高三第一轮复习《函数》测试题
织金二中高三数学第一轮复习测试题 函数、基本初等函数

织金二中高三数学第一轮复习测试题(二)测试内容:函数、基本初等函数班级:高三( )班 姓名:___________ 成绩:___________一、选择题(共12个小题,每小题5分,满分60分) 1.函数y =1ln (x +1)+9-x 2的定义域为( )A .[-3,3]B .(-1,3]C .(-1,0)∪(0,3]D .(0,3] 2.若f (x )=)则f (2 012)=( )A .1B .43 C. 2 D. 53 3.函数y =16-3x 的值域是( ) A .[0,+∞) B .[0,4]C .[0,4)D .(0,4)4.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x5.已知定义在R 上的函数f (x )满足:f (x )=f (-x -6),且当x ≥-3时,f (x )=4x +1-2.若存在k ∈Z ,使方程f (x )=0的实根x 0∈(k -1,k ),则k 的取值集合是( )A .{-5,-1}B .{-3,0}C .{-5,0}D .{-4,0}6.已知a =⎝ ⎛⎭⎪⎫12-1.1,b =20.6,c =2log 52,则a 、b 、c 的大小关系为( )A .b <a <cB .c <a <bC .c <b <aD .b <c <a 7.函数y =log 12(x 2-kx +3)在[1,2]上的值恒为正数,则k 的取值范围是( )A .22<k <2 3B .22<k <72C .3<k <72 D .3<k <2 38.幂函数的图象过点⎝ ⎛⎭⎪⎫2,14,则它的单调增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0) 9.二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a +1c +c +1a 的最小值为( )A .2+2 2B .2+2C .4D .2 10.函数y =5x 与函数y =-15x 的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y =x 对称 11.函数y =lg|x +1|x +1的图象大致是( )12.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1 二、填空题(共4个小题,每小题5分,满分20分)13.已知f (2x +1)=3x -2,且f (a )=4,则a 的值是________. 14.函数f (x )=x 2-9log 2(x -1)的定义域为________.15.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.16.已知函数f (x )为奇函数,函数f (x +1)为偶函数,f (1)=1,则f (3)=________.三、解答题(共6个题,满分70分) 17.(10分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.(1)求函数f (x )的解析式;(2)求函数y =f (x 2-2)的值域.18.(12分)若函数y =a ·2x -1-a2x -1为奇函数.(1) 求函数的定义域; (2) 求a 的值.19.(12分)已知函数f (x )=log 12(a 2-3a +3)x .(1)判断函数的奇偶性; (2)若y =f (x )在(-∞,+∞)上为减函数,求a 的取值范围. 20.(12分)已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;21.(12分) 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x>0,0 x =0,x 2+mx x<0,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.22.(12分) 已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f (x )在[-π,π]上的单调性;(2)设函数g (x )=ln(mx +1)+1-x1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈⎣⎢⎡⎦⎥⎤0,π2,使得g (x 1)≥f (x 2)成立,求m 的取值范围.。
高三数学一轮复习函数测试题

高三数学一轮复习函数测试题姓名_________ 班级_________ 分数_________1.2sin lg ln y x y x y x y =+===下列函数是偶函数的是( )A. B. C. D. ()()()()12.lg(1)1,11,1,11,(,)f x x x++--∞-+∞-+∞-∞+∞函数()=的定义域是( )A. B. C. D.2443.log 3.6,log 3.2,log 3.6,a b c a b c a c b b a c c a b ===>>>>>>>>已知则( )A. B. C. D.134.y x =函数 )5.已知函数22)(m mx x x f --=,则)(x f ( )A .有一个零点B .有两个零点C .有一个或两个零点D .无零点}{(]136.=124,log 1110,,2(,2)0,233xR x B x x ⎧⎫⎪⎪<<=≤⎨⎬⎪⎪⎩⎭⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭已知集合A ,则A (C B)=( )A. B. C. D.10020000003,07..()3,log ,0808808x x f x f x x x x x x x x x x +⎧≤>⎨>⎩><><<<<<已知函数是()=若则的取值范围是( )A. B.或 C.0 D.或08.()431111130444224x f x e x =+--在下列区间中,函数的零点所在的区间为( )A.(,0)B.(,)C.(,)D.(,)9.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A ),3()1,3(+∞⋃-B ),2()1,3(+∞⋃-C ),3()1,1(+∞⋃-D )3,1()3,(⋃--∞10.已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f += A124 B 112 C 18 D 38二、填空题(本大题共4小题,每小题5分,共20分).211.ln(2)________y x x =--的单调递增区间为12、设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = .213.450,(),()(),,x a a f x a m n f m f n m n --==>已知正数满足函数若实数,满足则的大小关系为_______2114.log 0,______3a a a a+>+若则的取值范围是三、解答题:本大题共2小题,共30分.解答应写出文字说明,证明过程或演算步骤. 15. 已知函数)12lg()(2++=ax ax x f 的定义域为R ,求a 的取值范围。
最新高三第一轮复习基本初等函数资料

第二章基本初等函数(1)(基础训练)测试题 1.下列函数与x y =有相同图象的一个函数是( ) A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = 2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a xy x +=-A .1B .2C .3D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A.x 轴 B.y 轴 C.直线y x = D.原点中心对称 4.已知13x x -+=,则3322x x -+值为( )A .B .C .D . -5.函数y =的定义域是( )A .[1,)+∞ B.2(,)3+∞ C.2[,1]3 D.2(,1]36.三个数60.70.70.76log 6,,的大小关系为( )A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<< 7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3x e D .34x e + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。
5.方程33131=++-x x的解是_____________。
6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =+的奇偶性 。
函数测试题(含答案)

高三第一轮复习测试题(2)姓名: 座号: 得分:一、选择题1、若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N =( ) A .{3} B .{0} C .{0,2} D .{0,3}2、已知全集I ={0,1,2},满足C I (A∪B)={2}的A 、B 共有的组数为( ) A .5 B .7 C .9 D .113、设集合∈<≤=x x x A 且30{N }的真子集...的个数是( )A .16B .8;C .7D .4 4、含有三个实数的集合可表示为{a ,a b ,1},也可表示为{a 2, a +b ,0},则a 2006+b 2006 的值为( )A .0B .1C .-1D .±1 5、函数2()lg(31)f x x ++的定义域是( )A .1(,)3-+∞ B .1(,1)3- C .11(,)33- D .1(,)3-∞-6、函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2 B .3 C .4 D .57、函数y=f(x) 的图象过原点且它的导函数y=f ′(x)的图象是如图所示的一条直线,y=f(x)的图象的顶点在 ( )A .第I 象限B .第II 象限C .第Ⅲ象限D .第IV 象限 8、函数y =)176(log 221+-x x 的值域是( )A .RB .[8,+)∞C .(-∞,-3]D .[-3,+∞]9、函数y =log a x 在[)+∞∈,2x 上总有|y |>1,则a 的取值范围是( )A .210<<a 或21<<a B .121<<a 或21<<a C . 21<<a D .210<<a 或2>a 10、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的增函数,那么 a 的取值范围是( )A .(0,1)B .(0,13)C .17⎡⎢⎣,13⎤⎥⎦D .]1,17⎡⎢⎣ 二、填空题 11、曲线32x x y -=在点(1,1)处的切线方程为 .12、设812,(,1]()log ,(1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩,则满足1()4f x =的x 的值为 13、已知函数()1,21x f x a =-+,若()f x 为奇函数,则a =________. 14、设2()lg 2x f x x +=-,则2()()2x f f x +的定义域为 三、解答题15、设A B a x a x x B x x x A ⊆=-+++==+=若},01)1(2{},04{222,求实数a 的取值范围。
