DC-DC变换器的基本分类
DC-DC变换器讲解学习

输入输出关系:
图3-6 Sepic斩波电路和Zeta斩波电路
U otto ofnf ETt otn onE1 E (2-49)
3-25
2.1.5 Sepic斩波电路和Zeta斩波电路
Zeta斩波电路原理
V处于通态期间,电源E经开关
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1的能量转移至C1,
电压源 电压源的变换
o
t
b)
图3-4 升降压斩波电路及其波形
a)电路图
b)波形
3-20
2.1.4升降压斩波电路和Cuk斩波电路
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
数量关系
T
0 uL dt 0
(2-39)
V处于通态
V处于断态
uL = E
EtonUotoff
uL = - uo
(2-40)
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (2-50)
相同的输入输出关系。Sepic电路的电源电流和负载电流均
连续,Zeta电路的输入、输出电流均是断续的。
两种电路输出电压为正极性的。
3-26
t1 E
I 20
t2
E
t
O
EM
t
c) 电流断续时的波形
图3-1 降压斩波电路得原理图及波形
3-4
2.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uoton t otnof
DCDC直流变换器

第一章绪论本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。
1.1双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。
相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。
所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2双向直流变换器的研究背景在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。
之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。
1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。
1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳大利亚FelixA.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。
第2章 基本DC-DC变换器

以上讨论了buck型 变换器的构建,那 么如何实现升压型 (boost)的电压变 换和升流型(boost )的电流变换呢?
2.1.2 boost型 DC-DC变换器的基本结构
L VT VD C + VD L buck型电压变 从图3-2c 所示的 换器电路出发,便可以导出 io boost型电流变换器电路 VT C
+
RL
VT
Ui
UO Ii -
ui
VT
+ C
VT
RL
IO
RL
-
uo ii
uo
Ui
a)
io
Ii
b)
a)
UO
IO
2.1.1 buck型 DC-DC变换器的基本结构
为抑制输出电流脉动,可在图3-1b所示的基本原理 电路中加入输出滤波元件(如:电感L)如图3-2b 所示
L
+ UO Ii
ui
VT
VT
+ C
RL
学习指导
建议重点学习以下主要内容 ⑴ DC-DC变换器基本电路构成的基本思路与换流分析 ⑵ 开关变换器中电感、电容元件的基本特性——伏秒平衡 特性(电感元件)、 安秒平衡特性(电容元件),是定量 分析开关变换器的基础 (学会应用该特性进行定量分析) ⑶ 电流连续条件下的DC-DC变换器基本特性分析,这是 DC-DC变换器性能分析和参数设计的基础,主要包括:稳 态增益、电感电流及电容电压脉动量、功率器件中的电压 及电流关系等
c)
2.1.2 boost型 DC-DC变换器的基本结构
若考虑变换器输入、输出能量的不变性 (忽略电路及元件的损耗),则buck型电 压变换器在完成降压变换的同时也完成了 升流(boost)变换。同理buck型电流变换 器在完成降流变换的同时也完成了升压( boost)变换。 boost型电压变换和buck型电流变换以及 boost型电流变换和buck型电压变换存在功 能上的对偶性。若已知某种升(降)压电 压变换器电路则相应的降(升)流电流变 换器电路可以利用对偶原理求出
六种基本DCDC变换器拓扑结构总结

六种基本DCDC变换器拓扑结构总结DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电子设备。
根据其拓扑结构,可以将DC-DC变换器分为六种基本拓扑结构。
下面将对这六种拓扑结构进行总结。
1. 升压型拓扑结构(Boost Converter):升压型拓扑结构是将输入电压提升到更高电压的一种拓扑结构。
其基本结构由一个电感、一个开关管、一个二极管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过二极管和输出滤波电容供给负载。
2. Buck拓扑结构(降压型拓扑结构):Buck拓扑结构是将输入电压降低到更低电压的一种拓扑结构。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
3. Buck-Boost拓扑结构(降升压型拓扑结构):Buck-Boost拓扑结构可以实现输入电压的增益和降低。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
该拓扑结构可以实现输入电压大于、等于或小于输出电压的转换。
4. 反激型拓扑结构(Flyback Converter):反激型拓扑结构是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由一个变压器、一个开关管和一个输出滤波电容组成。
工作原理为开关管导通时,电能储存在变压器中;开关管关闭时,变压器释放储存的能量,将电流经过输出滤波电容供给负载。
5. 单边反激型拓扑结构(Half-Bridge Converter):单边反激型拓扑结构也是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由两个开关管、一对二极管和一个输出滤波电容组成。
工作原理为开关管交替导通和关闭,将输入直流电压分别连接到变压器的两个输入端,以实现电压的转换。
双向DCDC变换器设计

