实际问题与一元二次方程(第1课时)教案
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
实际问题与一元二次方程-

知识点一 传染繁殖问题 包括三方面的内容:
4、有人说,秋天的落叶是枯槁的,没有任何价值。我却不以为然。“落红不是无情物,化作春泥更护花”。坠落在秋天的它,溶入泥 土成为大树妈妈的养料,孕育着春的希望。我相信,在明年春天的嫩芽里,一定有秋叶淡淡的微笑。 孔子说:“我十五岁时就有志于做学问,三十岁时有所成就,四十岁时内心不再感到迷惑,五十岁就明白上天的意旨,六十岁时能听 取各种见解并加以容纳,七十岁时就能随心所欲,却不会逾越法度。” 比喻:比喻就是“打比方”。即抓住两种不同性质的事物的相似点,用一事物来喻另一事物。 作用:比喻的作用主要是:化平淡为生
解:设平均一轮每个人传染x人,则: (1+x)2=121
解得:x1=10,x2=-12(不符合题意,舍去) 令最初患病的人数为y人,依题意,得:
y(1+10)3=2662 解得:y=2 答:最初有2人患了该病。
知识点二 竞赛、握手、赠送、合同问题
1.一个小组若干人,新年互送贺卡,若全组 共送贺卡72张,则这个小组共多少人?
第一步:审:弄清题意和题目中的已知数、未知数, 用字母表示题目中的一个未知数;
第二步:设:找出能多方位、多角度、最好的表示关 系的量设出未知数;
第三步:找:找出能够表示应用题全部含义的相等关 系;
第四步:列:根据这些相等关系列出需要的代数式 (简称关系式)从而列出方程;
第五步:解:解这个方程,求出未知数的值;
遇和现实境况的观照与反思。 3、段意合并法
22.3实际问题与一元二次方程(第1课时)-教学设计

学生独立思考问题,并发表个人意见。
教师对学生的回答给予适当评价。
教师板书甲种药品年平均下降率的求解过程。
学生独立完成乙种年平均下降率的求解过程并根据计算结果回答问题。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以突破难点的关键是弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系.因此,探究1、2在学生充分独立思考的基础上,进行小组讨论,分析解决问题的过程中逐步深入地体会一元二次方程的应用价值。
活动3:课堂巩固
1.2005年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().
A.100(1+x)2=250
B.100(1+x)+100(1+x)2=250
C.100(1-x)2=250 D.100(1+x)2
教学重点
列一元二次方程解有关传播问题、平均变化率等问题的应用,解决实际问题。
教学难点
发现传播问题、平均变化率问题中的等量关系,正确地建立一元二次方程。
二、教学流程安排
序号
活动流程图
活动内容和目的
1
复习引入
通过列一元一次方程解决实际问题,回忆列方程解实际问题的一般步骤,为类比学习一元二次方程解实际问题做好铺垫。
例题分析:探究1;探究2;探究3
三、归纳小节:
探究2以成本下降为问题背景,讨论平均变化率的问题.这类问题在现实世界中有很多原型,例如经济增长率、人口增长率等.本节中讨论的是两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型,设平均变化率为x,则有下列关系:变化前数量×(1+x)²=变化后数量。
人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案