2022届高三高考数学一轮复习第三章: 函数专练—抽象函数【含答案】

2022届高三高考数学一轮复习第三章: 函数专练—抽象函数【含答案】一、单选题1.已知函数()f x 的定义域为实数集R ,对x R ∀∈,有(2)()f x f x +=-成立,且f (2)5=,则(100)(f = ) A .10B .5C .0D .5-2.已知()f x ,()g x 是定义在R 上的偶函数和奇函数,若2()()2x f x g x --=,则(1)(g -= )A .5B .5-C .3D .3-3.若定义在R 上的函数()f x 在(-∞,1]-上单调递减.若()(2)f x f x =--,且(4)0f -=,则不等式(3)0f x x-的解集为( ) A .[4-,1][3-,)+∞ B .[4-,1](0-⋃,1] C .[4-,0][2,)+∞D .[1-,0)[5,)+∞4.已知函数()f x 对任意x R ∈都有(6)()2f x f x f ++=(3),且(1)y f x =-的图象关于点(1,0)对称,则(2016)(f = )A .0B .1-C .1D .65.已知函数()f x 的定义域为R ,且满足()()2()()f x y f x y f x f y ++-=,且12()2f =,(0)0f ≠,则(2021)(f = )A .2021B .1C .0D .1-6.已知函数()f x ,对任意实数m 、n 都有()()()35f m n f m f n +=+-.已知f (1)31=,则f (1)f +(2)f +(3)()(*)f n n N +⋯+∈的最大值等于( ) A .133B .135C .136D .1387.定义在(1,1)-上的函数()f x 满足()()()2f x g x g x =--+,对任意的1x ,2(1,1)x ∈-,12x x ≠,恒有1212[()()]()0f x f x x x -->,则关于x 的不等式(31)()4f x f x ++>的解集为( ) A .1(,)4-+∞B .1(,0)4-C .1(,)4-∞-D .2(,0)3-8.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1x ∈-,1)时,()2x f x =,则(2021)(2022)(f f += )A .1B .4C .8D .10二、多选题9.已知()f x ,()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图象关于直线1x =对称,则下列说法中正确的有( ) A .(y g f = ()1)x +为偶函数B .(y g = f ())x 为奇函数C .y f = (())g x 的图象关于直线1x =对称D .y f = ((1))g x + 为偶函数10.已知定义域为R 的函数()f x 对任意的实数x ,y 满足()()()()cos 222f x f y x y x y f π++-=⋅,且1(0)(1)0,()12f f f ===,并且当1(0,)2x ∈时,()0f x >,则下列选项中正确的是( )A .函数()f x 是奇函数B .函数()f x 在11(,)22-上单调递增C .函数()f x 是以2为周期的周期函数D .5()02f -=11.已知函数()f x ,(x ∈-∞,0)(0⋃,)+∞,对于任意的x ,(y ∈-∞,0)(0⋃,)+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点(1,0)和(1,0)-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集(1,)+∞12.已知()f x 是定义在R 上的奇函数,且(1)(1)f x f x +=-,当01x 时,()f x x =,关于函数()|()|(||)g x f x f x =+,下列说法正确的是( ) A .()g x 为偶函数 B .()g x 在(1,2)上单调递增 C .()g x 不是周期函数 D .()g x 的最大值为2三、填空题13.已知函数()f x 对于任意的实数x ,y 满足()()()f x y f x f y +=⋅,且()f x 恒大于0,若f (1)3=,则(1)f -= .14.已知定义在R 上的奇函数()y f x =满足(8)()0f x f x ++=,且f (5)5=,则(2019)(2024)f f += .15.已知()f x 是定义在(1,)+∞上的减函数,若对于任意的x ,(1,)y ∈+∞,均有()()(2)f x f y f x y +=+,且f (2)1=,则不等式()(1)20f x f x +--的解集为 .16.已知函数()f x 满足:1(1)4f =,4()()()()(f x f y f x y f x y x =++-,)y R ∈,则(2022)f = .四、解答题17.若函数()y f x =对任意x ,y R ∈,恒有()()()f x y f x f y +=+. (1)指出()y f x =的奇偶性,并给予证明; (2)如果0x >时,()0f x <,判断()f x 的单调性;(3)在(2)的条件下,若对任意实数x ,恒有22()(2)0f kx f x x +-+->成立,求k 的取值范围.18.定义在R 上的函数()f x ,对任意1x 、2x R ∈,满足下列条件: ①1212()()()2f x x f x f x +=+-;②f (2)4=.(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数.19.定义在(0,)+∞上的函数()f x 对于任意的x ,*y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且f (e )1=-. (1)求f (1)的值;(2)判断函数在(0,)+∞上的单调性,并证明; (3)求函数()f x 在21[,]e e上的最大值与最小值.20.已知函数()f x 对任意实数x ,y 恒有()()()f x y f x f y +=+,且(2)3f -=-.当0x >时,()0f x >.(1)证明:()f x 是R 上的增函数;(2)求关于x 的不等式22()()(3)3f ax f ax f x x -<-+的解集.答案1.解:根据题意,对x R ∀∈,有(2)()f x f x +=-成立,则(4)(2)()f x f x f x +=-+=, 则()f x 是周期为4的周期函数, 则(100)(496)f f f =+=(4), 又由f (4)f =-(2)5=-, 故选:D .2.解:根据题意,2()()2x f x g x --=, 则f (1)g -(1)2122-==,①21(1)(1)28f g +---==,又由()f x ,()g x 是定义在R 上的偶函数和奇函数,则(1)(1)f g f ---=(1)g +(1)8=,②联立①②可得:g (1)3=,()g x 是定义在R 上的奇函数,则(1)g g -=-(1)3=-,故选:D .3.解:定义在R 上的函数()f x 在(-∞,1]-上单调递减. ()(2)1f x f x x =--⇒=-为对称轴,故f (2)(4)0f =-=,∴函数()f x 的大致图像为:当32x -或34x --,即5x 或1x -时,(3)0f x -,当432x -<-<,即15x -<<时,(3)0f x -<, ∴不等式(3)0f x x-的解集为:[1-,0)[5,)+∞, 故选:D .4.解:因为函数(1)y f x =-的图象关于点(1,0)对称, 所以函数()y f x =的图象关于点(0,0)对称, 即函数()y f x =是奇函数,令3x =-得,(36)(3)2f f f -++-=(3), 即f (3)f -(3)2f =(3),解得f (3)0=. 所以(6)()2f x f x f ++=(3)0=,即(6)()f x f x +=-, 所以(12)()f x f x +=,即函数的周期是12. 所以(2016)(12168)(0)0f f f =⨯==. 故选:A .5.解:令0x y ==; 则(0)(0)2(0)(0)f f f f +=, 故2(0)((0)1)0f f -=; 故(0)1f =;((0)0f =舍) 令12x y ==; 则f (1)11(0)2()()22f f f +=,故f (1)0=;(1)(1)2()f x f x f x f ∴++-=(1)0=,即(1)(1)(2)()(4)()f x f x f x f x f x f x +=--⇒+=-⇒+=, 故()f x 的周期为4,即()f x 是周期函数. (2021)f f ∴=(1)0=,故选:C .6.解:因为对任意实数m 、n 都有()()()35f m n f m f n +=+-,f (1)31=, 则(1)()f n f n f +=+(1)35()4f n -=-, 所以(1)()4f n f n +-=-,故{()}f n 是以31为首项,以4-为公差的等差数列,所以f (1)f +(2)f +(3)2(1)()31(4)2332n n f n n n n -+⋯+=+⨯-=-+, 对称轴为334n =,因为*n N ∈,所以当8n =时,f (1)f +(2)f +(3)()f n +⋯+取得最大值为136. 故选:C .7.解:对任意的1x ,2(1,1)x ∈-,12x x ≠,恒有1212[()()]()0f x f x x x -->,所以()f x 是增函数,设()()2()()h x f x g x g x =-=--,则()h x 为奇函数,且在(1,1)-上为增函数, 所以不等式(31)()4f x f x ++>,等价于(31)2()20f x f x +-+->, 即(31)()0h x h x ++>,亦即(31)()()h x h x h x +>-=-, 可得13111131x x x x-<+<⎧⎪-<<⎨⎪+>-⎩,解得104x -<<,故选:B .8.