《高考数学葵花宝典》

合集下载

有道高中数学冲刺宝典

有道高中数学冲刺宝典

有道高中数学冲刺宝典有道高中数学冲刺宝典第一部分:解题技巧在高中数学的学习过程中,解题技巧是至关重要的。

许多学生在考试中失分的原因往往不是因为不懂得知识点,而是因为不懂得正确的解题方法。

在有道高中数学冲刺宝典中,我们将为大家介绍一些解题技巧,帮助大家在考试中取得更好的成绩。

首先,我们要注重对题目的理解。

数学题目往往有其隐含的信息,只有正确地理解题目的意思,才能有针对性地解决问题。

因此,在做题的时候,一定要认真阅读题目,理解题目所要求的内容,不要草率行事。

其次,我们要培养数学思维。

数学解题不需要死记硬背,而是要培养逻辑思维和问题解决的能力。

通过大量的练习和思考,我们可以提高自己的数学思维能力,对于类似的问题,我们可以灵活运用已学过的知识进行解答。

第二部分:典型题型分析在有道高中数学冲刺宝典中,我们对高中数学常见的典型题型进行了详细的分析和解答。

例如,二次函数、三角函数、平面解析几何等等。

对于每个题型,我们都会给出解题方法和解题思路,帮助学生更好地理解和掌握知识点。

在解答过程中,我们注重培养学生的思考能力。

我们鼓励学生多思考,多尝试不同的方法,帮助他们在解答问题时形成自己的思路。

我们认为,只有通过自己的思考和实践,才能真正掌握数学的奥妙。

第三部分:典型题目解析在有道高中数学冲刺宝典的最后部分,我们收录了大量的典型题目,并进行了详细的解析。

对于每个题目,我们会给出解题思路和解题步骤,帮助学生更好地理解和掌握解题方法。

在解析过程中,我们注重培养学生的思维习惯和分析能力。

我们希望通过解析过程,能够引导学生形成良好的解题习惯,学会从多个角度思考问题,培养自己的思辨能力。

总结:有道高中数学冲刺宝典是一本具有实用价值的数学学习资料,其中包含了丰富的解题技巧、典型题型分析和题目解析。

通过学习和使用该宝典,我们相信每位学生都能够在高中数学中取得更好的成绩。

因此,我们真诚地推荐给每位正在备考高中数学的同学,希望能帮助他们更好地掌握数学知识,取得优异的成绩。

高等代数葵花宝典

高等代数葵花宝典

例 1.7. 设 A 是 n 阶正定矩阵,求证 |A| ≤ a11a22 · · · ann,等号成立当且仅当 A 是 对角矩阵。
习题课上多了,自己也有一些体会。 讲课跟做题是不一样的,你必须脑子里时刻 清楚自己在讲什么,接下来要讲什么,然后把它们用平缓的节奏一遍讲正确。 你讲的 语气速度快了,或者思维有了跳跃,学生一下跟不上,那么你后面的内容他们听起 来都很茫然。 当我一时不知道说什么好的时候,我会面色如常地擦擦黑板,换换粉 笔,整理一下自己的思路,绝不轻易开口。 因为如果你不小心说错了话,那比没说要 糟糕一百倍:接下来你要用十句话来挽救你的错误,学生很可能就被绕晕了。 即使是 “嗯”、“啊”、“那么”这些口头禅,也会暴露你的思路的紊乱。高深莫测永远是 Hold 局面的不二法宝。 我曾经开玩笑地给学生说,我讲课有一个优点,就是从来没有口头 禅。 结果大家都笑了。 我不解,然后大家异口同声的告诉我:老师,你讲课有一个口 头禅,就是“很显然”(囧)。希望我在这个文档里没有再犯这个错误 :P。
证明. 首先做合同变换把 A 化成标准形
( A ∼ Er
0
) 0, 0
这时 B 仍然是半正定的(虽然 B 也发生了变化),所以不妨从一开始就假设 A 就是如
上的标准形,并设
( B = B11
B21
) B12 , B22
B12 = B2′ 1,
我们要在保持 A 的形状的前提下把 B 化成标准形。
设正交矩阵 Q 使得
目录
第零章 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
番外话 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 将打洞进行到底 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Jordan 标准形总结 . . . . . . . . . . . . . . . . . . . . . . . . 7 秩不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 交结数:刻画相似程度的不变量 . . . . . . . . . . . . . . . . 16 同时上三角化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 覆盖定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 有理标准形和交换的矩阵 . . . . . . . . . . . . . . . . . . . . 25 解题的艺术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

