2、袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是()A.恰有1个白球和全是白球B.至少有1个白球和全是黑球C.至少有1个白球和至少有2个白球D.至少有1个白球和至少有1个黑球【答案】B【解析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件,②至少有1个白球和全是黑球是对立事件;③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件,故选:B.3、甲:1A、2A是互斥事件;乙:1A、2A是对立事件,那么()A.甲是乙的充要条件B.甲是乙的充分但不必要条件C.甲是乙的必要但不充分条件D.甲既不是乙的充分条件,也不是乙的必要条件【答案】C【解析】当1A、2A是互斥事件时,1A、2A不一定是对立事件,所以甲是乙的非充分条件.当1A、2A是对立事件时,1A、2A一定是互斥事件,所以甲是乙的必要条件.所以甲是乙的必要非充分条件.故选C.4.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【答案】C【解析】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选:C5、从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球【答案】C【解析】从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.6、从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”【答案】D【解析】记两个黑球为,A B,两个红球为1,2,则任取两球的所有等可能结果为:A AB B AB,记事件A为“至少有一个黑球”,事件B为:“都是红球”,1,2,1,2,,12,7、一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环D.命中环数至多为6环【答案】C【解析】根据对立事件的定义,可得一个射手进行一次射击,则事件:“命中环数小于6环”的对立事件是“命中环数至少是6环”,故选C.8、某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件B.B和C为互斥事件C.C与D是对立事件D.B与D为互斥事件【答案】D【解析】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.9、把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件【答案】C【解析】显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.故选:C.10、一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:选D事件“至少有一次中靶”包括“中靶一次”和“中靶两次”两种情况.由互斥事件的定义,可知“两次都不中靶”与之互斥.11、从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③解析:选C “至少有一个是奇数”即“两个都是奇数或一奇一偶”,而从1,2,3,…,7这7个数中任取两个数,根据取到数的奇偶性知共有三种情况:“两个都是奇数”“一奇一偶”“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.故选C.12、对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一枚炮弹击中飞机},D ={至少有一枚炮弹击中飞机},其中互为互斥事件的是__________;互为对立事件的是__________.【答案】A 与B 、A 与C ,B 与C 、B 与D ;B 与D .【解析】由于事件A 与B 不可能同时发生,故A 与B 是互斥事件;同理可得,A 与C ,B 与C 、B 与D 也是互斥事件.综上可得,A 与B 、A 与C ,B 与C 、B 与D 都是互斥事件.在上述互斥事件中,再根据B 、D 还满足B ∪D 为必然事件,故B 与D 是对立事件,故答案为A 与B 、A 与C ,B 与C 、B 与D ;B 与D .13、记事件A ={某人射击一次,中靶},且P (A )=0.92,则A 的对立事件是__________,它的概率值是__________.【答案】{某人射击一次,未中靶},0.08.【解析】事件A ={某人射击一次,中靶},则A 的对立事件是{某人射击一次,未中靶};又P (A )=0.92,故答案为:{某人射击一次,未中靶},0.08.14、如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B =.【答案】0.5【解析】()()0.20.3)0.5(P A P B P A B =+=+= 15、在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:选A 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.16、若A ,B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________.解析:∵A ,B 为互斥事件,∴P (A ∪B )=P (A )+P (B ),∴P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.答案:0.317、已知随机事件A 和B 互斥,且()0.5P AUB =,()0.3P B =.则()P A =()A.0.5B.0.2C.0.7D.0.8【解析】(1)A 与B 互斥()()()P A B P A P B ∴=+本题正确选项:D18、已知随机事件,,A B C 中,A 与B 互斥,B 与C 对立,且()()0.3,0.6P A P C ==,则()P A B +=()A.0.3B.0.6C.0.7D.0.9【答案】C 【解析】因为()0.6P C =,事件B 与C 对立,所以()0.4P B =,又()0.3P A =,A 与B 互斥,所以()()()0.30.40.7P A B P A P B +=+=+=,故选C .19、设事件A ,B ,已知()15P A =,()13P B =,()815P A B = ,则A ,B 之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件【答案】B()()()P A B P A P B ∴=+ A ∴.B 为互相斥事件故选:B .20、若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,则实数a 的取值范围是()A.5,24⎛⎫ ⎪⎝⎭B.53,42⎛⎫ ⎪⎝⎭C.53,42⎡⎤⎢⎥⎣⎦D.54,43⎛⎤ ⎥⎝⎦【答案】D【解析】 随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩,即021*******a a a <-<⎧⎪<-<⎨⎪-⎩,故选:D .21、若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y,则x +y 的最小值为________.=9,当且仅当x =2y 时等号成立,故x +y 的最小值为9.答案:922、一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.解析:由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃由于事件A “至少取得一个红玻璃球”与事件B “取得两个绿玻璃球”是对立事件,则。