解:根据题意,(1)y f x =+是定义在R 上的奇函数,则()f x 的图象关于点(1,0)对称, 则有(2)()f x f x -=-,又由(4)(2)f x f x +=-,则(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数, (2021)(52528)f f f =+⨯=(5)f =-(1), (2022)(62528)f f f =+⨯=(6)f =-(2)(0)f =,()f x 的图象关于点(1,0)对称,则f (1)0=,则(2021)0f =,当[1x ∈-,1)时,()2x f x =,则(0)1f =,则(2022)1f =, 则(2021)(2022)f f f +=(1)(0)1f +=, 故选:A .9.解:根据题意,()f x 为奇函数,则()()f x f x -=-,()g x 图象关于直线1x =对称,则(1)(1)g x g x -=+,据此分析:对于A ,对于(()1)y g f x =+,(()1)(1())(()1)g f x g f x g f x -+=-=+,则函数(()1)y g f x =+为偶函数,A 正确;对于B ,对于(())y g f x =,有(())(())(())g f x g f x g f x -=-≠-,不是奇函数,B 错误;对于C ,()g x 图象关于直线1x =对称,即(1)(1)g x g x +=-,则有((1))((1))f g x f g x +=-. 则函数(())y f g x =图象关于直线1x =对称,C 正确;对于D ,()g x 图象关于直线1x =对称,则(1)(1)g x g x -=+,对于((1))y f g x =+,有((1))((1))f g x f g x -+=+,则((1))f g x +为偶函数,D 正确;故选:ACD .10.解:令y x =-,可得()()(0)cos 02f x f x f x π+-==,()()f x f x ∴-=-,函数()f x 是奇函数,故A 正确;设121122x x >>>-,则当1(0,)2x ∈时,()0f x >,∴12()()(2f x f x f +-=12)cos2x x-12()02x x π+>, 12()()f x f x ∴>,∴函数()f x 在11(,)22-上单调递增,故B 正确;(2)()(2)()22f x f x f x f x f +-++-==(1)cos(2)02π⨯=,可得(2)()f x f x +=,∴函数()f x 是以2为周期的周期函数,故C 正确;④511()()()1222f f f -=-=-=-,故D 不正确.故选:ABC .11.解:对于A ,对任意的x ,(y ∈-∞,0)(0⋃,)+∞,()()()f xy f x f y =+, 令1x y ==,则(11)f f ⨯=(1)f +(1),解得f (1)0=, 再令1x y ==-,则[(1)(1)](1)(1)f f f -⨯-=-+-,解得(1)0f -=, 所以()f x 的图象过点(1,0)和(1,0)-,故A 正确;对于B ,令1y =-,则()()(1)f x f x f -=+-,所以()()f x f x -=, 又函数()f x 的定义域关于原点对称,所以函数()f x 为偶函数,故B 错误; 对于C ,设1x ,2(0,)x ∈+∞,且12x x >,则121x x >, 若当1x >时,有()0f x >,所以12()0x f x >, 所以111122222222()()()()()()()()0x x xf x f x f x f x f x f f x f x x x -=⋅-=+-=>, 所以12()()f x f x >,所以()f x 在(0,)+∞上的是增函数,由函数()f x 为偶函数,可得()f x 在(,0)-∞上是减函数,所以当10x -<<时,()(1)0f x f <-=,故C 正确; 对于D ,设1x ,2(0,)x ∈+∞,且12x x <,则1201x x <<, 当01x <<时,有()0f x <,则12()0x f x <, 所以111122222222()()()()()()()()0x x xf x f x f x f x f x f f x f x x x -=⋅-=+-=<, 所以12()()f x f x <,所以()f x 在(0,)+∞上的是增函数,由函数()f x 为偶函数,可得()f x 在(,0)-∞上是减函数, 因为当01x <<时,()0f x <,可得当10x -<<时,()0f x <,当1x <-时,()(1)0f x f >-=,当1x >时,()f x f >(1)0=,故D 错误. 故选:AC .12.解:根据题意,依次分析选项: 对于A ,函数()g x 的定义域为R ,且()|()|(||)|()|(||)|()|(||)()g x f x f x f x f x f x f x g x -=-+-=-+=+=,所以()g x 为偶函数,故A 正确;对于B ,因为(1)(1)f x f x +=-,所以()f x 的图象关于直线1x =对称, 又()f x 是奇函数,当01x 时,()f x x =,则()f x 的部分图象如图所示,在区间(1,2)上,()2f x x =-,在区间(1,2)上,()|()|(||)2(2)42g x f x f x x x =+=-=-,()g x 在区间(1,2)上为减函数,故B 错误; 对于C ,()f x 为奇函数,且()f x 的图象关于直线1x =对称,∴函数()f x 的最小正周期为4,∴当0x 时,2(),[4,24]()()0,(24,44]f x x k k g x k N x k k ∈+⎧=∈⎨∈++⎩,故()g x 不是周期函数,选项C 正确; 对于D ,当0x 时,易知()g x 的最大值为2,由偶函数的对称性可知,当0x <时,()g x 的最大值也为2,()g x ∴在整个定义域上的最大值为2,故选项D 正确.故选:ACD .13.解:令0x y ==,则2(0)(0)f f =,解得(0)1f =或(0)0f =, 因为()f x 恒大于0,所以(0)1f =,令1x =,1y =-,则(0)f f =(1)(1)f ⋅-, 因为f (1)3=,所以1(1)3f -=.故答案为:13.14.解:根据题意,函数()y f x =满足(8)()0f x f x ++=,即(8)()f x f x +=-, 则有(16)(8)()f x f x f x +=-+=, 即函数()f x 是周期为16的周期函数, 则(2024)(812616)f f f =+⨯=(8)(0)f =-, (2019)(312616)f f f =+⨯=(3),又由()f x 为R 上的奇函数,则(0)0f =,f (3)(3)f f =--=(5)5=, 则(2019)(2024)(0)f f f f +=-+(3)5=, 故答案为:5.15.解:根据()()(2)x y f x f y f ++=,f (2)1=,可得211f =+=(2)f +(2)4(2)f =, 由()(1)20f x f x +--,得()(1)2f x f x +-,可化为214(2)(2)x f f -, 由()f x 是定义在(1,)+∞上的减函数,得214212211121x x x x --⎧⎪>⎪⎨->⎪⎪>⎩,解得522x <,所以不等式()(1)20f x f x +--的解集为5(2,]2.故答案为:5(2,]2.16.解:因为函数()f x 满足:1(1)4f =,4()()()()(f x f y f x y f x y x =++-,)y R ∈, 所以取1x =,0y =,得4f (1)(0)f f =(1)f +(1)12=, 所以1(0)2f =, 取1y =,有4()f x f (1)(1)(1)f x f x =++-,即()(1)(1)f x f x f x =++-,同理:(1)(2)()f x f x f x +=++, 所以(2)(1)f x f x +=--, 所以()(3)(6)f x f x f x =--=- 所以函数是周期函数,周期6T =, 故1(2022)(0)2f f ==.故答案为:12. 17.解:(1)()f x 是奇函数.令0x y ==,可知(00)(0)(0)f f f +=+,解得(0)0f =, 令y x =-,则()()()(0)0f x x f x f x f -=+-==, 所以()()f x f x -=-, 所以函数()f x 是奇函数. (2)()f x 在R 上是减函数.()f x 对任意x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <.令12x x >,则120x x ->,且1212()()()0f x x f x f x -=+-<, 由(1)知,12()()0f x f x -<,所以12()()f x f x <. 所以()f x 在R 上是减函数.(2)因为对任意实数x ,恒有22()(2)0f kx f x x +-+->成立, 所以222()(2)(2)f kx f x x f x x >--+-=-+, 所以222kx x x <-+,即2(1)20k x x -+-<, 当10k -=,即1k =时,20x -<不恒成立, 当10k -≠,即1k ≠时,则1018(1)0k k -<⎧⎨=+-<⎩,解得78k <, 即实数k 的取值范围是7(,)8-∞.18.(1)解:假设存在一次函数()f x ,设()(0)f x kx b k =+≠,则1212()()f x x k x x b +=++,1212()()2()22f x f x k x x b +-=++-,所有22b b =-,2b =,f (2)24k b =+=,1k =,故满足条件的一次函数为:()2f x x =+;(2)证明:定义在R 上的函数()f x 对任意的1x 、2x R ∈,都有1212()()()2f x x f x f x +=+-成立,令120x x ==,则(00)(0)(0)2f f f +=+-,(0)2f ∴=,令1x x =,2x x =-,则()()()2f x x f x f x -=+--,[()2][()2]0f x f x ∴-+--=,即()()0g x g x +-=,于是()()g x g x -=-,()()2g x f x ∴=-为奇函数.19.解:(1)因为()()()f x f y f xy +=,令1x y ==,则有f (1)f +(1)f =(1),故f (1)0=;(2)()f x 在(0,)+∞上单调递减,证明如下:令1xy x =,2x x =,1y >,有xy x >,()0f y <,可得21()()()f x f y f x +=,则12()()()0f x f x f y -=<,故对任意1x ,2(0,)x ∈+∞,若12x x >,则12()()f x f x <,所以()f x 在(0,)+∞上单调递减;(3)因为()()()f x f y f xy +=,令x y e ==,则有2()f e f =(e )f +(e )2=-,令x e =,1y e =,则有f (1)f =(e )1()0f e +=,所以1()1f e=, 因为函数()f x 在(0,)+∞上单调递减, 所以21()()1,()()2max min f x f f x f e e====-. 