高考数学葵花宝典

高考数学葵花宝典

高考数学葵花宝典1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==.2.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=3.()()card AB cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.5.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.②函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=. 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂mn a =(0,,a m n N *>∈,且1n >).1m n m na a -=(0,,a m n N *>∈,且1n >).9.log (0,1,0)ba Nb a N a a N =⇔=>≠>.10.对数的换底公式 log log log m am N N a=.推论 loglog mn a anb b m=. 11.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++). 12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式 1()2n nn a a s +=1(1)2n n na d -=+211()22d n a d n =+-.13.等比数列的通项公式1*11()n n n a a a qq n N q-==⋅∈; 其前n 项的和公式11(1),11,1n n a q q s qna q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩. 14.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),11(),1111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 15.分期付款(按揭贷款) 每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).16.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.18.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan(),tan tan tan()(1tan tan )1tan tan αβαβαβαβαβαβ±±=±=±.,(1tan )(1tan )24A B k kZ A B ππ+=+∈⇔++= A+B+C=tanA+tanB+tanC=tanA tanB tanC π⇔sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=). 19.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-(记住降幂公式).22tan tan 21tan ααα=-.20.三角函数的周期公式 函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.21.正弦定理 2sin sin sin a b cR A B C ===.22.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-. 26.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b⇔b =λa 12210x y x y ⇔-=.a⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.27.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+).28.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.29.点的平移公式 ''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k ).30.常用不等式: (1),a b R∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R+∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)b a b a b a +≤+≤- 31.极值定理 已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s .32.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.33.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.35.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩36.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).37.直线的四种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)一般式 0Ax By C ++=(其中A 、B 不同时为0).38.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222A B C ll A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 39.夹角公式 2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) 12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.40.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).41. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).42.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩(了解). 43.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x c a e PF -=. 44.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-. 45.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px=.47.直线与圆锥曲线相交的弦长公式AB =1212|||AB x x y y ==-=-(弦端点A),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,注意0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 48.曲线的两类对称问题:曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.50.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb . 51.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++,则四点P 、A 、B 、C 是共面⇔1x y z ++=;P 是ABC ∆的重心13x y z ⇔===。

高考数学解题36计经典版

高考数学解题36计经典版
高考数学解题 36 计完整版
第1计
芝麻开门
点到成功
●计名释义 七品芝麻官,说的是这个官很小,就是芝麻那么小的一点. 《阿里巴巴》用“芝麻开门”,讲的是“以 小见大”. 就是那点芝麻,竟把那个庞然大门给“点”开了. 数学中,以点成线、以点带面、两线交点、三线共点、还有顶点、焦点、极限点等等,这些足以说明“点” 的重要性. 因此,以点破题,点到成功就成了自然之中、情理之中的事了. ●典例示范 [例题] ( 2006 年鄂卷第 15 题)将杨辉三角中的每一个数 C n 都 换成分数
一分为二进行依次列项时,我们总是“取右舍左”,而舍去的各项(虚线所串)所成数列的极限是 0. 因此得到 lim an 2 这就是本题第 2 空的答案. n
1
[点评] 解题的关键是“以点破门”,这里的点是一个具体的数 ,采用的方法是以点串线——三角 形中的实线,实线上端折线所对的那个数
1 就是问题的答案. 2
1 2
[法 2] 第二问实质上是求莱布尼茨三角形中从第三行起每一行的倒数的和,即
an
1 1 1 1 1 根据第一问所推出的结论只需在原式基础上增加 0 1 2 n 3 n2 3C 2 4C 3 5C 4 nC n 1 (n 1)C n
一项
1 1 , 则由每一行中的任一数都等于其 “脚下” 两数的和, 结合给出的数表可逐次向上求和为 , n 1 2 (n 1)C n
x2 y2 1 的长轴 AB 分成 8 份,过每个分点作 x 25 16
轴的垂线交椭圆的上半部分于 P1,P2,…,P7 七个点,F 是椭圆的一 个焦点,则|P1F|+|P2F|+……+|P7F|=_______. 2.如图所示,直三棱柱 ABC—A1B1C1 中,P,Q 分别是侧棱 AA1, CC1 上的点, 且 A1P=CQ, 则四棱锥 B1—A1PQC1 的体积与多面体 ABC—PB1Q 的体积比值为 . ●参考解答 1.找“点”——椭圆的另一个焦点 F2. 连接 P1F2 、P2F2 、…、P7F2,由椭圆的定义 FP5+P5 F2 = 2a =10 如此类推 FP1+P1F2 = FP2 + P2F2 = … =FP7 + P7F2 = 7×10 = 70 由椭圆的对称性可知,本题的答案是 70 的一半即 35. 2.找“点”——动点 P、Q 的极限点. 如图所示,令 A1P = CQ = 0. 即动点 P 与 A1 重合,动点 Q 与 C 重合. 则多面体蜕变为四棱锥 C—AA1B1B,四棱锥蜕化为三棱 显然 VC — A 1B 1C 1