高考数学互斥事件专题复习训练(含答案)

高考数学互斥事件专题复习训练(含答案)

2019-2019年高考数学互斥事件专题复习训练(含答案)事件A和B的交集为空,A与B就是互斥事件,下面是互斥事件专题复习训练,请考生练习。

一、选择题1.如果事件A与B是互斥事件,则()A.A+B是必然事件B.与一定互斥C.与一定不互斥D.+是必然事件[答案] D[解析] 特例检验:在掷一粒骰子的试验中,上面出现点数1与上面出现点数2分别记作A与B,则A与B是互斥而不对立的事件,A+B不是必然事件,与也不互斥,A、B选项错误,+是必然事件,还可举例验证C不正确.2.从1,2,3,,9这9个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A. B.C. D.[答案] C[解析] 可根据互斥和对立事件的定义分析事件,中至少有一个是奇数即两个奇数或一奇一偶,而从1~9中任取两数共有3个事件:两个奇数一奇一偶两个偶数,故至少有一个是奇数与两个偶数是对立事件.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品任意抽查一件抽得正品的概率为()A.0.99B.0.98C.0.97D.0.96[答案] D[解析] 设抽得正品为事件A,则P(A)=1-0.03-0.01=0.96.4.抽查10件产品,设至少抽到2件次品为事件A,则为()A.至多2件次品B.至多2件正品C.至少2件正品D.至多1件次品[答案] D[解析] 至少2件次品与至多1件次品不能同时发生,且必有一个发生.5.从某班学生中任意找出一人,如果该同学的身高低于160 cm的概率为0.2,该同学的身高在[160,175] cm的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2B.0.3C.0.7D.0.8[答案] B[解析] 设身高低于160 cm为事件M,身高在[160,175] cm为事件N,身高超过175 cm为事件Q,则事件M、N、Q两两互斥,且M+N与Q是对立事件,则该同学的身高超过175 cm 的概率为P(Q)=1-P(M+N)=1-P(M)-P(N)=1-0.2-0.5=0.3. 6.如果事件A与B是互斥事件,且事件A+B的概率是0.8,事件A的概率是事件B的概率的3倍,则事件A的概率为() A.0.2 B.0.4C.0.6D.0.8[答案] C[解析] 由题意知P(A+B)=P(A)+P(B)=0.8,P(A)=3P(B),解组成的方程组知P(A)=0.6.互斥事件专题复习训练分享到这里,更多内容请关注高考数学试题栏目。

高中数学互斥事件检测试题(附答案)

高中数学互斥事件检测试题(附答案)