20.(1)证明:因为()()()f x y f x f y +=+,令0x y ==,则有(0)2(0)f f =,所以(0)0f =,令y x =-,则有(0)()()f f x f x =+-,所以()()f x f x -=-,故函数()f x 为奇函数,任取12x x R <∈,则210x x ->,所以2121()()()0f x f x f x x +-=->,因为()f x 是奇函数,所以21()()0f x f x ->,故()f x 是R 上的增函数;(2)解:不等式22()()(3)3f ax f ax f x x -<-+变形为22()()(3)(2)f ax f ax f x x f -<---, 因为()f x 为奇函数,故()()f ax f ax -=-,(2)f f --=(2),所以上式可变形为22()(32)f ax ax f x x -<-+,因为()f x 是R 上的增函数,所以2232ax ax x x -<-+,即(1)[(1)2]0x a x --+<,当10a -=,即1a =时,解得(,1)x ∈-∞;当10a -≠,即1a ≠时,方程(1)[(1)2]0x a x --+=的两个根为1221,1x x a ==--, 若211a =--,即1a =-时,解得x R ∈; 若10a ->,即1a >时,解得2(,1)1x a ∈--; 若10a -<,即1a <时,①当211a >--,即11a -<<时,解得2(,)(1,)1x a ∈-∞-+∞-; ②当211a <--,即1a <-时,解得2(,1)(,)1x a ∈-∞-+∞-。
高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)函数的概念及其表示一、单选题1.函数11y x =-的定义域是( )A. (0,2]B. (,1)(1,2]-∞⋃C. (1,)+∞D. [1,2]2.设函数21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[(3)]f f =( )A .15 B.3 C. 23 D. 1393.已知函数f (x +1)=3x +2,则f (x )的解析式( )A.3x -1B. 3x +1C. 3x +2D. 3x +44.下列各对函数表示同一函数的是( )(1) ()f x x =与2()g x =;(2) ()2f x x =-与()g x =(3) 2()(0)f x x x π=≥与2()(0)g r r r π=≥; (4) ()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩.A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知函数y = f (x )的定义域是[-2,3], 则y =f (2x -1)的定义域是() A. 5[0,]2 B. [1,4]- C. 1[,2]2- D. [5,5]-6.已知函数221,0()3,0x x f x x x +≥⎧=⎨<⎩,且0()3f x =,则实数0x 的值为( )A.-1B.1C.-1或1D.-1或-3二、多选题7.关于函数y =f (x ),以下说法正确的是( )A.y 是关于x 的函数B.对于不同的x ,y 的值也不同C.f (a )表示当x =a 时函数f (x )的值,是一个常量D.f (x )一定可以用一个具体的式子表示出来8.若函数2(),(,0)(0,)1x f x x x =∈-∞⋃+∞+,则下列等式成立的是( ) A. 1()()f x f x = B. 1()()f x f x -= C.11()()f f x x = D. ()()f x f x -=- 三、填空题9.已知函数()1f x ax =+,且(2)1f =-,则(2)f -=_______.10.若函数2(21)2f x x x +=-,则(3)f =_______,()f x =___________.11.已知函数22,2()21,2x ax x f x x x ⎧+≥=⎨+<⎩,若[(1)]0f f >,则实数a 的取值范围是___________.函数的基本性质一、单选题1. 下列函数中,值域为(,0)-∞的是( )A. 2y x =-B. 131()3y x x =-<C. 1y x =D. y =2.下列函数是偶函数,且在(,0]-∞上是增函数的是( )A .1y x =- B. 2()f x x = C. 3y x = D. ,0,0x x y x x -≥⎧=⎨<⎩3.已知()f x 是实数集上的偶函数,且在区间[0,)+∞上是增函数,则(2)f -,()f π-,(3)f 的大小关系是( )A. ()(2)(3)f f f π->->B. (3)()(2)f f f π>->-C. (2)(3)()f f f π->>-D. ()(3)(2)f f f π->>-4.函数()y f x =在R 上是增函数,且(2)(9)f m f m >-+,则实数m 的取值范围是( )A. (,3)-∞-B. (0,)+∞C. (3,)+∞D. (,3)(3,)-∞-⋃+∞5.函数()y f x =是以3为周期的偶函数,且当(0,1)x ∈时,()21f x x =+,则2021()2f =( ) A.2022 B.2 C.4 D.66.已知偶函数()f x 在区间[0,)+∞上是单调递增,则满足1(21)()3f x f -<的x 的取值范围是( ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23二、多选题7.如果函数()f x 在[a ,b ]上是减函数,对于任意的1212,[,]()x x a b x x ∈≠,那么下列结论正确的是( ) A. 1212()()0f x f x x x -<- B. 1212()[()()]0x x f x f x --< C. 12()()()()f a f x f x f b ≥>≥ D. 12()()f x f x <8.已知函数()f x 是定义在R 上的奇函数,下列说法正确的是( )A. (0)0f =B.若()f x 在[0,)+∞上有最小值-1,则()f x 在(,0]-∞上有最大值1C. 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D.若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =--三、填空题9.如图是定义在闭区间[5,5]-上的函数()y f x =的部分图像,根据图像可知函数()y f x =的单调递增区间是_______,单调递减区间是______.10.若()f x 是定义在R 上的奇函数,且1(2)()f x f x +=,则(8)f 的值为___. 11.若2()3f x ax bx a b =+++是偶函数,且定义域为[1,2]a a -,则a =_____,b =______.本章检测 函数的概念和性质一、单选题1. 已知函数2()23f x x mx =-+在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f (1)的值为( )A.-3B.13C.7D.52.已知f (x )为奇函数,且在(-∞,0)上为增函数,g (x )为偶函数,且在(-∞,0)上为增函数,则在(0,+∞)_上,下列结论正确的)A.两个都是增函数B.两个都是减函数C. f (x )为增函数,g (x )为减函数D. f (x )为减函数,g (x )为增函数3.已知函数g (x )= f (2x )-x 2是奇函数,且f (1)=2,则f (-1)=( ) _3 A. 32- B.-1 C. 32 D. 744.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A. (0,3)B. (0,3]C. (0,2)D. (0,2]5.已知函数g (x )是定义在[a -16,3a ]上的奇函数,且21,0()(),0x x f x f x a x -≥⎧=⎨+<⎩, 则f (-2020)=( )A.2B. 7C. 10D.-16. 已知定义在R 上的奇函数f (x )满足当x >0时,f(x )=x 2-2x ,则关于x的不等式f (x )<0的解集为( )A. (-2,2)B. (2,0)(0,2)-⋃C. (,2)(2,)-∞-⋃+∞D. (,2)(0,2)-∞-⋃二、多选题7.已知定义在区间[-3,3]上的一个偶函数,它在[-3,0]上的图象如图所示,则下列说法正确的是( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C. f (2)<2D.这个函数的值域为[-2,2]8.已知定义域为R 的函数f (x )是奇函数,且满足f (1-x )=f (1+x ),当0<x ≤1时,f (x )=2x ,则下列结论正确的是( )A. f (x )的最小正周期为2B.当-1<x ≤1时,f (x )=2xC. f (x )在[11,13]上单调递增D. f (x )的最大值为2,最小值为-2三、填空题9.已知函数,0(),0x x f x x x ⎧≥⎪=-<若f (a )+f (-1)=2,则a =_______.10.已知函数f (x )=x 5+ax 3+bx +2,且f (2)=3,则f (-2)=________.11.函数f (x )为奇函数,定义域为R ,若f (x +1)为偶函数,且f (1)=1,则f (2020)+f (2021)=_______。
高中函数考试题及答案
高中函数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若函数f(x) = x^3 - 2x^2 + x + 2在R上单调递增,则x的取值范围是:A. x > 2B. x < 2C. x ≥ 2D. x ≤ 23. 已知函数f(x) = |x - 1| + |x + 2|,当x = -1时,f(x)的值为:A. 4B. 2C. 1D. 04. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)5. 函数y = √(x - 1)的值域是:A. (0, +∞)B. [0, +∞)C. (-∞, 0]D. (-∞, +∞)6. 若函数f(x) = 3x - 2与g(x) = 2x + 1的图象有交点,则交点的个数是:A. 0个B. 1个C. 2个D. 3个7. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 18. 函数f(x) = 1 / (x^2 + 1)的图像关于:A. x轴对称B. y轴对称C. 原点对称D. 都不是9. 若函数f(x) = x^2 + bx + c的顶点坐标为(-1, -2),则b的值为:A. 0B. -1C. 2D. -210. 函数y = x^3 - 6x^2 + 9x + 2的极值点个数是:A. 0个B. 1个C. 2个D. 3个答案:1-5 CADBA 6-10 BCCDB二、填空题(每题2分,共20分)11. 函数y = 3x + 5的斜率是______。
