数学分析》第十一章反常积分复习自测题[1]

合集下载

(整理)十一章习题解答.

(整理)十一章习题解答.

习题 11-1判别下列级数的敛散性:1. +++++n 2141211;2. ∑∞=-+1)1(n n n ;3. ++++⨯+++n n 10121102121101212 ;4. ∑∞=⎪⎭⎫ ⎝⎛-121cos 1n n n ;5. ()() ++-++⋅+⋅13231741411n n ; 6. ∑∞=++143ln n n n ;7. +-++-+61514131211; 8.∑∞=12sin n nnx . 解:1.()⎪⎭⎫⎝⎛-++++=-+++=11211211121211n n S n , 而调和级数是发散的,故级数发散; 2. ()()()()∞→∞→-+=-+++-+-=n n n n S n 1112312 ,故级数发散; 3.因为级数+++n 2121212收敛, 而级数⎪⎭⎫ ⎝⎛++++=++⨯+ n n 12111011011021101发散, 故原级数发散; 4.因为211cos1lim 2=⎪⎭⎫ ⎝⎛-∞→n n n ,所以原级数发散; 5.因为()()()∞→→⎪⎭⎫ ⎝⎛+-=+-+++=n n n n S n 31131131132317.414.11 故原级数收敛; 6.()()()()()ln 4ln5ln5ln6ln 3ln 4n S n n =-+-+++-+()()ln 4ln 4n n =-+→-∞→∞故级数发散。

7. 因为11111121171123456339n n n+-++-+=-⨯==∞∑∑∑,故原级数发散;8. 对于任意的自然数,p.2121121121212121112121np n pn n n p n n n u u u <--⨯=+++≤+++++++++++所以对于任意给定的正数ε,取自然数)1(log 2ε≥N ,则当N n >时,对于任意的自然数,p 都有 ε<++++++p n n n u u u 21 成立。