双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。
这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。
本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。
一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。
升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。
这两个变换器可以通过一个可调节的开关来实现输出电压的控制。
在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。
二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。
2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。
3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。
4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。
三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。
通过合理选择开关元件和功率传输电路,可以提高变换器的效率。
2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。
降低电路和控制系统的响应时间可以提高变换器的动态性能。
3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。
在设计过程中应考虑噪声抑制和滤波技术。
4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。
在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。
针对不同的应用需求,可能需要做出不同的设计决策。
dc-dc变换器

dc-dc变换器DC-DC变换器概述DC-DC变换器是一种用于将直流电压转换为不同电压级别的电子设备。
它们在各种应用中被广泛使用,例如电力电子系统、通信设备、汽车电子和工业控制等领域。
DC-DC变换器的主要功能是将输入电压转换为所需的输出电压,并为负载提供恒定的电源。
工作原理DC-DC变换器的工作原理基于电感和电容的特性。
它通常由开关器件(如晶体管或MOSFET)、电感、电容和控制电路组成。
当开关器件关闭时,电感储存了电能,并将其传输到输出电路。
当开关器件打开时,电容通过输出电路释放储存的电能,从而为负载提供所需的电源。
类型DC-DC变换器有多种类型,根据其拓扑结构可以分为多种类型,包括升压变换器、降压变换器、升降压变换器和隔离型变换器等。
每种类型都有其适用的应用场景。
升压变换器升压变换器将输入电压转换为更高的输出电压。
它通常用于需要提供高电压的应用,例如太阳能和风能系统。
降压变换器降压变换器将输入电压转换为更低的输出电压。
它通常用于需要提供低电压的应用,如便携式电子设备和电动车辆。
升降压变换器升降压变换器可以在输入和输出之间进行电压转换。
它具有较强的适应性,适用于输入输出电压波动较大的应用,如太阳能系统。
隔离型变换器隔离型变换器通过磁耦合实现输入和输出之间的电气隔离。
它主要用于需要提供电气隔离的敏感应用,如医疗设备和工业控制系统。
效能和特性DC-DC变换器的效能和特性对于其性能至关重要。
以下是一些常见的效能和特性指标:1. 效率:变换器的效率是指输出功率与输入功率之比。
高效的变换器可以提高系统的能量利用率。
2. 转换速度:变换器的转换速度是指输出电压从一个电平转换到另一个电平所需的时间。
快速的转换速度可以减少能量损耗和电压波动。
3. 稳定性:变换器的稳定性是指在输入电压和负载变化时,输出电压的稳定性。
稳定的输出电压可以保证负载的正常运行。
4. 输入和输出电压范围:变换器应具有足够的输入和输出电压范围以适应各种应用场景。
DCDC变换器的基本手段和分类

开关变换器和开关电源电源有如人体的心脏,是所有电设备的动力。
标志电源特性的参数有功率、电压、频率、噪声及带负载时参数的变化等;在同一参数要求下,又有体积、重量、形态、效率、可靠性等指标。
在有些情况下,一般电力要经过转换才能符合使用的需要。
例如,交流转换成直流,高电压变成低电压等。
按电力电子的习惯称谓,AC-DC(理解成AC转换成DC,其中AC表示交流电,DC表示直流电)称为整流(包括整流及离线式变换),DC-AC称为逆变,AC-AC称为交流-交流直接变频(同时也可以是变压),DC-DC称为直流-直流变换。
为达到转换目的,手段是多样的。
20世纪60年代前,研发了半导体器件,并以次器件为主实现这些转换。
电力电子学科从此形成并有了近30年的迅速发展。
所以,广义地说,凡半导体功率器件作为开关,将一种电源形态转变成为另一形态的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称开关电源(Switching Power Supply)。
开关电源主要组成部分是DC-DC变换器,因为它是转换的核心,涉及频率变换。
目前DC-DC变换中所用的频率提高最快,它在提高频率中碰到的开关过程、损失机制,为提高效率而采用的方法,也可作为其他转换方法参考。
常见到离线式开关变换器(Off-line Switching Converter)名称,即AC-DC变换,也常称开关整流器;它不仅包含整流,而且整流后又做了DC-DC变换。
所谓离线并不是变换器与市电线路无关的意思,只是变换器中因有高频变压器隔离,使输出的直流与市电隔离,所以称离线式开关变换器。
稳压电源的分类及基本知识开关型交流稳压电源它应用于高频脉宽调制技术,与一般开关电源的区别是它的输出量必须是与输入侧同上频、同相的交流电压。
它的输出电压波型有准方波、梯型波、正弦波等,市场上的不间断电源(UPS)抽掉其中的蓄电源和充电器,就是一台开关型交流稳压电源的稳压性好,控制功能强,易于实现智能化,是非常具有前途的交流稳压电源。
DC-DC Converter (直流变换器)资料

Ui
D
L
iL iO
R
Uo C
L
S
导通 Ui
C
电感电流:
连续 (CCM-Continuous Current Mode)
临界 断续(DCM-Discontiuous Current Mode)
S 阻断
电压纹波、谐波、内阻 ……
L
iL 0
C
iL 0
C
R Uo
R
Uo
R Uo
1 电流的不同状态
★ 电流连续状态:
uL iC
S1
S1
T
S2
t
S1 S2
S2
★ 电流临界状态:
I LM
1 L
tON 0
uLdt
1 L
(U i
Uo )tON
DTUi (1 D) L
临界电流平均值:
I LC
1 2
I
LM
UiT D(1 D) 2L
4I LCM D(1 D)
I LCM
TUi 8L
Ui
UO
ton
toff
t
DT
D=0.1
D=0.5
D=0.9
★ 电流断续状态:
uL Ui -UO
(1-D)T
t
DT
1T
-UO
2T
(Ui Uo )DT 1TUo Uo D Ui D 1
D 1 1 Uo
续流时间=?
Ui
iS ii S
D
L
iL iO
R
Uo C
Io
1 2
I LM
(D
1 )T
/T
Uo 2L
1T
(