12. 函数f(x) = x^2 - 4x + 4的最小值是______。
13. 函数y = sin(x)的对称轴方程是______。
14. 函数y = 2^x的反函数是______。
高考数学一轮复习《函数》复习练习题(含答案)
高考数学一轮复习《函数》复习练习题(含答案)一、单选题1.函数ln e x y =的单调增区间是( )A .(0,)+∞B .[0,)+∞C .(,)e +∞D .(,)-∞+∞2.若函数1311()log [(23]2)f x a x a ⎛⎫=-+≠ ⎪⎝⎭的定义域为R ,则下列叙述正确的是 A .()f x 在R 上是增函数B .()f x 在R 上是减函数C .()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递减 D .()f x 在[0,)+∞上单调递减,在(,0]-∞上单调递增3.已知函数()2e e x x f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞C .()()0,11,+∞D .(]{},01-∞4.下列函数中,是奇函数且在区间(0,)+∞上单调递增的是 A .x y e -= B .||y x = C .tan y x =D .1y x x =- 5.已知函数,如果关于x 的方程只有一个实根,那么实数的取值范围是A .B .C .D .6.函数34()e ex x x x f x --=+的部分图象大致为( ) A . B .C .D .7.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .()30y x x =>C .1y x x =+D .y x x = 8.使212x x +-有意义的实数x 的取值范围是( )A .(][),43,-∞-+∞ B .(-∞,-4)∪(3,+∞) C .(-4,3)D .[-4,3]9.函数2cos y x x =的部分图象是( ) A . B .C .D .10.设函数3,10,()((5)),10,x x f x f f x x -≥⎧=⎨+<⎩则(7)f 的值为( ) A .5 B .6 C .7 D .811.下列函数中与y x =具有相同图象的一个函数是A .B .C .ln x y e =D .ln x y e = 12.函数sin (0)ln x y x x=≠的部分图象大致是 A . B .C .D .二、填空题13.已知集合{|12}A x x =<<,集合2{|}B x y m x ==-,若A B A =,则m 的取值范围是______14.如图所示,,OA OB 是两个不共线向量(AOB ∠为锐角),N 为线段OB 的中点,M 为线段OA 上靠近点A 的三等分点,点C 在MN 上,且OC xOA yOB =+(,)x y R ∈,则22x y +的最小值为______.15.函数2(2)3,[,]y x a x x a b =+++∈的图像关于直线1x =对称,则b 的值为________. 16.定义在R 上的函数f (x )满足f (2+x )=f (2﹣x ),若当x ∈(0,2)时,f (x )=2x ,则f (3)=_____.17.已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______. 18.已知常数0a >,函数2()2xx f x ax =+的图象经过点6()5P p ,、1()5Q q -,,若216p q pq += ,则a =___19.函数()21f x x --的定义域为______. 20.已知函数()()233424x log x x f x x -⎧-≥⎪=⎨⎪⎩,,<,若方程()3f x m =-有两个根,则实数m 的取值范围为_____.三、解答题21.已知函数()1log (01amx f x a x -=>-且1)a ≠的图象关于原点对称. (1)求m 的值;(2)判断函数()f x 在区间()1,+∞,上的单调性并加以证明;(3)当()1,,a x t a >∈时,()f x 的值域是()1,+∞,求a 与t 的值.22.已知函数()log (23)1(0,1)a f x x a a =-+>≠.(1)当2a =时,求不等式()3f x <的解集;(2)当10a =时,设()()1g x f x =-,且(3),(4)==g m g n ,求6log 45(用,m n 表示);(3)在(2)的条件下,是否存在正整数...k ,使得不等式22(1)lg()+>g x kx 在区间[]3,5上有解,若存在,求出k 的最大值,若不存在,请说明理由.23.判断下列函数的奇偶性:(1)()f x =(2)()f x =(3)2()2||1,[1,1]f x x x x =-+∈-.(4)22(0)()(0).x x x f x x x x ⎧+<=⎨-+>⎩,24.定义在(1,1)-上的函数()f x 满足:①对任意,(1,1)x y ∈-都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭;②当0x <,()0f x >.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 在(0,1)上的单调性,并说明理由;(3)若11()52f =,试求111()()()21119f f f --的值.25.某商场销售一种水果的经验表明,该水果每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式()22115a y x x =+--,其中511x <<,a 为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.(1)求a 的值;(2)若该水果的成本为5元/千克,试确定销售价格x 的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.26.已知()21f x x =-,()()()1020x x g x x x ⎧-≥⎪=⎨-<⎪⎩. (1)求()g f x ⎡⎤⎣⎦;(2)设()()(){}max ,F x f x g x =,作函数()F x 的图象,并由此求出()F x 的最小值.27.已知函数()()2f x x x a =-, ()()21g x x a x a =-+-+ (其中a R ∈).(Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并直接写出函数()f x 的单调区间;(Ⅱ)令()()()F x f x g x =-,讨论函数()y F x =在区间[]1,3-上零点的个数。
高考第一轮复习数学:函数(附答案)
素质能力检测(二)一、选择题(每小题5分,共60分)1.(年全国)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是 A.b ≥0 B.b ≤0 C.b >0 D.b <0 解析:y =x 2+bx +c 的对称轴为x =-2b ,∴-2b≤0.∴b ≥0. 答案:A2.(年全国Ⅲ,理11)设函数f (x )=⎪⎩⎪⎨⎧--+14)1(2x x ,1,1≥<x x 则使得f (x )≥1的自变量x的取值范围为A.(-∞,-2]∪[0,10]B.(-∞,-2]∪[0,1]C.(-∞,-2]∪[1,10]D.[-2,0]∪[1,10] 解析:当x <1时,f (x )≥1⇔(x +1)2≥1⇔x ≤-2或x ≥0,∴x ≤-2或0≤x <1.当x ≥1时,f (x )≥1⇔4-1-x ≥1⇔1-x ≤3⇔1≤x ≤10.综上,知x ≤-2或0≤x ≤10. 答案:A3.f (x )是定义在R 上的奇函数,它的最小正周期为T ,则f (-2T)的值为 A.0B.2TC.TD.-2T 解法一:由f (2T )=f (-2T +T )=f (-2T )=-f (2T ),知f (2T)=0. 解法二:取特殊函数f (x )=sin x . 答案:A4.(年上海,文15)若函数y =f (x )的图象与函数y =lg (x +1)的图象关于直线x -y =0对称,则f (x )等于A.10x -1B.1-10xC.1-10-xD.10-x -1 解析:∵y =f (x )与y =lg (x +1)关于x -y =0对称, ∴y =f (x )与y =lg (x +1)互为反函数. ∴由y =lg (x +1),得x =10y -1. ∴所求y =f (x )=10x -1. 答案:A5.函数f (x )是一个偶函数,g (x )是一个奇函数,且f (x )+g (x )=11-x ,则f(x )等于A.112-xB.1222-x x C.122-xD.122-x x解析:由题知f (x )+g (x )=11-x ,①以-x 代x ,①式得f (-x )+g (-x )=11--x ,即f (x )-g (x )=11--x , ②①+②得f (x )=112-x . 答案:A6.(年江苏,11)设k >1,f (x )=k (x -1)(x ∈R ),在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于A.3B.23 C.34D.56 解析:用k 表示出四边形OAPB 的面积. 答案:B7.F (x )=(1+122-x )·f (x )(x ≠0)是偶函数,且f (x )不恒等于零,则f (x )A.是奇函数B.是偶函数C.既是奇函数,又是偶函数D.是非奇非偶函数解析:g (x )=1+122-x 是奇函数,∴f (x )是奇函数. 答案:A8.(年杭州市质检题)当a ≠0时,函数y =ax +b 和y =b ax 的图象只可能是Oxy OxyOxyOy1111AB答案:C9.(年全国Ⅳ,12)设函数f (x )(x ∈R )为奇函数,f (1)=21,f (x +2)=f (x )+ f (2),则f (5)等于A.0B.1C.25D.5解析:∵f (x +2)=f (x )+f (2)且f (x )为奇函数,f (1)=21,∴f (1)=f (-1+2)=f (-1)+f (2)=-f (1)+f (2).∴f (2)=2f (1)=1.∴f (5)=f (3)+f (2)=f (1+2)+ f (2)=f (1)+2f (2)=25. 答案:C 10.设函数f (x )=cx bax ++2的图象如下图所示,则a 、b 、c 的大小关系是 11-1-1OxyA.a >b >cB.a >c >bC.b >a >cD.c >a >b 解析:f (0)=c b=0,∴b =0. f (1)=1,∴ca+1=1.∴a =c +1.由图象看出x >0时,f (x )>0,即x >0时,有cx ax+2>0,∴a >0.