数学分析有答案的套题

数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。

数学分析11反常积分总练习题

数学分析11反常积分总练习题

第十一章 反常积分总练习题1、证明下列等式: (1)⎰+11-p 1x x dx=⎰∞++1-p 1x x dx ,p>0;(2)⎰∞++01-p 1x x dx=⎰∞++0-p1x x dx ,0<p<1. 证:(1)∵p>0,∴两个积分都收敛,令x=t1,则⎰+11-p 1x x dx=⎰++→1u 1-p 0u 1x x lim =⎰++∞→1u1p -1u11t1t lim d ⎪⎭⎫⎝⎛t 1=⎰++∞→u 11-p u 11t t lim dt=⎰∞++1-p 1x x dx.(2)∵0<p<1,∴两个积分都收敛, 又⎰∞++01-p 1x x dx=⎰+101-p 1x x dx+⎰∞++11-p 1x x dx. 由(1)得⎰+11-p 1x x dx=⎰∞++1-p1x x dx ,又令x=t1,则 ⎰∞++11-p 1x x dx=⎰++∞→u 11-p u 1x x lim =⎰++→u 11p -10u11t1t lim d ⎪⎭⎫ ⎝⎛t 1=⎰++→1u 1-p 0u 11t t lim dt=⎰+10-p 1x x dx. ∴⎰∞++01-p 1x x dx=⎰∞++1-p 1x x dx+⎰+10-p 1x x dx=⎰∞++0-p1x x dx.2、证明下列不等式: (1)22π<⎰14x -1dx<2π;(2)⎪⎭⎫⎝⎛-e 1121<⎰+∞0x -2e dx<1+2e 1. 证:(1)∵)x 1(212-<4x-11<2x-11, x ∈(1,0].∴⎰12x-1dx 21<⎰14x-1dx<⎰12x-1dx .又⎰102x-1dx 21=22π;⎰12x -1dx=2π. ∴22π<⎰104x-1dx <2π. (2)⎰+∞0x -2e dx=⎰10x -2e dx+⎰+∞1x -2e dx<⎰10dx +⎰+∞1x -2x e dx=1+2e1. 又⎰+∞0x -2edx=⎰10x -2edx+⎰+∞1x -2edx>⎰10x -2edx>⎰10x -2x edx=⎪⎭⎫ ⎝⎛-e 1121.∴⎪⎭⎫ ⎝⎛-e 1121<⎰+∞0n -2e dx<1+2e1.3、计算下列反常积分的值:(1)bx cos e 0ax -⎰+∞dx (a>0);(2)bx sin e 0ax -⎰+∞dx (a>0);(3)⎰+∞+02x1lnxdx ;(4)⎰2π0)θln(tan d θ. 解:(1)bx cos e 0ax -⎰+∞dx=⎰+∞→u 0ax -u e b 1limdsinbx=b 1lim u +∞→sinbxe -ax |u 0-⎰+∞→u 0u sinbx lim b 1de -ax=⎰+∞→u 0ax-u sinbx e lim b a dx=-⎰+∞→u 0ax -u 2e lim b a dcosbx =-2u b a lim+∞→cosbxe -ax |u 0+⎰+∞→u 0u 2cosbx lim b a de -ax=2b a -bx cos e ba 0ax -22⎰∞+dx.∴bx cos eb b a 0ax-222⎰∞++dx=2b a ,即bx cos e 0ax -⎰+∞dx=22ba a+. (2)bx sin e 0ax -⎰+∞dx=-⎰+∞→u0u sinbx lim a1de -ax=-a 1lim u +∞→sinbxe -ax |u 0+⎰+∞→u 0ax-u e lim a 1dsinbx=⎰+∞0ax -cosbx e a b dx=22b a a a b +⋅=22ba b+. (3)⎰+∞+02x 1lnx dx=⎰+102x 1lnx dx+⎰+∞+12x 1lnx dx=⎰+102x 1lnx dx+⎰∞+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛12x 11x 1ln d ⎪⎭⎫⎝⎛x 1 =⎰+12x 1lnxdx+⎰+012u 1lnu du=⎰+102x 1lnx dx+⎰+012x1lnx dx=0. (4)令tan θ=t ,则⎰2π)θln(tan d θ=⎰+102t1lntdt=0.4、讨论反常积⎰+∞λxsinbxdx (b ≠0),λ取何值时绝对收敛或条件收敛. 解:不妨设b>0,记I=⎰+∞0λx sinbx dx ,I 1=⎰b10λx sinbx dx ,I 2=⎰+∞b1λx sinbx dx. 对I 1,当λ≤1时,λ0x x sinbx lim+→=bx sinbx bx lim λ-10x +→=⎩⎨⎧=<1λb 1λ0,∴I 1是正常积分. 当λ>1时,x=0是瑕点,λ1-λ0x x sinbxx lim +→=b ∈(0,+∞). ∴当1<λ<2时,I 1绝对收敛;当λ≥2时,I 1发散. 对I 2,当λ≤0时,∵令A n =(2n π+4π)b 1,B n =(2n π+2π)b1, 则A n →+∞,B n →+∞(n →+∞)且 |⎰nn B Aλx sinbx dx|=b λ⎰++2πn π24πn π2λu sinu du ≥b λ⎰+++2πn π24πn π2λu )4πn π2sin(du =22b λλ1)4πn π2()2πn π2(λ-1λ-1-+-+>0. ∴当λ≤0时,I 2发散. 当0<λ≤1时,由狄利克雷判别法知I 2收敛.又|λx sinbx |≥λ2x bx sin =λ2x1+λ2x bx 2sin , 其中⎰+∞b1λ2x bx2sin dx 收敛,但⎰+∞b1λ2x dx 发散,∴当0<λ≤1时,I 2条件收敛. 当λ>1时,∵|λx sinbx|≤λx 1,∴I 2绝对收敛.综上,原积分的收敛性如下表:5、证明:设f 在[0,+∞)上连续,0<a<b. (1)若+∞→x lim f(x)=k, 则⎰+∞x f(bx)-f(ax)dx =[f(0)-k]ln ab; (2)若⎰+∞x f(x)dx 收敛,则⎰+∞0x f(bx)-f(ax)dx =f(0)ln ab. 证:(1)令ax=t ,则⎰Aεx f(ax)dx=⎰aA a εt f(t)dt ,同理,⎰A εx f(bx)dx=⎰bA b εtf(t)dt. ∴⎰Aεx f(bx)-f(ax)dx=⎰aA a εt f(t)dt-⎰bA b εt f(t)dt=⎰b εa εt f(t)dt-⎰bA aA tf(t)dt =⎰b aεu u)f(εdu-⎰b a u f(Au)du=⎰b a u u) f(εdu-⎰b a u f(Au)du=[f(εξ)-f(A η)]⎰b a udu , 其中ξ,η∈(a,b),令ε→0+, A →+∞, 得⎰+∞x f(bx)-f(ax)dx =[f(0)-k]⎰b a u du =[f(0)-k]ln ab.(2)∵⎰+∞0x f(x)dx 收敛,∴对任何ε>0, 有⎰+∞εx f(ax)dx=⎰+∞a εxf(x)dx , ∴⎰+∞x f(bx)-f(ax)dx=⎰+∞a εx f(x)dx-⎰+∞b εx f(x)dx=⎰b εa εx f(x)dx=⎰b εa εx x)f(εdx=f(εξ)⎰b a xdx . 令ε→0+, 则⎰+∞0x f(bx)-f(ax)dx =f(0)⎰b a x dx =f(0)ln ab.6、证明下述命题:(1)设f 为[a,+∞)上的非负连续函数. 若⎰+∞a x f(x )dx 收敛,则⎰+∞a f(x )dx 也收敛;(2)设f 为[a,+∞)上的连续可微函数,且当x →+∞时,f(x)递减地趋于0,则⎰+∞a f(x )dx 收敛的充要条件为⎰+∞'a (x )f x dx 收敛.证:(1)取M=max{|a|,1},则⎰+∞M x f(x )dx 与⎰+∞a x f(x )dx 同收敛. ∵f 为[M,+∞)上的非负连续,∴0≤f(x)≤xf(x),x ∈[M,+∞), ∴⎰+∞M f(x )dx 收敛,同时有⎰+∞a f(x )dx 也收敛. (2)∵f,f ’为[a,+∞)上都连续,∴⎰'Aa(x )f x dx=xf(x)|Aa -⎰Aaf(x )dx.设⎰+∞a f(x )dx 收敛,又当x →+∞时,f(x)递减地趋于0,∴+∞→A lim xf(x)|A a =-af(a). ∴⎰'+∞→AaA (x )f x limdx 存在,即⎰+∞'a (x )f x dx 收敛. 设⎰+∞'a (x )f x dx 收敛,则任给ε>0, 有M>|a|,当A>x>M 时,就有 |⎰'Ax (t)f t dt|<ε,∵f ’≤0, 由积分中值定理知,存在ξ∈[x,A],使得⎰'Ax(t)f t dt=ξ⎰'Ax(t)f dt=ξ[f(A)-f(x)],∴0≤x|f(A)-f(x)|≤ξ|f(A)-f(x)|<ε,令A →+∞,则f(A)→0,∴ |xf(x)|= x|f(x)|≤ε (x>M), ∴+∞→x lim xf(x)=0,∴+∞→A lim xf(x)|A a =-af(a)存在,又⎰'+∞→AaA (x )f x limdx=+∞→A lim xf(x)|Aa -⎰+∞→AaA f(x )limdx 存在,∴⎰+∞→A a A f(x )lim dx 存在,即⎰+∞a f(x )dx 收敛. 得证.。