高中数学互斥事件检测试题〔附答案〕互斥事件同步练习思路导引1.假设A与B是互斥事件,那么有A.P〔A〕+P〔B〕B.P〔A〕+P〔B〕1C.P〔A〕+P〔B〕=1D.P〔A〕+P〔B〕1解析:A与B互斥,也可能对立,因此P〔A〕+P〔B〕1.答案:D2.以下四个命题:①对立事件一定是互斥事件;②A、B为两个事件,那么P〔A+B〕=P〔A〕+P〔B〕;③假设事件A、B、C 两两互斥,那么P〔A〕+P〔B〕+P〔C〕=1;④事件A、B满足P〔A〕+P〔B〕=1,那么A、B是对立事件.其中错误命题的个数是A.0B.1C.2D.3答案:解析:①正确;②错误,A与B不是互斥事件;③错误,A、B、C两两互斥,有P〔A+B+C〕=P〔A〕+P〔B〕+P〔C〕,但不一定有P〔A〕+P〔B〕+P〔C〕=1;④正确.答案:C3.盒子里有大小一样的3个红球,2个白球,从中任取2个,颜色不同的概率是A. B. C. D.答案:解析:由树状图,易知共有20种不同结果,其中颜色一样的有8种,因此颜色不同的概率为1- .答案:C4.同时抛掷1分和2分的两枚硬币,出现一枚正面向上,一枚反面向上的概率是A. B. C. D.1解析:列表可知有4种情况,一枚正面且一枚反面有两种可能,结果为 .答案:A5.某产品分一、二、三级,其中只有一级是正品,假设消费中出现二级品的概率是0.03,三级品的概率是0.01,那么出现正品的概率为A.0.99B.0.98C.0.97D.0.96解析:产品共分为三个等级,二级品和三级品的概率分别为0.03和0.01,那么一级品即正品的概率为1-0.03-0.01=0.96.答案:D6.从一批乒乓球产品中任取一个,假设其重量小于2.45 g的概率为0.22,重量不小于2.50 g的概率为0.20,那么重量在2.45~2.50 g范围内的概率为________.解析:由于重量小于2.45 g的概率为0.22,所以重量大于或等于2.45 g的概率为0.78.又因为重量不小于2.50 g的概率为0.20,因此重量在2.45~2.50 g范围内的概率为0.78-0.20=0.58.答案:0.587.某单位的36人中,有A型血12人,B型血10人,AB型血8人,O型血6人,假设从这个单位随机地找出2人,这2人血型一样的概率是________.解析:由树状图易知有3635种不同结果.两人血型一样的情况有1211+109+87+65〔种〕,因此两人血型一样的概率为 . 答案:8.甲、乙两人下棋,和棋的概率为 ,乙获胜的概率是 ,那么甲获胜的概率为________.解析:甲获胜的概率为1- .答案:9.袋内有100个大小一样的红球、白球和黑球,其中有45个红球,从袋中摸出1球,摸出白球的概率是0.23,求摸出黑球的概率.解:由条件知,从袋中摸出1球是红球的概率为0.45.∵从袋中摸出1球是白球的概率为0.23,且袋中只有红球、白球、黑球这3种球,从袋中摸出1球是黑球的概率为1-0.45-0.23=0.32. 10.某班有36名学生,从中任选2名,假设选得同性别的概率为 ,求男、女生相差几名?解:设有男生m人,女生n人.由树状图易知共有3635种不同结果,且m+n=36. ①∵同性别的概率为 ,解由①②联立的方程组得|m-n|=6,即男、女生相差6名. 互斥事件与对立事件的区别与联络.互斥事件有一个发生的概率公式.给球编号画树状图.列出所有可能情况.根据对立事件概率间的关系P〔A〕+P〔〕=1.根据互斥事件概率间的关系.画树状图有些复杂,可以想象出结果.三种情况的概率和为1.通过列方程解答,想象树状图.。

023年高考数学考点复习——事件(互斥、对立、独立)与概率(古典概型)(原卷版)

023年高考数学考点复习——事件(互斥、对立、独立)与概率(古典概型)(原卷版)