又f (x )= xc x a +,当x >0时,要使f (x )在x =1时取最大值1,需x +x c≥2c ,当且仅当x =c =1时.∴c =1,此时应有f (x )=2a=1.∴a =2. 答案:B11.偶函数y =f (x )(x ∈R )在x <0时是增函数,若x 1<0,x 2>0且|x 1|<|x 2|,下列结论正确的是A.f (-x 1)<f (-x 2)B.f (-x 1)>f (-x 2)C.f (-x 1)=f (-x 2)D.f (-x 1)与f (-x 2)大小关系不确定解析:|x |越小,f (x )越大.∵|x 1|<|x 2|,∴选B. 答案:B12.方程log 2(x +4)=3x 实根的个数是 A.0 B.1 C.2D.3解析:设y =log 2(x +4)及y =3x . 画图知交点有两个. 答案:C二、填空题(每小题4分,共16分)13.(年浙江,理13)已知f (x )=⎩⎨⎧<-≥,0,1,0,1x x 则不等式x +(x +2)·f (x +2)≤5的解集是___________________.解析:当x +2≥0时,原不等式⇔x +(x +2)≤5⇔x ≤23.∴-2≤x ≤23. 当x +2<0时,原不等式⇔x +(x +2)(-1)≤5⇔-2≤5.∴x <-2.综上,知x ≤23.答案:(-∞,23]14.设函数f (x )的定义域是N *,且f (x +y )=f (x )+f (y )+xy ,f (1)=1,则f (25)= ___________________.解析:由f (x +y )=f (x )+f (y )+xy ⇒f (2)=f (1)+f (1)+1=3. ∴f (2)-f (1)=2. 同理,f (3)-f (2)=3. ……f (25)-f (24)=25.∴f (25)=1+2+3+…+25=325. 答案:32515.(年春季上海)已知函数f (x )=log 3(x4+2),则方程f -1(x )=4的解x =___________________.解析:由f -1(x )=4,得x =f (4)=log 3(44+2)=1.答案:116.对于函数y =f (x )(x ∈R ),有下列命题:①在同一坐标系中,函数y =f (1+x )与y =f (1-x )的图象关于直线x =1对称; ②若f (1+x )=f (1-x ),且f (2-x )=f (2+x )均成立,则f (x )为偶函数; ③若f (x -1)=f (x +1)恒成立,则y =f (x )为周期函数;④若f (x )为单调增函数,则y =f (a x )(a >0,且a ≠1)也为单调增函数. 其中正确命题的序号是______________. (注:把你认为正确命题的序号都填上)解析:①不正确,y =f (x -1)与y =f (1-x )关于直线x =1对称.②正确.③正确.④不正确.答案:②③三、解答题(共6小题,满分74分)17.(12分)函数y =lg (3-4x +x 2)的定义域为M ,x ∈M 时,求f (x )=2x +2-3×4x的最值.解:由3-4x +x 2>0得x >3或x <1, ∴M ={x |x >3或x <1},f (x )=-3×22x +22·2x =-3(2x -32)2+34. ∵x >3或x <1, ∴2x >8或0<2x <2.∴当2x =32即x =log 232时,f (x )最大,最大值为34. f (x )没有最小值.18.(12分)(年高考新课程卷)设a >0,求函数f (x )=x -ln (x +a )(x ∈(0,+∞))的单调区间.分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.解:f '(x )=x21-ax +1(x >0). 当a >0,x >0时,f '(x )>0⇔x 2+(2a -4)x +a 2>0, f '(x )<0⇔x 2+(2a -4)x +a 2<0.①当a >1时,对所有x >0,有x 2+(2a -4)x +a 2>0,即f '(x )>0. 此时f (x )在(0,+∞)内单调递增.②当a =1时,对x ≠1,有x 2+(2a -4)x +a 2>0,即f '(x )>0,此时f (x )在(0,1)内单调递增,在(1,+∞)内单调递增. 又知函数f (x )在x =1处连续.因此,函数f (x )在(0,+∞)内单调递增. ③当0<a <1时,令f '(x )>0,即x 2+(2a -4)x +a 2>0,解得x <2-a -2a -1,或x >2-a +2a -1.因此,函数f (x )在区间(0,2-a -2a -1)内单调递增,在区间(2-a +2a -1,+∞)内也单调递增.令f '(x )<0,即x 2+(2a -4)x +a 2<0,解得2-a -2a -1<x <2-a +2a -1. 因此,函数f (x )在区间(2-a -2a -1,2-a +2a -1)内单调递减.19.(12分)(年春季北京,理20)现有一组互不相同且从小到大排列的数据:a 0,a 1,a 2,a 3,a 4,a 5,其中a 0=0.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记T =a 0+a 1+…+a 5,x n =5n ,y n =T1(a 0+a 1+…+a n ),作函数y =f (x ),使其图象为逐点依次连结点P n (x n ,y n )(n =0,1,2,…,5)的折线.(1)求f (0)和f (5)的值;(2)设P n -1P n 的斜率为k n (n =1,2,3,4,5),判断k 1、k 2、k 3、k 4、k 5的大小关系;(3)证明f (x n )<x n (n =1,2,3,4).(1)解:f (0)=500a a a +⋅⋅⋅+=0,f (5)=5050a a a a +⋅⋅⋅++⋅⋅⋅+=1.(2)解:k n =11----n n n n x x y y =T5a n ,n =1,2, (5)因为a 1<a 2<a 3<a 4<a 5, 所以k 1<k 2<k 3<k 4<k 5.(3)证法一:对任何n (n =1,2,3,4), 5(a 1+…+a n )=[n +(5-n )](a 1+…+a n ) =n (a 1+…+a n )+(5-n )(a 1+…+a n ) ≤n (a 1+…+a n )+(5-n )na n =n [a 1+…+a n +(5-n )a n ]<n (a 1+…+a n +a n +1+…+a 5)=nT ,所以f (x n )=T a a n +⋅⋅⋅+1<5n=x n .证法二:对任何n (n =1,2,3,4), 当k n <1时,y n =(y 1-y 0)+(y 2-y 1)+…+(y n -y n -1) =51(k 1+k 2+…+k n )<5n=x n . 当k n ≥1时, y n =y 5-(y 5-y n )=1-[(y n +1-y n )+(y n +2-y n +1)+…+(y 5-y 4)]=1-51(k n +1+k n +2+…+k 5)<1-51(5-n )=5n=x n ,综上,f (x n )<x n .20.(12分)(年北京)有三个新兴城镇,分别位于A 、B 、C 三点处,且AB =AC =a ,BC =2b .今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处.(建立坐标系如下图)O x y A PB b, (-0)(),0h C (0) (1)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(2)若希望点P 到三镇的最远距离为最小,点P 应位于何处?分析:本小题主要考查函数、不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.(1)解:由题设可知,a >b >0,记h =22b a -,设P 的坐标为(0,y ),则P 至三镇距离的平方和为f (y )=2(b 2+y 2)+(h -y )2=3(y -3h )2+32h 2+2b 2. ∴当y =3h时,函数f (y )取得最小值. ∴点P 的坐标是(0,3122b a -). (2)解法一:P 至三镇的最远距离为g (y )=⎪⎩⎪⎨⎧-+||22y h y b ,||,||2222时当时当y h y b y h y b -<+-≥+由22y b +≥|h -y |解得y ≥h b h 222-,记y *=hb h 222-,于是g (y )=⎪⎩⎪⎨⎧-+||22y h y b .,**时当时当y y y y <≥当y *=hb h 222-≥0,即h ≥b 时,22y b +在[y *,+∞)上是增函数,而|h -y |在(-∞,y *)上是减函数,由此可知,当y =y *时,函数g (y )取得最小值;当y *=hb h 222-<0,即h <b 时,函数22y b +在[y *,+∞)上,当y =0时,取得最小值b ,而|h -y |在(-∞,y *)上为减函数,且|h -y |>b .可见,当y =0时,函数g (y )取得最小值.∴当h ≥b 时,点P 的坐标为(0,222222ba b a --);当h <b 时,点P 的坐标为(0,0).其中h =22b a -. 解法二:P 至三镇的最远距离为g (y )=⎪⎩⎪⎨⎧-+||22y h y b .||,||2222时当时当y h y b y h y b -<+-≥+由22y b +≥|h -y |解得y ≥h b h 222-,记y *=hb h 222-,于是 g (y )=⎪⎩⎪⎨⎧-+||22y h y b .,**时当时当y y y y <≥当y *≥0,即h ≥b 时,z =g (y )的图象如图(a ),因此,当y =y *时,函数g (y )取得最小值.当y *<0,即h <b 时,z =g (y )的图象如图(b ),因此,当y =0时,函数g (y )取得最小值.O h by O y y hb g g ()y ()y (b )'∴当h ≥b 时,点P 的坐标为(0,222222ba b a --);当h <b 时,点P 的坐标为(0,0).其中h =22b a -. 解法三:∵在△ABC 中,AB =AC =a ,∴△ABC 的外心M 在射线AO 上,其坐标为(0,222222ba b a --),且AM =BM =CM .当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2. 若h =22b a -≥b 〔如图(c )〕,2 Pxy O B (-b,0) C (b ,0) A MP 1(c)则点M 在线段AO 上.这时P 到A 、B 、C 三点的最远距离为P 1C 或P 2A ,且P 1C ≥MC ,P 2A ≥MA , 所以点P 与外心M 重合时,P 到三镇的最远距离最小. 若h =22b a -<b 〔如图(d )〕,则点M 在线段AO 外.xy O B (-b,0)C (b,0) AM P 1P2(d)这时P 到A 、B 、C 三点的最远距离为P 1C 或P 2A ,且P 1C ≥OC ,P 2A ≥OC ,所以点P 与BC 边的中点O 重合时,P 到三镇的最远距离最小.