高等数学下册 第十一章 综合练习题答案

高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。

由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。

数学分析(华中师范版)11-1

数学分析(华中师范版)11-1

当r 时,
mgR 1 2 1 mgR . R x 2 dx mgR R r
r
2
这就是火箭无限远离地球需作的功。

R

2 r mgR mgR 2 2 dx lim R 2 dx mgR . r x x
动能 E W , 才能脱离地球引力,
o x
x
设在很小一段时间dt内,桶中液面降 低的微小量为dx,
则 R dx vr [0, h]. 2 g( h x )
2
流完一桶水所需时间在形式上亦可写成“积分”:
tf
h
0
r
2
R2 dx . 2 g( h x )
这里注意被积函数是 [0, h) 上的无界函数,
u a u b
极限为函数 f ( x ) 在区间(a , b] 上的反常积分(瑕积 分) ,称 a 为瑕点。记作a f ( x )dx .
b
b

b
f ( x )dx lim f ( x )dx a f ( x )dx ulim a u 0 a

b
当极限存在时,称反常积分收敛;当极限不存在 时,称反常积分发散.
c
b
f ( x )dx
f ( x ) dx )
a
u
f ( x )dx lim
vc


b
v
如果 a f ( x )dx 和c f ( x )dx 都收敛,就称反常积分
c
b
a f ( x )dx 收敛;否则,就称发散.
b
(4)如果a,b都是瑕点,则定义
a f ( x )dx a f ( x )dx c

数学分析反常积分 11.3瑕积分的收敛判别法

数学分析反常积分 11.3瑕积分的收敛判别法

q 1
dx
q 1
+∫ x
1
(1 x )
dx
当x → 0时, x p1 (1 x )q 1 ~ x p1 , 时
故当p > 0时, 第一个积分收敛 ;
当x → 1时, x p1 (1 x ) q 1 ~ (1 x ) q 1 , 时
故当q > 0时, 第二个积分收敛 ; 因此原积分在 p > 0, q > 0时收敛 . 故积分定义了一个二元函数B( p, q ) -- --Beta函数 函数
绝对收敛 收敛.
. 收敛 绝对收敛
×

b
a
f ( x )dx 收敛
判别法) 判别法 11 定理 .9 ' (Dirichlet判别法)
设f和g满足下面两个条件 :
1 M > 0, 使得对 0 < η < b a有| ∫a +η f ( x )dx |< M ;
b
2 g 在(a , b]上单调, 且 lim+ g ( x ) = 0,

A
f ( x )dx .
A x x dx = lim ∫ dx = 0. 例如 : V.P. ∫ 2 2 ∞ 1 + x A→ +∞ A 1 + x
瑕积分的Cauchy 主值
设c是f在区间[a , b]中的唯一瑕点, 定义
V.P. ∫ f ( x )dx = lim( ∫
a b c ε
ε →0
11 定理 .5'
∫ ∫
b
a
g ( x )dx 发散 ∫ f ( x )dx发散 .
a
b
b
a
f ( x )dx 收敛 对ε > 0, δ > 0,