21.3实际问题与一元二次方程第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题,百分率问题中的数量关系列一元二次方程并求解,熟悉解题解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系;在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情境态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点利用一元二次方程解决传播问题、百分率问题.难点如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题、百分率问题中的数量关系.教学设计活动1 创设情境一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?分析:设这个小组x人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程: .提出问题:列一元二次方程解决实际问题的步骤有哪些?总结:(1)审:认真审题,分清题意,弄清已知量和未知量,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,到底选择何种方式设未知数,要以有利于列出方程为准则;(3)列:就是根据题目中的已知量和未知量之间的关系列出方程;(4)解:就是求出所列方程的解;(5) 就是检验方程的解.首先检验计算是否正确,然后检验每个解是否复合问题的实际意义,再正确取舍;(6)答:就是对实际问题进行回答.提出问题:列一元二次方程解决实际问题的步骤与列一元一次方程解决实际问题的一般步骤有哪些相同点和不同点?活动2 探究新知例1 教材第19页探究2变化率问题.提出问题:(1)如何比较哪种药品成本的年平均下降率较大?(2)本题中应该如何设未知数?如何列方程?(3)讨论:在本题解方程的过程中,方程有两个解应该怎么办?(4)哪种药品成本的年平均下降率较大?哪种药品成本的年平均下降额较大?(5)讨论:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?总结:变化率问题的公式若平均增长(或降低)的百分率为x ,增长(或降低)前的量是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为b x a n=±)1((其中增长取+,降低取-).例2 教材第19页探究1传播问题.提出问题:(1)本题中的已知量未知量分别是什么?(2)本题中我们设直接未知数还是间接未知数?(3)本题中的数量关系是什么?设每轮传染中平均一个人传染x 个人,那么①患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感.②在第二轮传染中传染源是 人,这些人中每一个人有传染了 人,第二轮传染后,共有 人患流感.(4)怎么列方程?(5)方程的解是多少?10和-12都是这个实际问题的解吗?(6)如果按这样的传染速度,三轮传染后有多少人患了流感?(7)请观察式子)1(1x x x +++与[])1(1)1(1x x x x x x x +++++++能不能化简?请在课后写出表示四轮传染、五轮传染后的患病人数的代数式,并猜测n 轮传染后的患病人数.活动3 练习巩固1.参加篮球联赛的每两队之间都进行了两次比赛(双双循环比赛),共要比赛90场,共有多少个队参加了比赛?2.某商场2014年的经营中,一月份的营业额为200万元.一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求平均每月营业额的增长率.3.某种细菌,一个细菌经过两轮繁殖后共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌? 活动4 课堂小结与作业布置课堂小结1. 列一元二次方程解决实际问题的一般步骤是哪些?2.列一元二次方程解决实际问题中,最关键是那一步?检验应该要注意什么?3.变化率问题和传播问题有什么规律?布置作业教材21-22页习题21.3第2—7题.。
人教版九年级数学上册21.3 实际问题与一元二次方程公开课优质教案1

实际问题与一元二次方程第1课时传播类和增长率问题1.掌握利用两轮的传播问题、平均变化率问题建立一元二次方程的数学模型.2.根据两轮的传播的等量关系、两轮的平均变化的等量关系建立一元二次方程的数学模型并运用它解决实际问题.【重点难点】根据平均变化率及两轮的传播的等量关系建立一元二次方程的数学模型并运用它解决实际问题.【新课导入】复习:用一元一次方程解应用题的一般步骤有哪些?那么如何用一元二次方程解决实际问题呢?【课堂探究】一、用一元二次方程解决两轮传播问题1.将传染问题公式化:即有1人开始传染,第一轮传染给x人,第二轮以同样速度传染,两轮过后共有a人被感染.可列方程为: (1+x)2=a .三轮过后有(1+x)3人被感染.2.(2013襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+(1+x)x=64,解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又有448人被传染.二、用一元二次方程解决平均变化率问题3.(2013安徽)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( B )(A)438(1+x)2=389 (B)389(1+x)2=438(C)389(1+2x)=438 (D)438 (1+2x)=3894.将平均变化率问题公式化:设平均变化率为x,经过两个相同的平均变化后,有如下关系,变化前的数量×(1+x)2=变化后的数量.11.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( B )(A)x(x-1)=10 (B) =10(C) x(x+1)=10 (D) =102.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有队参加比赛.( D )(A)12 (B)11 (C) 9 (D)103.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( B )(A)8人(B)9人(C)10人(D)11人4.某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( A )(A)10% (B)19%(C)9.5% (D)20%5.(2013青岛)某企业2010年底缴税40万元, 2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程40(1+x)2=48.4 .6.在一次手拉手活动中,参加活动的学生将自己制作的贺卡向其他成员各赠送一张;全体学生共互赠了1980张贺卡.这次活动共有多少名学生参加?解:设共有x名学生,根据题意可得:x(x-1)=1980x2-x-1980=0(x-45)(x+44)=0x-45=0或 x+44=0x=45或 x=-44(舍去)答:这次活动共有45名学生参加.。
《实际问题与一元二次方程》第一课时传播问题 教案