∴当22b a -≥b 时,点P 的位置在△ABC 的外心(0,222222ba b a --);当22b a -<b 时,点P 的位置在原点O .21.(12分)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2). (1)设f (1)=2,求f (21),f (41);(2)证明f (x )是周期函数.(1)解:由f (x 1+x 2)=f (x 1)·f (x 2),x 1、x 2∈[0,21]知f (x )=f (2x)·f (2x )=[f (2x)]2≥0,x ∈[0,1]. 因为f (1)=f (21)·f (21)=[f (21)]2,及f (1)=2,所以f (21)=221.因为f (21)=f (41)·f (41)=[f (41)]2,及f (21)=221,所以f (41)=241.(2)证明:依题设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x )⇔f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知f (-x )=f (x ),x ∈R ,所以f (-x )=f (2-x ),x ∈R .将上式中-x 以x 代换,得f (x )=f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期.22.(14分)设函数y =f (x )定义在R 上,对任意实数m 、n ,恒有f (m +n )=f (m )·f (n )且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上递减;(3)设集合A ={(x ,y )|f (x 2)·f (y 2)>f (1)},B ={(x ,y )|f (ax -y +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.(1)证明:在f (m +n )=f (m )f (n )中, 令m =1,n =0,得f (1)=f (1)f (0). ∵0<f (1)<1,∴f (0)=1.设x <0,则-x >0.令m =x ,n =-x ,代入条件式有f (0)=f (x )·f (-x ),而f (0)=1,∴f (x )=)(1x f ->1.(2)证明:设x 1<x 2,则x 2-x 1>0, ∴0<f (x 2-x 1)<1. 令m =x 1,m +n =x 2,则n =x 2-x 1,代入条件式,得 f (x 2)=f (x 1)·f (x 2-x 1), 即0<)()(12x f x f <1.∴f (x 2)<f (x 1). ∴f (x )在R 上单调递减.(3)解:由f (x 2)·f (y 2)>f (1)⇒f (x 2+y 2)>f (1). 又由(2)知f (x )为R 上的减函数,∴x 2+y 2<1⇒点集A 表示圆x 2+y 2=1的内部.由f (ax -y +2)=1得ax -y +2=0⇒点集B 表示直线ax -y +2=0. ∵A ∩B =∅,∴直线ax -y +2=0与圆x 2+y 2=1相离或相切. 于是122+a ≥1⇒-3≤a ≤3.。
高三数学一轮复习《函数与导数》练习题(含答案)
高三数学一轮复习《函数与导数》练习题(含答案)一、单选题1.已知()()12222x x a a a a -++>++,则x 的取值范围为( ) A .(),1-∞B .1,2⎛⎫+∞ ⎪⎝⎭C .(0,2)D .R 2.函数()()2108210x f x x x x +=≤≤++的值域为 A .11,86⎡⎤⎢⎥⎣⎦ B .[]6,8 C .11,106⎡⎤⎢⎥⎣⎦ D .[]6,103.已知函数()22,0,()2,0x x x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( )A .ln33-B .3ln 22-C .ln 23-D .1- 4.定义:若函数()F x 在区间[],a b 上的值域为[],a b ,则称区间[],a b 是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]1,1-是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3D .()f x 的所有“完美区间”的“复区间长度”的和为3+5.函数()f x 对任意x ∈R ,都有()()()12,1f x f x y f x =+=-的图形关于()1,0对称,且()71f =- 则()2021f =( )A .-1B .1C .0D .26.已知函数()22,,x ax x a f x x a x a⎧-+≥⎪=⎨+<⎪⎩,若对于任意正数k ,关于x 的方程()f x k =都恰有两个不相等的实数根,则满足条件的实数a 的个数为( )A .0B .1C .2D .无数7.若函数()()ln 1x f x ke x =-+的值域为R ,则实数k 的最大值为( ) A .1e - B .2e - C .e D .2-8.已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线斜率是( )A .1B .2C .eD .2e 1---二、多选题9.已知函数()21e x x x f x +-=,则下列结论正确的是( ) A .函数()f x 既存在极大值又存在极小值B .函数()f x 存在3个不同的零点C .函数()f x 的最小值是e -D .若[),x t ∈+∞时,()2max 5e f x =,则t 的最大值为2 10.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且2()()(32)()x x f x x f x +'<+恒成立,则必有( )A .()(3)181f f >B .()()261f f <C .()131162f f ⎛⎫> ⎪⎝⎭D .()()332f f <11.若曲线()20y ax a =≠与ln 1y x =+存在公共切线,则实数a 的可能取值是( )A .-1B .eC .e 2D .12 12.下列各式比较大小,正确的是( )A .1.72.5>1.73B .24331()22->C .1.70.3>0.93.1D .233423()()34> 三、填空题 13.已知函数23,0()21,0x x x f x x +≤⎧=⎨+>⎩,则()()1f f -的值为______. 14.函数()()2ln 3x x f x x +=-的零点是__________. 15.已知函数()()f x x R ∈满足()()2f x f x =-,若函数223y x x =--与()y f x =图象的交点为()()()1122,,,,m m x y x y x y ,则1ni i x ==∑___________.16.已知函数()f x ,给出下列四个结论:①函数2y x 是偶函数;②函数1y x x=-是增函数;③函数()f x 定义域为I ,区间D I ⊆,若任意12,x x D ∈,都有1212()()0f x f x x x ->-,则()f x 在区间D 上单调递增; ④()f x 定义域为I , “对于任意x I ∈,总有()f x M ≥ (M 为常数)”是“函数()f x 在区间I 上的最小值为M ”的必要不充分条件.其中正确结论的序号是___________.四、解答题17.已知函数()sin x f x e x =⋅.(1)求函数在()()0,0f 处的切线方程;(2)求函数()f x 在区间π,02⎡⎤-⎢⎥⎣⎦上的最值.18.近日,某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数()f x 与空气污染指数()p x 的关系为:()()()()10244f x p x p x k x =-+<≤,其中空气污染指数()p x 与时刻x (小时)和1x 的算术平均数成反比,且比例系数为12,k 是与气象有关的参数,10,2k ⎛⎫∈ ⎪⎝⎭. (1)求空气污染指数()p x 的解析式和最大值;(2)若用每天环境综合污染指数()f x 的最大值作为当天的综合污染指数,该市规定:每天的综合污染指数最大值不得超过1.试问目前市中心的综合污染指数是否超标?请说明理由.19.某汽车租赁公司有200辆小汽车.若每辆车一天的租金为300元,可全部租出;若将出租收费标准每天提高10x 元(1≤x ≤50,x ∈N *),则租出的车辆会相应减少4x 辆.(1)求该汽车租赁公司每天的收入y (元)关于x 的函数关系式;(2)若要使该汽车租赁公司每天的收入超过63840元,则每辆汽车的出租价格可定为多少元?20.已知幂函数()223m m f x x -++=,()m Z ∈为偶函数,且在区间()0,∞+上是增函数.函数()()224log log m g x x x =-,1,2x ⎡⎤∈⎣⎦(1)求m 的值;(2)求()g x 的最小值.21.做出()223,13,1x x x f x x ⎧+-≤=⎨>⎩的图象并求出其值域22.为了美化校园环境,学校打算在兰蕙广场上建造一个矩形花园,中间有三个完全一样 的矩形花坛,每个花坛的面积均为294平方米,花坛四周的过道宽度均为2米,如图所示,设矩形花坛的长为x 米,宽为y 米,整个矩形花园的面积为S 平方米.(1)试用x 、y 表示S ;(2)为了节约用地,当矩形花坛的长为多少米时,新建矩形花园占地最少,占地最少为多少平方米?参考答案1.B2.C3.A4.C5.B6.B7.B8.B9.ACD10.BD11.ABC12.BC13.314.1.15.m16.①③④17.(1)0x y -=.(2)()max 0f x =.()π4min 22f x e -=- 18.(1)()21x p x x =+,(]0,24x ∈,()max 12p x =; (2)没有超标;19.(1)y=-40x 2+800x +60000(1≤x ≤50,x ∈N *);(2)390元或400元或410元.20.(1)1m =;(2)116-. 21.[]4,-+∞.22.(1)312832S xy y x =+++;(2)矩形花坛的长为21米时,新建矩形花园占地最少,占地最少为1250平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数》测试题一、选择题(共50分): 1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2) B. (2,2) C. (-4,2) D. (4,-2)2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =->B .121y x =-C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为A .2B .0C .1D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为xy 2=的图像,则)(x f y =的函数表达式为 A. 22+=x y B. 22+-=x yC. 22--=x y D. )2(log 2+-=x y7. 当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)ab a b +>+C.2)1()1(b ba a ->- D.(1)(1)a ba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是A.1[,)2-+∞B. [)+∞,0C. [)+∞,1D.2[,)3+∞9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