2023年高考数学考点复习——事件(互斥、对立、独立)与概率(古典概型)考点一、对立与互斥事件例1、关于事件,A B的以下结论,其中一定正确的为()A.若,A B为对立事件,则,A B可能不是互斥事件B.若,A B为对立事件,则,A B必为互斥事件C.若,A B为互斥事件,则,A B必为对立事件D.若,A B为互斥事件,则,A B不可能为对立事件例2、有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件B.乙与丙是对立事件C.甲与丁是对立事件D.丙与丁是互斥事件跟踪练习1、将襄阳五中、钟祥一中、夷陵中学、随州一中校徽各1枚随机地分发给甲、乙、丙、丁,每人分得1枚,事件“甲分得钟祥一中校徽”与事件“乙分得钟祥一中校徽”是()A.不可能事件B.对立事件C.相互独立事件D.互斥事件2、将一枚质地均匀的骰子向上抛掷1次.设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件3、甲、乙两名射手同时向一目标射击,设事件A为“甲击中目标”,事件B为“乙击中目标”,则事件A与事件B()A.相互独立但不互斥B.互斥但不相互独立C.相互独立且互斥D.既不相互独立也不互斥4、从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球5、书架上有两套我国四大名著,现从中取出两本.设事件M表示“两本都是《红楼梦》”;事件N表示“一本是《西游记》,一本是《水浒传》”;事件P表示“取出的两本中至少有一本《红楼梦》”.下列结论正确的是()A.M与P是互斥事件B.M与N是互斥事件C.N与P是对立事件D.M,N,P两两互斥6、2021年某省新高考将实行“312++”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件考点二、独立事件例1、有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立例2、先后抛掷两枚骰子,甲表示事件“第一次掷出正面向上的点数是1”,乙表示事件“第二次掷出正面向上的点数是2”,丙表示事件“两次掷出的点数之和是7”,丁表示事件“两次掷出的点数之和是8”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丁相互独立D.丙与丁相互独立跟踪练习1、坛子中放有3个白球,2个黑球,从中进行不放回地摸球,用A表示“第一次摸得白球”,B表示“第二次摸得白球”,则事件A与事件B是()A.互斥事件B.对立事件C.不相互独立事件D.相互独立事件2、袋内有大小相同的3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸到白球”,用B表示“第二次摸到白球”,用C表示“第一次摸到黑球”则下列说法正确的是()A.A与B为互斥事件B.B与C为对立事件C .A 与B 非相互独立事件D .A 与C 为相互独立事件3、在一次试验中,随机事件A ,B 满足()()23P A P B ==,则( ) A .事件A ,B 一定互斥 B .事件A ,B 一定不互斥 C .事件A ,B 一定互相独立D .事件A ,B 一定不互相独立4、有4个相同的球,分别标有数字1,2,3,4,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是6”,则( ) A .甲与丁相互独立 B .乙与丁相互独立 C .甲与丙相互独立D .丙与丁相互独立5、甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A ,2A ,3A 是两两互斥的事件 C .()35P B = D .()17|11P B A =考点三、 古典概型例1、哥德巴赫猜想作为数论领域存在时间最久的未解难题之一,自1742年提出至今,已经困扰数学界长达三个世纪之久哥德巴赫猜想是“任一大于2的偶数都可写成两个质数的和”,如14311=+.