数学分析(华东师大)第十一章反常积分,DOC

数学分析(华东师大)第十一章反常积分,DOC

第十一章反常积分§1反常积分概念一问题提出在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”,或是无界函数的“积分”,这便是本章的主题.例1(第二宇宙速度问题)在地球表面垂直发射火箭(图11-1),要使火箭克服地球引力无限远离地球,试问初速度v0至少要多大?设地球半径为R,火箭质量为m,地面上的重力加速度为g.仅供个人学习参考r mgR ∫∫2∫d x= mgR21-1 .Rx2R r当r →+∞时,其极限mgR 就是火箭无限远离地球需作的功.我们很自然地会把这极限写作上限为+∞的“积分”:图11-1+∞mgR2d x= limrmgR2Rx2r →+∞Rd x= mgR.x2最后,由机械能守恒定律可求得初速度v 0至少应使122mv 0= mgR.用g =9.81(m 6s /2),R =6.371×106(m )代入,便得例211-2).2∫ ∫ ∫ §1反常积分概念265从物理学知道,在不计摩擦力的情形下,当桶内水位高度为(h -x)时,水从孔中流出的流速(单位时间内流过单位截面积的流量)为 v=2g(h- x),其中g 为重力加速度. 设在很小一段时间d t 内,桶中液面降低的微小量为d x,它们之间应满足πR 2d x=v πr 2d t, 图11-2由此则有t=Rd 2.上可积.(1)+∞J=f(x )d x,(1′)a+∞ +∞ 并称 f(x)d x 收敛.如果极限(1)不存在,为方便起见,亦称f(x)d xaa发散.类似地,可定义f 在(-∞,b]上的无穷积分:bb∫∫ ∫ ∫∫266第十一章反常积分∫f(x)d x=lim∫f(x )d x.(2)-∞u →-∞u对于f 在(-∞,+∞)上的无穷积分,它用前面两种无穷积分来定义:+∞af(x)d x=-∞-∞+∞ f(x)d x+af(x)d x, (3)其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注1无穷积分(3)的收敛性与收敛时的值,都和实数a 的选取无关.注2由于无穷积分(3)是由(1)、(2)两类无穷积分来定义的,因此,f 在任何有限区间[v,u]ì(-∞,+∞)上,首先必须是可积的.+∞注3af(x)d x 收敛的几何意义是:若f 在[a,+线轴之间那一块向右无限延伸的 图11-31∫) +∞ d x 2 x(ln x)p ; 2) +∞d x-∞1+x 2.解1)由于无穷积分是通过变限定积分的极限来定义的,因此有关定积分的换元积分法和图11-4a∫∫§1反常积分概念267分部积分法一般都可引用到无穷积分中来.对于本例来说,就有∫+∞d x+∞d t2x(ln x)p =∫ln2tp.从例3知道,该无穷积分当p >1时收敛,当p ≤1时发散.2)任取实数a,讨论如下两个无穷积分:∫d x+∞d x -∞1+x2和∫a由于a1+x2.lim∫d x = lim (arctan a-arctan u)u →-∞ u1+x 2v u →-∞=arctan a+π,2注定义[u,b]ì(5)(5′)bf(x)a 而无 b界函数反常积分 f(x)d x 又称为瑕积分.a类似地,可定义瑕点为b 时的瑕积分:bu∫f(x)d x=lim∫f(x)d x.au →b-a其中f 在[a,b)有定义,在点b 的任一左邻域内无界,但在任何[a,u]ì[a,b)1 1 x 268 第十一章反常积分上可积.若f 的瑕点c ∈(a,b),则定义瑕积分b c b∫f(x )d x=∫f(x )d x+∫f(x)d xaacub=lim ∫f(x )d x+lim ∫f(x )d x.(6)u →c-av →c+v其中f 在[a,c)∪(c,b]上有定义,在点c 的任一领域内无界,但在任何[a,u]ì[a,c)和[v,b]ì(c,b]上都可积.当且仅当(6)式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.又若a 、b 两点都是f 的瑕点,而f 在任何[u,v]ì(a,b)上可积,这时定义瑕积分b c b∫f(x)d x=∫f(x)d x+∫f(x )d x(7)其中c ,上可积例6(8)故当0<q <1时,瑕积分(8)收敛,且∫d x ∫d x 1q = lim 0 u →0+u x q=1- q ;∫∫§1反常积分概念269而当q ≥1时,瑕积分(8)发散于+∞.上述结论在图11-4中同样能获得直观的反映. 如果把例3与例6联系起来,考察反常积分 +∞我们定义d xx p (p>0). (9)∫+∞d x 1d x+∞d x 0xp=∫0x p+∫1xp,它当且仅当右边的瑕积分和无穷积分都收敛时才收敛.但由例3与例6的结果可知,这两个反常积分不能同时收敛,故反常积分(9)对任何实数p 都是发散的.习题1.讨论下列无穷积分是否收敛?若收敛,则求其值:+∞2.3.4.举例说明: f(x)d x 收敛且f 在[a,+∞)上连续时,不一定有limax →+∞f(x)=0.+∞5.证明:若af(x)d x 收敛,且存在极限lim x →+∞f(x)=A,则A=0.∫ ∫∫ ∫∫ ∫ ∫ ∫ 270第十一章反常积分+∞6.证明:若f 在[a,+∞)上可导,且a+∞f(x)d x 与 af ′(x )d x 都收敛,则lim x →+∞f(x)=0.§2无穷积分的性质与收敛判别一无穷积分的性质+∞由定义知道,无穷积分auf(x)d x 收敛与否,取决于函数F(u) =f(x)d x 在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷 a积分收敛的柯西准则.+∞定理11.1无穷积分af(x)d x 收敛的充要条件是:任给ε>0,存在G此外,+∞ [k a(1)性质d x 与+∞ b(2)另一充要条件:任给ε>0,存在G ≥a,当u> G 时,总有 +∞f(x)d x<ε.u∫ ∫ ∫ ∫∫ ∫ ∫ §2无穷积分的性质与收敛判别271事实上,这可由+∞u +∞∫f(x)d x=∫f(x)d x+∫f(x)d xaau结合无穷积分的收敛定义而得.+∞性质3若f 在任何有限区间[a,u ]上可积,且有a+∞f(x)d x 亦必收敛,并有a|f(x)|d x 收敛,则+∞+∞f(x)d x≤aa+∞f(x) d x. (3)证由≥a,当u等式(u +∞由于 |f(x)|d x 关于上限u 是单调递增的,因此aa|f(x)|d x 收敛的u 充要条件是 a| f(x)|d x 存在上界.根据这一分析,便立即导出下述比较判别法(请读者自己写出证明):定理11.2(比较法则)设定义在[a,+∞)上的两个函数f 和g 都在任何∫ ∫ ∫ ∫∫∫∫272 第十一章反常积分有限区间[a,u]上可积,且满足f(x)≤g(x),x ∈[a,+∞),+∞+∞ 则当 g(x )d x 收敛时aa+∞ +∞|f(x)|d x 必收敛(或者,当 a|f(x)|d x 发散时,ag(x)d x 必发散).