洗浴时,已知每分钟放水34升,在放水的同时按4升/分钟的匀加速度自动注水。
当水箱内的水量达到最小值时,放水程序自动停止,现假定每人洗浴用水量为65升,则该热水器一次至多可供 A .3人洗浴 B .4人洗浴 C .5人洗浴 D .6人洗浴二、填空题(共25分)11.已知偶函数()f x 在[]0,2内单调递减,若()()0.511,(log ),lg 0.54a fb fc f =-==,则,,a b c 之间的大小关系为 。
12. 函数log a y x =在[2,)+∞上恒有1y >,则a 的取值范围是 。
13. 若函数14455ax y a x +⎛⎫=≠ ⎪+⎝⎭的图象关于直线y x =对称,则a = 。
14.设()f x 是定义在R 上的以3为周期的奇函数,若23(1)1,(2)1a f f a ->=+,则a 的取值范围是 。
15.给出下列四个命题:①函数x y a =(0a >且1a ≠)与函数log xa y a =(0a >且1a ≠)的定义域相同;②函数3y x =与3xy =的值域相同;③函数11221x y =+-与2(12)2x xy x +=⋅都是奇函数;④函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是_____________。
(把你认为正确的命题序号都填上)三、解答题(共75分)(本大题共6小题,共75分,解答应写出文字说明,证明过程,或演算步骤) 16.(本小题满分12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+=(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<17.(本题满分12分) 已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+. (1)当a =2时,求A B ; (2)求使B ⊆A 的实数a 的取值范围.18.(本小题满分12分)函数xax x f -=2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;(3)函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值.19.(本题满分12分) 已知函数)(x f 的图象与函数21)(++=xx x h 的图象关于点A (0,1)对称.(1)求函数)(x f 的解析式(2)若)(x g =)(x f +xa,且)(x g 在区间(0,]2上的值不小于6,求实数a 的取值范围.20.(本小题满分13分)某出版公司为一本畅销书定价如下:()***12(124,)11(2548,)10(49,)n n n N C n n n n N n n n N ⎧≤≤∈⎪=≤≤∈⎨⎪≥∈⎩.这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元)(1)有多少个n,会出现买多于n 本书比恰好买n 本书所花钱少?(2)若一本书的成本价是5元,现有两人来买书,每人至少买1本,两人共买60本,问出版公司至少能赚多少钱?最多能赚多少钱?21.(本小题满分14分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件: ①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
(1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当x ∈[]1,m 时,就有()f x t x +≤成立。
镇江市实验高中高三第一轮复习《函数》测试题 答案一、1.D 2. B 3.C 4.C 5.A 6.B 7. D 8.D 9.D 10.B 二.11. c a b >> 12. 1(,1)(1,2)2 13.-5 14. (-1,32) 15. ⑴⑶三.解答题16.解:(1)()()()()()()9332,27933f f f f f f =+==+=(2)()()()()889f x f x f x x f +-=-<⎡⎤⎣⎦而函数f(x)是定义在()0,+∞上为增函数08089(8)9x x x x x >⎧⎪∴->⇒<<⎨⎪-<⎩即原不等式的解集为(8,9)17. 解:(1)当a =2时,A =(2,7),B =(4,5)∴ A B =(4,5).………4分(2)∵ B =(a ,2a +1),当a <13时,A =(3a +1,2) ………………………………5分 要使B ⊆A ,必须223112a a a ≥+⎧⎨+≤⎩,此时a =-1;………………………………………7分当a =13时,A =Φ,使B ⊆A 的a 不存在;……………………………………9分当a >13时,A =(2,3a +1)要使B ⊆A ,必须222131a a a ≥⎧⎨+≤+⎩,此时1≤a ≤3.……………………………………11分综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}……………………………12分18. 解:(1)显然函数)(x f y =的值域为),22[∞+; ……………3分 (2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f >成立, 即0)2)((2121>+-x x ax x只要212x x a -<即可, …………………………5分 由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a ,故a 的取值范围是]2,(--∞; …………………………7分 (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当1=x 时取得最小值a -2;当02<<-a 时,函数)(x f y =在].0(22a -上单调减,在]1,[22a -上单调增,无最大值,当22a x -=时取得最小值a 22-. …………………………12分19. 解:(1)设)(x f 图象上任一点坐标为),(y x ,点),(y x 关于点A (0,1) 的对称点)2,(y x --在)(x h 的图象上………… 3分,1,212xx y x x y +=∴+-+-=-∴即x x x f 1)(+= …… 6分(2)由题意 x a x x g 1)(++= ,且61)(≥++=xa x x g ∵∈x (0,]2 ∴ )6(1x x a -≥+,即162-+-≥x x a ,………… 9分令16)(2-+-=x x x q ,∈x (0,]2,16)(2-+-=x x x q 8)3(2+-x =-, ∴∈x (0,]2时,7)(max =x q …11′∴ 7≥a ……………… 12分 方法二:62)(+-='x x q , ∈x (0,]2时,0)(>'x q即)(x q 在(0,2]上递增,∴∈x (0,2]时,7)(max =x q ∴ 7a ≥20.解(1)由于C (n )在各段上都是单调增函数,因此在每一段上不存在买多于N 本书比恰好买n 本书所花钱少的问题,一定是在各段分界点附近因单价的差别造成买多于n 本书比恰好买n 本书所花钱少的现象.C (25)=11⨯25=275,C (23)=12⨯23=276,∴C (25)<C (23)……..1分 C (24)=12⨯24=288,∴ C (25)<C (24)…………………..…………..2分 C (49)=49⨯10=490,C (48)=11⨯48=528,∴ C (49)<C (48) C (47)=11⨯47=517,∴ C (49)<C (47) C (46)=11⨯46=506,∴ C (49)<C (46)C (45)=11⨯45=495,∴ C (49)<C (45)……….. ……….………..……..5分 ∴这样的n 有23,24,45,46,47,48 …….………..……….. ……………6分(2)设甲买n 本书,则乙买60-n 本,且n ≤30,n *N ∈(不妨设甲买的书少于或等于乙买的书) ①当1≤n ≤11时,49≤60-n ≤59出版公司赚得钱数()1210(60)5602300f n n n n =+--⨯=+…….. …7分 ②当12≤n ≤24时,36≤60-n ≤48,出版公司赚得钱数()1211(60)560360f n n n n =+--⨯=+ ③当25≤n ≤30时,30≤60-n ≤35,出版公司赚得钱数()1160560360f n =⨯-⨯=……..……….. ………9分∴2300,111()360,1224360,2530n n f n n n n +≤≤⎧⎪=+≤≤⎨⎪≤≤⎩……..………………………………..10分∴当111n ≤≤时,302()322f n ≤≤ 当1224n ≤≤时,372()384f n ≤≤当2530n ≤≤时,()360f n ≤…….………. .………. .………. .………...……..12分 故出版公司至少能赚302元,最多能赚384元…….. .………. .……….………..13分 21. 解: (1)在②中令x=1,有1≤f(1)≤1,故f(1)=1 …………………………3分 (2)由①知二次函数的关于直线x=-1对称,且开口向上故设此二次函数为f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=41∴f(x)= 41(x+1)2 …………………………7分(3)假设存在t ∈R,只需x ∈[1,m],就有f(x+t)≤x.f(x+t)≤x ⇒41(x+t+1)2≤x ⇒x 2+(2t-2)x+t 2+2t+1≤0.令g(x)=x 2+(2t-2)x+t 2+2t+1,g(x)≤0,x ∈[1,m].40(1)0()011t g g m t m t -≤≤⎧≤⎧⎪⇒⎨⎨≤--≤≤-+⎪⎩⎩∴m ≤1-t+2t -≤1-(-4)+2)4(--=9t=-4时,对任意的x ∈[1,9]恒有g(x)≤0, ∴m 的最大值为9. ………………………… 14分。