人教版数学九年级上21.3第一课时教学设计探究1 有一人患了流感,经过两轮传染后共有121人患了流 感,每轮传染中平均一个人传染了几个人?思考:1.本题中有哪些数量关系?2.如何理解“两轮传染”?3.如何利用已知的数量关系选取未知数并列出方程? 设每轮传染中平均一个人传染x 个人,那么患流感的这个人在第一轮传染中传染了______人;第一轮传染后,共有______ 人患了流感;在第二轮传染中,传染源是____人,这些人中每一个人又传染了______人,那么第二轮传染了______人,第二轮传染后,共有______人患流感.4.根据等量关系列方程并求解解:设每轮传染中平均一个人传染了x 个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:1+x+x(1+x)=121 解方程得x1=10, x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人. 5.为什么要舍去一解?6.如果按照这样的传播速度,三轮传染后,有多少人患流题的突破口,从而学会运用列一元二次方程解决实际问题。
根据实际举一反三,引导数学知识解决传染病问题,为运用一元二次方程解决实际问题做铺垫。
让学生通过探究问题,体会运用一元二次方程解决实际问题过程,体会数学思想。
感?注意:1.此类问题是传播问题.2.计算结果要符合问题的实际意义. 学生自主解决问题,老师总结解决传播问题的注意事项。
三、重难点精讲例题:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?解:设每轮感染中平均一台电脑会感染 x 台电脑,则1+x+x(1+x)=100,即(1+x)2=100.解得 x1=9,x2=-11(舍去) .∴ x=9.归纳:解决此类问题的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.传播问题:学生独立完成,再合作交流,教师最后巡视指导,并总结解题注意事项。
人教版九年级数学上21.3《实际问题与一元二次方程》第一课时参考教案(

21.3 实质问题与一元二次方程(1)一、教课目的1.会利用一元二次方程解决流传问题.2.培育剖析问题解决问题的能力,发展应意图识.二、教课要点和难点1.要点:利用一元二次方程解决流传问题.2.难点:依据流传问题列方程.三、教课过程(一)基本训练,稳固旧知1.填空:(1)有一人得了流感,他把流感传染给了10 个人,共有人得流感;第一轮传染后,全部得流感的人每人又把流感传染给了10 个人,经过两轮传染后,共有人得流感 .(2)有一人得了流感,他把流感传染给了x 个人,共有人得流感;第一轮传染后,全部得流感的人每人又把流感传染给了x 个人,经过两轮传染后,共有人得流感 .【(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1) ,先让生自己做,而后师进行解说】(二)创建情境,导入新课师:和一元一次方程同样,利用一元二次方程能够解决实质问题,上节课我们做了一个例题,本节课我们再来看一个例题 .(三)试试指导,解说新课(出示下边的例)例有一人得了流感,两染后,共有121 人得了流感,每染中均匀每个人染了几个人?:大家把个目好好默几遍.(生默):能不看黑板出目的意思?生:⋯⋯ (几名同学):个目怎么?生:每染中均匀一个人染了 x 个人 .(板:解:每染中均匀一个人染了 x 个人):(在黑板的其余地方板:第一后)均匀一个人染了 x 个人,那么第一后,共有多少人得了流感?生: 1+x.(多几名同学回答,而后板:1+x):(在黑板的其余地方板:第二后)那么第二后,共有多少人得了流感?(生思虑一会儿再叫学生)生: 1+x+x(1+x). (多几名同学回答,而后板:1+x+x(1+x) ):下边大家依据目的意思列一列方程.(生列方程,巡):(板:依据意列方程,得)列出的方程是什么?生: 1+x+x(1+x)=121 (生答板: 1+x+x(1+x)=121 ) .:(指方程)是一个一元二次方程,怎么解个方程?大家着解一解 .(生解方程):解出来的果是什么?生: x1=10,x2=-12(生答师板书: x1=10, x2 =-12) .师:(指方程)解这个方程是有讲究的,好多同学用公式法解,发现数字比较大,解起来比较麻烦 .实质上我们能够用直接开平方法来解 .怎么用直接平方法来解?(稍停)师:(指准 1+x+x(1+x)=121 )1+x+x(1+x) 有公因式 1+x,我们把 1+x 提拿出来,获得(1+x)(1+x) (边讲边在其余地方板书:(1+x)(1+x) ),可见方程能够化成 (1+x)2=121(边讲边在其余地方板书: (1+x)2=121),用直接开平方法解这个方程,简单求出x1=10,x2=-12.师:方程中的 x 表示每个人传染的人数,因此 x2不切合题目的意思,=-12要舍去(板书:(不合题意,舍去)) .师:最后还要答 .(板书:答:每轮传染中均匀每个人传染了10 个人)师:下边请大家自己来做一个练习 .(三)尝试练习,回授调理2.达成下边的解题过程:有一个人知道某个信息,经过两轮流传后共有49 人知道这个信息,每轮流传中均匀一个人流传了几个人?解:设每轮流传中均匀一个人流传了x 个人 .依据题意列方程,得.提公因式,得 ()2=.解方程,得 x =,x =(不合题意,舍去) .12答:每轮流传中均匀一个人流传了个人 .3.一个人知道某个信息,设每轮流传中一个人流传了x 个人,填空:(1)经过一轮流传后,共有人知道这个信息;(2)经过两轮流传后,共有人知道这个信息;(3)经过三轮流传后,共有人知道这个信息;(4)请猜想,经过十轮流传后,共有人知道这个信息.(五)概括小结,部署作业师:本节课我们学习了利用一元二次方程解决流传问题.俗语说:一传十,十传百 .这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x) 2=121.假如传了三轮,就成了 (1+x)3;假如传了十轮,就成了(1+x) 10.(作业: P21习题 1(3)(4)、 4, 4 题中 91 改为 81)四、板书设计(略)。
人教版九年级上册数学全册教案21.3 实际问题与一元二次方程