31、积分不等式葵花宝典(第3.0版本)-46页 文字版

31、积分不等式葵花宝典(第3.0版本)-46页 文字版

赛 : aZ 1 ; 公 八 一 考 研 =
baZ
b
f 2 (x) g2 (y)
学 竞 赛 ; 1.18 Carleman 不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
八 一 考 研 公 众 1.19 Carlson 不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
学 竞 赛 ; 1.16 opial 不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
一 考 研 数 公 众 号 1.17 Hardy 不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
; 八 一 考 1.4 积分中值定理法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
数 学 竞 赛 公 众 号 : 1.5 微分中值定理法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
公众众号号: 八: 八一一考考研研数数学学竞竞 1

高考数学必看题型汇总_0

高考数学必看题型汇总_0

高考数学必看题型2018汇总高考数学必看题型2018汇总高考数学可以说是高中众多科目中最难的一大科目,很多同学提起数学就会头疼,下文给大家整理了高考数学必看题型2018汇总,掌握高考动态,了解高考数学题型,让高考数学不再是难题!高考数学必看题型2018一、三角函数注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n 的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意零散的的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。

海南省五指山中学2025届高考数学必刷试卷含解析

海南省五指山中学2025届高考数学必刷试卷含解析

海南省五指山中学2025届高考数学必刷试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭, 则()1E ξ= D .am bm >是a b >的充分不必要条件2.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( )A .49B .94C .23D .323.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .4.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3%5.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .不充分不必要6.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .47.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=<D .{}01A B x x ⋂=<<8.我们熟悉的卡通形象“哆啦A 梦”2.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米D .600米9.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( ) A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦ 10.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知4cos sin 3b B C c =,则B =( )A .6π或56πB .4πC .3π D .6π或3π 11.已知n S 是等差数列{}n a 的前n 项和,1252a a +=,234+=a a ,则10S =( ) A .85B .852C .35D .35212.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题: ①1EF B C ⊥;② 直线FG 与直线1A D 所成角为60︒;③ 过E ,F ,G 三点的平面截该正方体所得的截面为六边形; ④ 三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

2013年高考数学宝典(高一到高三所有知识点总结大全)

2013年高考数学宝典(高一到高三所有知识点总结大全)