根据哥德巴赫猜想,拆分22的所有质数记为集合A ,从A 中随机选取两个不同的数,其差大于8的概率为( )A .15B .25C .35D .45例2、一个学习小组有7名同学,其中3名男生,4名女生.从这个小组中任意选出3名同学,则选出的同学中既有男生又有女生的概率为( ) A .67B .57C .27D .17例3、某中学举行党史学习教育知识竞赛,甲队有A 、B 、C 、D 、E 、F 共6名选手其中4名男生2名女生,按比赛规则,比赛时现场从中随机抽出2名选手答题,则至少有1名女同学被选中的概率是( ) A .13B .25C .12D .35跟踪练习1、小华、小明、小李、小章去A ,B ,C ,D 四个工厂参加社会实践,要求每个工厂恰有1人去实习,则小华去A 工厂,且小李没去B 工厂的概率是___________.2、如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A .任取不同的两点(,,{1,2,3,,8}),i j i j i j A A ≠∈,点P 满足0i j OA OP OA ++=,则点P 落在第一象限的概率是_____________.3、观察一枚均匀的正方体骰子,任意选取其中两个面的点数,点数之和正好等于5的概率为( ) A .110B .115C .215D .4154、(多选)根据中国古代重要的数学著作《孙子算经》记载,我国古代诸侯的等级自低到高分为:男、子、伯、侯、公五个等级,现有每个级别的诸侯各一人,君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分m 处(m 为正整数),按这种分法,下列结论正确的是( ) A .为“男”的诸侯分到的领地不大于6处的概率是34B .为“子”的诸侯分到的领地不小于6处的概率是14C .为“伯”的诸侯分到的领地恰好为10处的概率是1D .为“公”的诸侯恰好分到16处领地的概率是145、(多选)某人决定就近打车前往目的地前方开来三辆车,且车况分别为“好”“中”“差”他决定按如下两种方案打车.方案一:不乘第一辆车,若第二辆车好于第一辆车就乘此车,否则直接乘坐第三辆车:方案二:直接乘坐第一辆车.若三辆车开过来的先后次序等可能记方案一和方案二坐到车况为“好”的车的概率分别为1p,2p,则下列判断不正确的是()A.121 2p p==B.121 3p p==C.11 2p=,21 3p=D.11 3p=,21 2p=6、甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A.29B.23C.14D.127、北京卫视大型原创新锐语言竞技真人秀节目《我是演说家》火爆荧屏,在某期节目中,共有2名女选手和1名男选手参加比赛.已知备选演讲主题共有2道,若每位选手从中有放回地随机选出一个主题进行演讲,则其中恰有一男一女抽到同一演讲主题的概率为()A.14B.12C.23D.348、从0、1、2、3、4、5、6、7、8、9这10个数中任取5个不同的数,则这5个不同的数的中位数为4的概率为( )A.121B.17C.521D.139、在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了40次,那么出现正面朝上的频率和概率分别为()A.0.4,0.4B.0.5,0.5C.0.4,0.5D.0.5,0.410、向上抛一枚均匀的正方体骰子3次,向上点数记为M,点数之和正好等于5的概率为()A.110B.136C.215D.41511、哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(素数指大于1的自然数中,除了1和它本身以外不再有其他因数的自然数)的和”,如18=7+11,在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是()A.415B.215C.310D.110。