+∞例1讨论sin xd x 的收敛性. 1+x 2+∞解由于sin x1d x π1+x2≤1+x 2,x ∈[0,+∞),以及∫1+x 2=为收敛2(§1sin xd x 为绝对收敛. =c,则有:(i i .则有:.xp a推论3设f 定义于[a,+∞),在任何有限区间[a,u]上可积,且则有: lim x →+∞x pf(x) =λ.+∞(i)当p >1,0≤λ<+∞时, f(x)d x 收敛;a+∞(ii)当p ≤1,0<λ≤+∞时,af(x)d x 发散.+∞∫∫∫1§2无穷积分的性质与收敛判别273例2讨论下列无穷限积分的收敛性:1∫)+∞x αe -xd x;2)1+∞x 2d x. 0x 5+1解本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事.1)由于对任何实数α都有limx →+∞x 2·x αe -x= lim x →+∞ x α+2ex=0,因此根据上述推论3(p =2,λ=0),推知1)对任何实数α都是收敛的.2)由于12limx →+∞x 2·x x 5+1=1,, g(x)limx →+∞又因u 2>u 1 11于是有uξuf(x)g(x)d x ≤g(u 1)·uuf(x)d x+ g(u 2)·∫ f(x)d x11ξξ u=g(u 1)·∫f(x )d x ∫-f(x)d xaa22u∫∫ ∫ ∫∫∫∫ ∫274第十一章反常积分2+ g(u 2)·ξf(x)d x-∫f(x)d xε4M ·2M+ +∞ aaε4M·2M=ε.根据柯西准则,证得af(x)g(x)d x 收敛.+∞定理11.4(阿贝尔(Abel)判别法)若 af(x)d x 收敛,g(x)在[a,+∞)+∞上单调有界,则a f(x)g(x)d x 收敛.这定理同样可用积分第二中值定理来证明,但又可利用狄利克雷判别法更方便地获得证明(留作习题).:+而1 u∫1cos2x 1 其中12xd x=2 2 cos ttd t 满足狄利克雷判别条件,是收敛的,而+∞d x12x是发散的,因此当0<p ≤1时该无穷积分不是绝对收敛的.所以它是条 件收敛的.例4证明下列无穷积分都是条件收敛的:<∫∫ ∫∫ ∫ ∫∫ ∫∫+∞ §2无穷积分的性质与收敛判别275+∞sin x 2d x,1+∞cos x 2d x,1+∞x sin x 4d x.1证前两个无穷积分经换元t =x 2得到+∞+∞sin x 2d x=1 1+∞ +∞ cos x 2d x= 11sin t d t, 2 tcos t d t.2 t由例3已知它们是条件收敛的.对于第三个无穷积分,经换元t =x 2而得∫x sin x 4d x=1+∞sin t 2d t,,甚至是无界的,1.2.+∞若a收敛.3.g(x).(1(4.(5∫)ln (1+x)d x;(6)11+x +∞x md x(n 、m ≥0).1xn0 1+xn5.讨论下列无穷积分为绝对收敛还是条件收敛:(1∫)sin xd x;(2)1x+∞sgn(sin x)d x;1+x2+∞+∞∫ ∫∫∫∫∫276第十一章反常积分(3∫)x cos xd x; (4)100+xln(ln x)sin x d x.eln x6.举例说明∫:+∞+∞ +∞f(x)d x 收敛时aaf 2(x )d x 不一定收敛∫; +∞ f(x)d x 绝对收敛时,af 2(x)d x 也不一定收敛. a+∞ +∞7.证明:若af(x)d x 绝对收敛,且lim x →+∞f(x)=0,则a+∞f 2(x)d x 必定收敛.8.证明:若f 是[a,+∞)上的单调函数,且 af(x)d x 收敛,则lim x →+∞f(x)=0,且f(x)=o 1x,x →+∞.+∞9.10,存在δ>性质b∫f 1(x )a敛,(1)性质b c∫f(x)d x 与∫f(x)d x 同敛态,并有aab c b∫f(x)d x=∫f(x )d x+∫f(x)d x,(2)aacb其中 f(x)d x 为定积分.c+∞+∞∫∫∫∫(x- a)p ∫§3瑕积分的性质与收敛判别277性质3设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可b积.则当af(x) d x收敛时∫,b bf(x)d x也必定收敛,并有ab∫f(x)d x ≤∫f(x) d x. (3)a ab b同样地,当a f(x) d x收敛时,称f(x)d x为绝对收敛.又称收敛而不绝a对收敛的瑕积分是条件收敛的.判别瑕积分绝对收敛的比较法则及其推论如下:定理11.6(比较法则)设定义在(a,b]上的两个函数f与g,瑕点同为x=a,在任何[u,b]ì(a,b]上都可积,且满足则当, bg(x)a((成为则有:(ii)当f(x) ≥1,且p≥1时,af(x) d x发散.推论3设f定义于(a,b],a为其瑕点,且在任何[u,b]ì(a,b]上可积. 如果则有: limx→a +(x- a)p f(x) =λ,∫ ∫x278第十一章反常积分b(i )当0<p <1,0≤λ<+∞时af(x)d x 收敛;b(ii)当p ≥1,0<λ≤+∞时a例1判别下列瑕积分的收敛性:f(x)d x 发散.1∫) ln x d x ;2∫)0 x2x1ln xd x.解本例两个瑕积分的被积函数在各自的积分区间上分别保持同号———ln x在(0,1]上恒为负, x 在(1,2]上恒为正———所以它们的瑕积分收敛与绝xln x2(i)x →0+x1-α· 1+x =1,根据定理11.6推论3,当0<p =1-α<1,即α>0且λ=1时,瑕积分I(α)收1∫ §3瑕积分的性质与收敛判别279敛;当p =1-α≥1,即α≤0且λ=1时,I(α)发散.(ii)再讨论J(α),它是无穷积分.由于α-1lim x →+∞ x 2-α·x1+x= lim x →+∞ x 1+x =1,根据定理11.2推论3,当p =2-α>1,即α<1且λ=1时,J(α)收敛;而当p =2-α≤1,即α≥1且λ=1时,J(α)发散.1.2.3.4.5.x)d x=π62/6.(1∫) =-πln20 2(2∫)θsin θd θ=2πln2. 01-cos θπ1∫2∫ 280 第十一章反常积分总练习题1.证明下列等式:1 p-1 +∞-p (1∫) x d x=∫x d x,p>0;0x+1 1 x+1+∞ p-1 +∞-p (2∫) x d x=∫xd x,0<p<1.0 x+1 0 x+12.证明下列不等式:(1)π<∫d x <π;22 (2)1 20 1-1 e 1-x 4 +∞ < 0 2 e -x d x<1+1. 2e3.计算下列反常积分的值:4.5.(2)若6.(也收敛.(2+∞ a●。