2013年高考数学宝典(高一到高三所有知识点总结大全)祝你成功1、高一数学必修1123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩2\函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.常见函数的图像…………………………………………………………1-72.常用的放缩公式…………………………………………………………8-93.恰当运用放缩法,巧证导数不等式…………………………10-124.对数平均值不等式链的证明与应用…………………………13-275.活跃在各类考试中的对数平均不等式………………………28-316.均值不等式几何解释的探究 (32)7.高三数学一轮复习感悟总结及二轮复习策略……………33-401/2函数极值点函数极值点函数极值点函数极值点过定点函数极值点函数极值点函数极值点函数极值点2/33/4函数表达式图像函数表达式图像4/55/6函数极值点、6/77/8函数过定点函数极值点函数极值点过定点函数极值点函数极值点8/9函数过定点函数极值点函数极值点过定点函数极值点常用的放缩公式对数放缩1.放缩成一次函数2.放缩成双撇函数3.放缩成二次函数4.放缩成反比例函数指数放缩1.放缩成一次函数2.放缩成反比例函数3.放缩成二次函数指对数放缩三角函数放缩以直线为切线的函数对数平均值不等式链9/10裂项放缩分式放缩姐妹不等式,即;;记忆口诀:“小者小,大者大”;解释:看字母,小,则不等式的符号是小于号,反之大于号。

对数平均值不等式链高三数学一轮复习感悟总结及二轮复习策略巨野一中高三数学组2017-11-23一轮复习感悟总结为迎接2019年高考,我们的数学一轮复习已经进行大半,回头看看我们数学组做过的工作有经验也有不足,细细回味一下,主要从以下几方面着手展开工作:一、引导学生回归课本,注重基础,重视预习。

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。

回归课本,自已先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。

复习课的容量大、内容多、时间紧。

要提高复习效率,必须使自己的思维与老师的思维同步。

而预习则是达到这一目的的重要途径。

没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。

预习还可以培养自己的自学能力。

二、努力提高课堂听课效率,鼓励学生勤动手,多动脑。

高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。

现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

此外还要特别注意老师讲课中的提示。

作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

例习题的解答过程留在课后去完成,每记的地方留点空余的地方,以备自已的感悟。

三、以“错”纠错,查漏补缺这里说的“错”,是指把平时做作业中的错误收集起来。

高三复习,各类试题要做几十套,甚至上百套。

如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。

在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

查漏补缺的过程就是反思的过程。

除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。

每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:1、找不到解题着手点。

2、概念不清、似懂非懂。

3、概念或原理的应用有问题。

4、知识点之间的迁移和综合有问题。

5、情景设计看不懂。

6、不熟练,时间不够。

7、粗心,或算错。

以上方法经过一个阶段自查,建立一份个人补差档案。

通过边查边改,重复犯的错误一定会越来越少。

同时,随着自我认识的不断完善,也有利于考试时增强自信心,消除紧张情绪。

四、做好每一章知识的系统总结1、做好每一天的复习。

上完课的当天,必须做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。

然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

我们可以简记为“一分钟的回忆法”。

2、做好单元复习。

学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

3、做好单元小结。

单元小结内容应包括以下部分。

(1)本单元(章)的知识网络;(2)本章的基本思想与方法(应以典型例题形式将其表达出来);(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

五、适量训练是学好数学的保证学好数学要做大量的题,但反过来做了大量的题,数学不一定好,“不要以做题多少论英雄”,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。

1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题;2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。

3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。

4、尽管复习时间紧张,但我们仍然要注意回归课本。

回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

5、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。

学会提出问题,提出问题往往比解决问题更难,而且也更重要。

六、养成良好的解题习惯如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学)自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。

部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。

这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。

这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。

“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。

可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。

必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。

七、分析试卷:将存在问题分类每次考试结束试卷发下来,要认真分析得失,总结经验教训。

特别是将试卷中出现的错误进行分类,可如下分类:第一类问题———遗憾之错。

就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。

出现这类问题是考试后最后悔的事情。

消除遗憾要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。

“计算错误”,是否由于草稿纸用得太乱等。

建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。

“抄写之错”,可以用检查程序予以解决。

“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。

第二类问题———似非之错。

记忆的不准确,理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。

弄懂似非“似是而非”是自己记忆不牢、理解不深、思路不清、运用不活的内容。

这表明你的数学基础不牢固,一定要突出重点,夯实基础。

你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。

第三类问题———无为之错。

由于不会,因而答错了或猜的,或者根本没有答。

这是无思路、不理解,更谈不上应用的问题。

力争有为在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。

在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。

八、以考学考,提高应试技能(一)“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。

这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。

就是先做简单题,再做综合题。

应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。

对后者,不要惊慌失措。

应想到试题偏难对所有考生也难。

相关文档
最新文档