《互斥事件和对立事件》基础训练

《互斥事件和对立事件》基础训练

《互斥事件和对立事件》基础训练一、选择题1.一个人连续射击三次,则事件“至少击中两次”的对立事件是()A.恰有一次击中B.三次都没击中C.三次都击中D.至多击中一次2.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是()A.A与B为对立事件B.B与C为互斥事件C.C与D为对立事件D.B与D为互斥事件3.某产品分甲、乙、丙三级,其中甲级为正品,乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.02,则抽查一件产品是正品的概率为()A.0.05B.0.95C.0.06D.0.94二、填空题4.一箱产品有正品4件,次品3件,从中任取2件,其中事件“至少有1件次品”的互斥事件是_____.5.已知随机事件,,A B C中,A与B互斥,B与C对立,且()0.3,()0.6P A P C==,则()P A B+=_____.6.某产品分为优质品、合格品、次品三个等级,已知生产中出现优质品的概率为18,出现合格品的概率为34,其余为次品.在该产品中任抽一件,则抽到的为次品的概率为_____.三、解答题7.从装有两个红球和两个黑球的口袋里任取两个球,判断下列两个事件的关系:(1)“至少有一个黑球”与“都是黑球”;(2)“至少有一个黑球”与“至少有一个红球”;(3)“恰好有一个黑球”与“恰好有两个黑球”;(4)“至少有一个黑球”与“都是红球”.8.甲、乙两人参加普法知识竞赛,共有5题,选择题3道,判断题2道,甲、乙两人各抽一题. (1)甲、乙两人中有一人抽到选择题,另一人抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?参考答案一、选择题1.答案:D解析:根据题意,一个人连续射击三次,事件“至少击中两次”包括“击中两次”和“击中三次”两个事件,其对立事件为“至多击中一次”,即“没有击中一次”和“击中一次”两个事件.2.答案:D解析:在A中,A与B是互斥但不对立事件,故A错误.在B中,B与C能同时发生,不是互斥事件,故B错误.在C中,C与D是互斥事件,故C错误.在D中,B与D为互斥事件,故D正确.3.答案:B解析:由于抽一件产品,抽到甲、乙、丙为互斥事件,故抽到正品的概率为10.030.020.95--=.二、填空题4.答案:都是正品解析:根据题意,事件“至少有1件次品”包括“有1件次品”“有2件次品”“有3件次品”“有4件次品”,则其互斥事件是“都是正品”.5.答案:0.7解析:随机事件,,A B C中,A与B互斥,B与C对立,且()0.3,()0.6,()1()P A P C P B P C==∴=-= 0.4,()()()0.30.40.7P A B P A P B∴+=+=+=.6.答案:1 8解析:由题意,在该产品中任抽一件,“抽到次品”“抽到优质品和合格品”是对立事件,∴在该产品中任抽一件,“抽到次品”的概率为131 1848⎛⎫-+=⎪⎝⎭.三、解答题7.答案:见解析解析:(1)当两个球都为黑球时,“至少有一个黑球”与“都是黑球”同时发生,故(1)中两个事件不互斥;(2)当两个球一个为黑球,一个为红球时,“至少有一个黑球”与“至少有一个红球”同时发生, 故(2)中两个事件不互斥;(3)“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,但可以同时不发生, 故(3)中两个事件互斥而不对立;(4)“至少有一个黑球”与“都是红球”不可能同时发生,且必然有一种情况发生,故(4)中两个事件互斥且对立.8.答案:见解析解析:把3道选择题记为123,,,2x x x 道判断题记为12,p p ,“甲抽到选择题,乙抽到判断题”的情况有()(111,,x p x ,)()()()()221223132,,,,,,,,p x p x p x p x p ,共6种;“甲抽到判断题,乙抽到选择题”的情况有()(111,,p x p ,)()()()()213212223,,,,,,,,x p x p x p x p x ,共6种;“甲、乙都抽到选择题”的情况有()()()121321,,,,,x x x x x x ,()()()233132,,,,,x x x x x x ,共6种;“甲、乙都抽到判断题”的情况有()()1221,,,p p p p ,共2种.因此样本点的总数为666220+++=.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,则()P A =632010=,记“甲抽到判断题,乙抽到选择题”为事件B ,则63()2010P B ==,故“甲、乙两人中有一人抽到选择题,另一人抽到判断题”的概率为333()10105P A B +=+=. (2)记“甲、乙两人中至少有一人抽到选择题”为事件C ,则C 为“甲、乙两人都抽到判断题”,由题意得()P C =212010=,故“甲、乙两人中至少有一人抽到选择题”的概率为19()1()11010P C P C =-=-=.。

互斥事件与对立事件

互斥事件与对立事件

当堂训练
1.从1,2,…,9中任取两数,其中: ①恰有一个偶数和恰有一个奇数;
②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是
偶数;④至少有一个奇数和至少有一个偶数.
C.③ D.①③
从1,2,…,9中任取两数,包括一奇一偶、二奇、二偶,共三种互斥事 件,所以只有③中的两个事件才是对立事件.
学生讨论2:互斥事件和对立事件的区别和联系:
互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有 区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能 有一个发生,但不可能两个都发生;
而两个对立事件必有一个发生,但是不可能两个事件同时发生,也 不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两 个事件对立,它们一定互斥.
题型探究
例1 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说 明理由. 从40张扑牌(红桃、黑桃、方块、梅花的牌面数字都是从1到10)中任意抽 取1张. (1)“抽出红桃”与“抽出黑桃”;
是互斥事件,不是对立事件. 理由如下:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃” 是不可能同时发生的,所以是互斥事件.由于还可能抽出方块或者梅花, 因此不能保证其中必有一个发生,所以二者不是对立事件.
作业 预习概率的加法公式及对立事件的概率求法
本课结束
结语
谢谢大家!
互斥事件与对立事件
复习 引入
复习提问:1、事件的包含、相等关系 2、事件的运算——交事件、并事件
学习目标
1.理解互斥事件和对立事件的概念; 2..能判断两个事件是否为对立事件、互斥事件。
问题导学
知识点 互斥与对立的概念
思考
一粒骰子掷一次,事件A={出现的点数为3},事件B={出现 的点数大于3},事件C={出现的点数小于4},则A∩B是什么 事件?A∪B呢?B∩C呢?B∪C呢?(请同学们思考并回答)