数学分析PPT课件第四版华东师大研制--第11章-反常积分(1)可编辑全文

数学分析PPT课件第四版华东师大研制--第11章-反常积分(1)可编辑全文
u xq
1
1
q
1 u1q
ln u,
,q1 q 1,
故当 0 q 1时,
1 dx 0 xq
lim
u0
1 dx u xq
1; 1q
当 1 q 时,
1 0
dx xq
发散.
前页 后页 返回
同样, 若 f (x) 的原函数为 F (x), 瑕积分的牛顿-莱
布尼茨公式写作
b a
f
(x)
dx
0, G a, u1 ,u2 G, F (u1) F (u2 ) ,

u1 f ( x)dx u2 f ( x)dx u2 f ( x)dx .
a
a
u1
根据反常积分定义,容易导出以下性质1 和性质2.
性质1 若
a
f1
(
x
)
dx

a f2( x)dx
都收敛 ,
k1 ,
当 u1, u2 G 时,
u1 f ( x)dx u2 f ( x)dx u2 f ( x)dx .
a
a
u1
证 设 F(u)
u f ( x)dx , u [a , ), 则
f ( x)dx
a
a
收敛的充要条件是存在极限 lim F (u) .由函数 u
极限的柯西准则,此等价于
前页 后页 返回
a
a
u1
前页 后页 返回
从而 F (u) 是单调递增的 (u [a,)). 由单调递 增函数的收敛判别准则, lim F (u) 存在的充要条
u
件是 F (u) 在 [a, ) 上有界,即 M 0, 使
u [a,), 有
u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 反常积分复习自测题一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题:1、正确地判断下列反常积分的敛散性:(1)1d p ax x +∞⎰(0a >);(2)01d a p x x ⎰(0a >);(3)01d px x +∞⎰(0a >)。