6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.作业布置教材第21-22页习题21.3第2-7题.课堂总结.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际..传播问题解决的关键是传播源的确定和等量关系的建立..若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2)..成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小..利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系..根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3实际问题与一元二次方程(1)
课型:新课课时:1 主备人:林玲
教学目标:
知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述
情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重难点
教学重点:列一元二次方程解有关传播问题的应用题
教学难点:发现传播问题中的等量关系
教学方法:引导发现法
教学过程
一、复习引入
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解应用题都是有哪些步骤?
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.
二、合作探究
【探究1】
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
思考:(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了人;第一轮传染后,共有人患了流感;
在第二轮传染中,传染源是人,这些人中每一个人又传染了人,那么第二轮传染了人,第二轮传染后,共有人患流感.
(4)根据等量关系列方程并求解
解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:
1+x+x(1+x)=121
解方程得
x 1=10, x
2
=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
(5)为什么要舍去一解?
(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?
说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
【探究2】
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
思考:(1)怎样理解下降额和下降率的关系?
(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了元,此时成本为元;两年后,甲种药品下降了元,此时成本为元。
(3)对甲种药品而言根据等量关系列方程并求解、选择根?
解:设甲种药品成本的年平均下降率为x,
则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.
依题意,得5000(1-x)2=3000
解得:x
1≈0.225,x
2
≈1.775(不合题意,舍去)
(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。
设乙种药品成本的平均下降率为y.
则:6000(1-y)2=3600
整理,得:(1-y)2=0.6
解得:y≈0.225
答:两种药品成本的年平均下降率一样大
(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?
三、巩固练习
说明:通过练习加深学生列一元二次方程解应用题的基本思路
四、课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。
最后要检验根是否符合实际意义。
2. 用“传播问题”建立数学模型,并利用它解决一些具体问题.
3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或
降低)n次后的量是b,则有:b
x
a n=
±)
1((常见n=2)
作业:练习册
板书设计:实际问题与一元二次方程(1)
1.归纳
2.实际问题探究
3.小结
4.作业
教学反思:。