数学北师大版三同步训练:3.2.3互斥事件(附答案)含解析

数学北师大版三同步训练:3.2.3互斥事件(附答案)含解析

2.3互斥事件1.对于对立事件和互斥事件,下列说法正确的是( )A.如果两个事件是互斥事件,那么这两个事件一定是对立事件B.如果两个事件是对立事件,那么这两个事件一定是互斥事件C.对立事件和互斥事件没有区别,意义相同D.对立事件和互斥事件没有任何联系2.某产品分一、二、三级,其中只有一级品是正品.若生产中出现二级品的概率为0。

03,三级品的概率为0.01,则出现正品的概率是( )A.0。

96 B.0。

97 C.0。

98 D.0。

993.若事件A是必然事件,事件B是不可能事件,则事件A与事件B 的关系是( )A.互斥不对立B.对立不互斥C.互斥且对立D.不对立,不互斥4.甲、乙两个人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为()A.60%B.30% C.10%D.50%5.抛掷一枚骰子,记A为事件“落地时向上的数是奇数",B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”.其中是互斥事件的是______,是对立事件的是______.6.某人参加2009年在山东举行的第十三届全运会体操个人全能比赛,已知该运动员夺冠的概率是0。

89,则此人不能获金牌的概率是______.答案:1.B 对立事件必是互斥事件,互斥事件未必是对立事件.2.A 出现正品的概率P=1-0.03-0.01=0。

96.3.C 必然事件与不可能事件不能同时发生,但必有一个发生.4.D “甲胜”与“和棋”为互斥事件.“甲不输”即“甲胜"或“和棋”.∴P(甲不输)=P(甲获胜)+P(甲、乙和).∴P(甲、乙和)=P(甲不输)-P(甲获胜)=90%-40%=50%。

5.A与B A与B6.0。

11 此人是否夺冠是对立事件,∴不能夺冠的概率为P=1-0.89=0。

11.1.若事件A、B互斥,那么()A.A∪B是必然事件 B.错误!∪错误!是必然事件C.错误!与错误!一定互斥D.错误!与错误!一定不互斥2.把红、黑、白、蓝4张牌随机地分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与“乙分得红牌"是() A.对立事件B.不可能事件C.互斥但不对立事件D.以上均不对3.抽查10件产品,设A表示“至少2件次品”的事件,则A表示的事件为()A.至多2件次品B.至少2件正品C.至多2件正品D.至多1件次品4.某射手一次射击中,击中10环、9环、8环的概率分别是0.24、0.28、0.19,则该射手在一次射击中不够9环的概率是( )A.0。

互斥对立事件练习题

互斥对立事件练习题

互斥对立事件练习题事件一:晴天下棋事件二:下雨看电影一、事件描述:今天是个阳光明媚的日子,小明本计划在室外与朋友们下棋。

然而,突然下起了大雨,只能改变计划,选择在室内去看电影。

二、对立关系分析:从事件一和事件二的描述中可以看出,晴天下棋与下雨看电影是互斥对立事件。

晴天下棋表示天气晴朗,且进行棋局活动,而下雨看电影则暗示天气阴沉,只能在室内选择看电影来填补时间。

三、讨论:1. 互斥对立事件的概念:互斥对立事件指的是两个事件在某一特定条件下只能发生其中一个,并且互相排斥,无法同时发生。

2. 互斥对立事件的特点:- 互斥性:两个事件无法同时发生。

- 对立性:两个事件相互排斥,即当一个事件发生时,另一个事件必然不会发生。

- 整体性:两个事件涵盖了所有可能的情况,即它们是完备的。

- 互相补充:两个事件的发生状态相互呼应,一个事件的发生必然意味着另一个事件的不发生。

3. 互斥对立事件的实际应用:互斥对立事件的概念在现实生活中有着广泛的应用。

例如:- 天气条件:晴天与下雨、晴天与阴天等。

- 活动安排:开会与休息、工作与娱乐等。

- 产品选择:A产品与B产品、购买与放弃购买等。

- 选项决策:方案A与方案B、旅行与留在家中等。

四、互斥对立事件的解决与实践:针对互斥对立事件,我们需要根据实际情况进行选择和决策。

对于小明来说,在面临晴天下棋与下雨看电影这两个互斥对立事件时,需要考虑以下方面:1. 对天气的关注:在活动方案中,天气是一个重要的因素,在外出活动前可以查看天气预报,以避免受到天气突变的影响。