2、正确地判断下列反常积分的敛散性: (1)1d (ln )pax x x +∞⎰(1a >);(2)11d (ln )a p x x x ⎰(1a >);(3)11d (ln )p x x x +∞⎰。

3、探索下列反常积分的敛散性,若收敛,并求其值: (1)201d 1x x +∞+⎰;(2)21d 1x x+∞-∞+⎰;(3)10x ⎰;(4)11x -⎰。

4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶函数的积分特征)(1)若函数()f x 在[,)a +∞上连续,()F x 为()f x 在[,)a +∞上的原函数,记()lim ()x F f x →+∞+∞=,则无穷积分()d af x x +∞⎰收敛⇔()lim ()x F f x →+∞+∞=存在,且()d ()af x x F x a+∞+∞=⎰。

(2)若函数()f x 在(,)-∞+∞上连续,()F x 为()f x 在(,)-∞+∞上的原函数,记()lim ()x F f x →+∞+∞=,()lim ()x F f x →-∞-∞=,则无穷积分()d f x x +∞-∞⎰收敛⇔()lim ()x F f x →+∞+∞=和()lim ()x F f x →-∞-∞=都存在,且()d ()af x x F x a+∞+∞=⎰。

(3)若函数()f x 和()g x 都在[,)a +∞上连续可微,且lim ()()x f x g x →+∞存在,则无穷积分()()d af xg x x +∞'⎰收敛⇔()()d af xg x x +∞'⎰收敛,且()()()d ()()()()d aaf xg x x f x g x f x g x x a +∞+∞+∞''=-⎰⎰,其中()()lim ()()x f g f x g x →+∞+∞+∞=。

(4)若函数()f x 在[,)a +∞上连续,()x t ϕ=在[,)αβ(其中β为有限数或+∞)上连续可导,且严格单调递增,([,))[,)a ϕαβ=+∞,则无穷积分()d af x x +∞⎰收敛⇔积分(())()d f t t t βαϕϕ'⎰收敛,且()d (())()d af x x f t t t βαϕϕ+∞'=⎰⎰。

(5)设函数()f x 在(,)-∞+∞上连续,若()f x 为偶函数,则()d f x x +∞-∞⎰收敛⇔0()d f x x +∞⎰收敛,且 0()d 2()d f x x f x x +∞+∞-∞=⎰⎰;若()f x 为奇函数,则()d f x x +∞-∞⎰收敛⇔0()d f x x +∞⎰收敛,且()d 0f x x +∞-∞=⎰。

提示:注意由换元法可得000()d ,()d ()d ()d ()d ,x tf t t f f x x f t t f t t f t t f +∞=-+∞+∞-∞+∞⎧⎪=--=-=⎨⎪-⎩⎰⎰⎰⎰⎰为偶函数为奇函数。

二、举例说明下面关系不一定成立:1、瑕积分()d b af x x ⎰收敛不一定能推出瑕积分2()d b af x x ⎰;无穷积分()d af x x +∞⎰收敛也不一定能推出无穷积分2()d af x x +∞⎰收敛;注:定积分的乘法性对反常积分不一定成立。

2、无穷积分()d af x x +∞⎰收敛不一定能推出无穷积分()d af x x +∞⎰收敛;注:注意与定积分的绝对值性质的区别。

3、设函数()f x 在[,)a +∞上连续,且()d af x x +∞⎰收敛,则lim ()0x f x →+∞=不一定成立;三、通过下面的问题探索lim ()x f x →+∞的情况:1、设函数()f x 定义在[,)a +∞上,且在任何[,][,)a u a ⊂+∞上可积,()d af x x +∞⎰收敛,若lim ()x f x A →+∞=存在,则lim ()0x f x →+∞=;2、利用1探索:(1)设函数()f x 在[,)a +∞上单调,且()d af x x +∞⎰收敛,则lim ()0x f x →+∞=;(2)设函数()f x 在[,)a +∞上连续可导,且()d af x x +∞⎰与()d af x x +∞'⎰都收敛,则lim ()0x f x →+∞=;3、设函数()f x 在[,)a +∞上连续,且()d af x x +∞⎰收敛,则lim ()0x f x →+∞=⇔()f x 在[,)a +∞上一致连续;4、设函数()f x 在[,)a +∞上连续,且()d af x x +∞⎰收敛,试探索下面的问题:(1)证明:当u a >时,lim()d 0u c uu f x x +→+∞=⎰(其中c 为任意给定的正数),从而 1lim ()d 0a n a nn f x x +++→∞=⎰;提示:注意到无穷积分的定义即可。