2. 弹性的计划:即使计划A遇到意外情况,可以在预留的时间段内转而选择计划B,以应对突发状况。

3. 兴趣与偏好:根据自己的兴趣和偏好来权衡选择。

如果小明对棋局更感兴趣,可以主动寻找室内的下棋场所;如果小明比较喜欢看电影,可以选择室内看电影来度过下雨天。

五、总结:互斥对立事件是生活中常见的一种情况,我们在面对这样的事件时,需要对其做出正确的判断和选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识点复习
1.事件的包含关系
如果事件A发生,则事件B______.则称事件B______事件A.
2.相等事件
若______且______,那么事件A与事件B相等.
3.并(和)事件
若某事件发生当且仅当___________,则称此事件为事件A与B的并事件(或称和事件)记作:A∪B.
4.交(积)事件
若某事件发生当且仅当_________,则称此事件为事件A与B的交事件(或称积事件)记作:A∩B.
5.互斥事件
若A∩B为_________,即A∩B=______,那么称事件A与事件B________.
6.对立事件____________________对立事件.
例如:某同学在高考中数学考了150分,与这同学在高考中考得130分,这两个事件是________.
7.互斥事件概率加法公式
当事件A与B互斥时,满足加法公式:
P(A∪B)=P(A)+P(B);
若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=________,于是有P(A)=________.
例如:投掷骰子六点向上的概率为1/6,投得向上点数不为六点的概率为:________.
8.如果事件A与事件B互斥,则____________________;如果事件A与事件B对立,则________________________。

二、练习题
1.在一对事件A,B中,若事件A是必然事件,事件B是不可能事件,那么A和B() A.是互斥事件,不是对立事件
B.是对立事件,但不是互斥事件
C.是互斥事件,也是对立事件
D.既不是对立事件,也不是互斥事件
2.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1件,事件“甲分得红牌”与事件“乙分得红牌”是()
A.对立事件B.不可能事件
C.互斥但不对立事件D.以上答案都不对
3.给出以下结论:
①互斥事件一定对立②对立事件一定互斥③互斥事件不一定对立④事件A与B的和事件的概率一定大于事件A的概率⑤事件A与B互斥,则有P(A)=1-P(B)
其中正确命题的个数为()
A.0个B.1个
C.2个D.3个
4、某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:
(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.
5.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少1名男生与全是男生;
(3)至少1名男生与全是女生;
(4)至少1名男生与至少1名女生.
6、 抛掷一枚骰子,下列事件:
A ={出现奇数点},
B ={出现偶数点},
C ={点数小于3},
D ={点数大于2},
E ={点数是3的倍数}.则:
(1)A ∩B =________,B ∩C =________.
(2)A ∪B =________,B +C =________.
(3)记 为事件H 的对立事件,则 =_______, ∩C =_____, ∪C =_____, + =______.
7.某校组织一个夏令营,在高一(1)班抽一部分学生参加,记事件A 为抽到高一(1)班的运动员,事件B 为抽到高一(1)班数学竞赛小组成员,事件C 为抽到高一(1)班英语竞赛小组成员.说明下列式子所表示的事件:
(1)A ∪B (2)A ∩C (3)A ∪(B ∩C)
8、某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;
(2)没有射中10环的概率;
(3)不够7环的概率.
(4)该射手射击两次中第一次射中10环,第二次射中8环的概率;
(5)该射手射击两次中有一次射中10环,一次射中8环的概率; H D E D B A 事件的运算。

相关文档
最新文档