(2)利用(1)和积分第一中值公式证明:在[,)a +∞中,存在严格递增的数列{n x }满足:lim n n x →∞=+∞,lim ()0n n f x →∞=;(3)类似于(1)方法证明:若函数()f x 在[,)a +∞上单调递增(减),且()d af x x +∞⎰收敛,则还有lim ()0x xf x →+∞=。

注:注意到第三大题的第2小题(1),(3)表明:1()()f x o x=(x →+∞)。

提示:不妨设()f x 在[,)a +∞上单调递增,注意到下面的积分不等式以及无穷积分的定义即可:当2u a >时,2122()d ()()d u u u uf x x uf u f x x ≤≤⎰⎰。

5、若函数()f x 在[,)a +∞(0a >)上连续可微,且单调递增(减),则()d af x x +∞⎰收敛⇔()d ax f x x +∞'⎰收敛。

提示:利用第三大题的第4小题(3)以及反常积分的分部积分公式()d d ()()()d aaax f x x x f x xf x f x x a+∞+∞+∞+∞'==-⎰⎰⎰。

四、仔细体会并熟练掌握无穷积分和瑕积分的线性性、区间可加性和绝对值性质(注意体会性质的内容、含义以及在反常积分敛散性判别中的作用);理解反常积分绝对收敛和条件收敛的含义;用适当性质解决下面的问题:1、若无穷积分()d af x x +∞⎰收敛,无穷积分()d ag x x +∞⎰发散,则无穷积分()()()d af xg x x +∞±⎰发散;提示:反证法。

2、判断2211d ln x x x x+∞⎛⎫+ ⎪⎝⎭⎰的敛散性;3、利用适当性质说明:在无穷积分()d af x x +∞⎰中,当()f x 同号时,()d af x x +∞⎰收敛等价于与()d af x x +∞⎰收敛(即()d af x x +∞⎰绝对收敛),因此,当()f x 同号时,()d af x x +∞⎰敛散性的判别等价于()d af x x +∞⎰敛散性的判别。

五、仔细体会无穷积分和瑕积分收敛的柯西准则,并用柯西准则解决下面的问题:设函数()f x ,()g x 和()h x 都定义在[,)a +∞上,且它们在任何[,][,)a u a ⊂+∞上可积,若对任意[,)x a ∈+∞,有()()()g x f x h x ≤≤,则(1)当()d a g x x +∞⎰和()d a h x x +∞⎰都收敛时,()d af x x +∞⎰也收敛;(2)当()d ag x x +∞⎰和()d ah x x +∞⎰都收敛,且()d ()d aag x x h x x +∞+∞=⎰⎰时,()d af x x +∞⎰收敛,且()d ()d ()d aaag x x f x x h x x +∞+∞+∞==⎰⎰⎰。

提示:(1)用柯西准则;(2)可直接用定义和极限的迫敛性。

六、仔细体会并熟练掌握无穷积分和瑕积分绝对收敛的各种常用判别方法,熟悉柯西判别法中适当幂函数的两种常见的选择手段(等价量的代换手段、与幂函数变化快慢进行比较的手段);养成在选择判别法之间,先观察反常积分的类型,被积函数是否同号的习惯。

试用绝对收敛的判别法解决下面的问题:判断下列反常积分的敛散性:1、20sin d 1kxx x +∞+⎰,20cos d 1kx x x +∞+⎰,0sin d 1kx x x α+∞+⎰(2α≥),0cos d 1kx x xα+∞+⎰(2α≥); 2、1n x +∞⎰(0m >),1n x +∞⎰(0m >),11)d nxx +∞⎰(0m >),11sin)d n x x α+∞⎰(0α>,0m >); 3、1d xx e x α+∞-⎰,10d xx e x α-⎰,1ln(1)d p x x x +∞+⎰,10ln(1)d px x x +⎰;4、10x ⎰,21x ⎰。

七、仔细体会并熟练掌握无穷积分收敛性的狄利克雷判别法和阿贝尔判别法,理解这两个判别法之间的内在关系(阿贝尔判别法可用狄利克雷判别法及无穷积分的性质导出),熟悉如何选择适当的变换将瑕积分转化为无穷积分。

试解决下面的问题:1、判断下面反常积分的收敛性(在收敛的情况下,如有可能,还要尽可能判断出是绝对收敛,还是条件收敛)(1)1sin d p xx x +∞⎰,1cos d p x x x +∞⎰,1sin()d pmx n xx +∞+⎰1cos()d pmx n x x +∞+⎰,(其中0p >,0m ≠和n 为常数); (2)1sin d x x x +∞⎰,112sin d x x x+∞⎰,21sin d x x +∞⎰,21cos d x x +∞⎰,41sin d x x x +∞⎰; 提示:利用(1)或变量替换后再用(1)。

(3)1011sin d x x x α⎰;提示:作变量替换1t x=化为无穷积分后再用(1)。

2、设函数()f x 在[,)a +∞上单调递减,且lim ()0x f x →+∞=(注意此条件蕴含了()0f x ≥,为什么),则(1)()sin d af x x x +∞⎰与()cos d af x x x +∞⎰都收敛;提示:用狄里克雷判别法。

相关文档
最新文档