汽车驱动桥的基本结构及发展方向

合集下载

驱动桥结构组成

驱动桥结构组成

驱动桥结构组成一、引言驱动桥是汽车的重要组成部分,它是汽车发动机输出动力的传输装置之一。

驱动桥主要由齿轮、轴承、传动轴和差速器等组成。

下面将详细介绍驱动桥的结构组成。

二、齿轮1.主减速器齿轮主减速器齿轮是驱动桥中最大的齿轮,它负责接收发动机输出的扭矩,并通过传递给其他齿轮来驱动车辆。

2.行星齿轮行星齿轮是驱动桥中最小的齿轮之一,它位于差速器内部。

当车辆转弯时,行星齿轮能够使两个车轮以不同的转速旋转。

3.差速器侧齿轮差速器侧齿轮位于差速器外部,它与传动轴相连,负责将扭矩传递给左右两个车轮。

三、传动系统1.半轴半轴是连接差速器和车辆车轮的部件之一。

它能够使发动机输出的扭矩通过驱动桥传递到车轮上。

2.万向节万向节是连接半轴和车轮的部件之一,它能够使车辆在转弯时保持稳定。

3.传动轴传动轴是连接差速器和变速器的部件之一,它能够将发动机输出的扭矩传递给驱动桥。

四、差速器差速器是驱动桥中最重要的部件之一,它能够使左右两个车轮以不同的转速旋转。

当车辆转弯时,内侧车轮需要行驶更短的距离,而外侧车轮需要行驶更长的距离。

差速器能够使两个车轮以不同的转速旋转,从而使车辆保持稳定。

五、结论以上就是驱动桥结构组成的详细介绍。

齿轮、传动系统和差速器等部件相互配合,共同完成汽车发动机输出扭矩到车辆车轮上的传递过程。

这些部件都非常重要,任何一个部件出现问题都会影响整个驱动桥系统的正常工作。

因此,在日常使用中要注意保养维护,并及时进行检修和更换。

2023年汽车驱动桥行业市场分析现状

2023年汽车驱动桥行业市场分析现状

2023年汽车驱动桥行业市场分析现状汽车驱动桥是汽车的关键部件之一,其主要功能是将动力从发动机传递到车轮,提供汽车的动力和动力分配功能。

随着汽车产业的快速发展和普及,汽车驱动桥行业也迎来了巨大的机遇和挑战。

1. 市场规模:汽车驱动桥市场规模庞大,根据数据显示,全球汽车驱动桥市场在2019年达到了1500亿美元。

而预计到2025年,这一市场规模将进一步扩大。

这是由于汽车产量的增加以及经济的发展带动了汽车销售的增长。

2. 技术创新:随着电动汽车和智能汽车的兴起,汽车驱动桥行业也面临了技术创新的压力。

电动汽车需要更高效的驱动桥系统来提供足够的动力输出,并提高电池续航里程。

智能汽车需要更智能的驱动桥系统来实现车轮独立控制和动力调整。

因此,汽车驱动桥行业需要加大研发力度,推动技术创新。

3. 市场竞争:当前,全球汽车驱动桥行业竞争激烈,市场竞争格局较为分散。

主要的竞争者包括德尔福、日本精工、博格华纳等。

这些公司在技术研发、产品质量、市场渠道等方面具有一定的竞争优势。

此外,一些中国企业也进入了汽车驱动桥市场,如上汽通用五菱、长城汽车等,它们通过低成本、高品质的产品和完善的售后服务来争夺市场份额。

4. 区域市场:全球汽车驱动桥市场呈现出一定的地域特点。

发达国家市场饱和度高,市场增长相对有限。

欧洲和北美市场占据了全球汽车驱动桥市场的大部分份额。

而在新兴市场,汽车产业发展迅速,尤其是中国和印度市场。

这是由于这些地区经济快速发展,汽车销量增长迅猛。

5. 发展趋势:未来,汽车驱动桥行业将呈现出以下几个发展趋势:一是电动汽车的快速普及将推动驱动桥技术的升级,例如发展更高效的驱动电机和电池管理系统;二是智能驱动桥的发展将实现车辆更智能的驱动和控制,提高车辆驾驶安全性和舒适性;三是新能源汽车和智能汽车的快速发展将带动汽车驱动桥市场的增长。

总的来说,汽车驱动桥行业市场前景广阔,但也面临着挑战。

只有不断进行技术创新,加强竞争力,以适应市场需求的变化,才能在激烈的市场竞争中取得更大的市场份额。

汽车构造第18章驱动桥

汽车构造第18章驱动桥
目前,汽车上广泛应用的是对称式锥齿轮差速器,其结构如图1825所示。对称式锥齿轮轮间差速器由圆锥行星齿轮,行星齿轮轴(十字 轴),圆锥半轴齿轮和差速器壳等组成。
行星齿轮的 背面与差速器壳 的相应位置的内 表面,均做成球 形,保证行星齿 轮对正中心,以 有利于两个半轴 正确啮合。
差速器靠主 减速器壳体中的 润滑油润滑。
哈尔滨工业大学(威海)
第17页
主动锥齿轮与轴制成一体,采 用悬臂式支承。一般双级主减 速器中,主动锥齿轮轴多用悬 臂式支承的原因有两点:一是 第一级齿轮传动比较小,相应 的从动锥齿轮直径较小,因而 在主动锥齿轮的外端要在加一 个支承,布置上很困难;二是 因传动比较小,主动锥齿轮即 轴颈尺寸有可能作的较大,同 时尽可能将两轴承的距离加大, 同样可得到足够的支承刚度。
哈尔滨工业大学(威海)
第31页
16.04.2021
差速器中各元件的运动关系——差速原理
当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在
同一半径r上的A、B、C三点的圆周速度都相等,其值为 w0r。于是,w1w2w0
即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。
当行星齿轮4除公转外,还绕本身的轴5以角速度 w4自转时,啮合点
A的圆周速度为 w 1rw 0rw 4r4 啮合点B的圆周速度为 w 2rw 0rw 4r4 于是 w 1 r w 2 r ( w 0 r w 4 r 4 ) ( w 0 r w 4 r 4 )
即 w1w22w0
若角速度以每分钟转速n表示,则 n1n22n0
(18-1)
式(18-1)为两半轴齿轮直径相等的对称式锥齿轮差速器的运动特征方
▪ 图18-14为某国产32t自卸 车驱动桥的轮边减速器

汽车构造 驱动桥

汽车构造 驱动桥
2020/4/3
2020/4/3
图14-15 蜗轮传动的贯通式中桥主减速器(蜗杆下置式)
2、双级贯通式主减速器
对于中、重型多桥驱动的汽车
来说,由于主减速比较大,多采用
双级贯通式主减速器,它是由一对
圆柱齿轮和一对螺旋锥齿轮或双曲
面齿轮组成,根据这两对齿轮组合
时前后次序的不同,它又分为锥齿
轮—圆柱齿轮式和圆柱齿轮—锥齿
图14-7 主减速器锥齿轮的比较 a)曲线齿锥齿轮传动,轴线相交;b)准双曲面齿轮传动,轴线偏移
2020/4/3
准双曲面齿轮副布置上,分为上偏移和下偏移,如图14-8所示,上、下偏移 是这样判定的:从大齿轮锥顶看ꎬ并把小齿轮置于右侧,如果小齿轮轴线位于大 齿轮中心线之下为下偏移(图14-8a,b),如果小齿轮轴线位于大齿轮中心线之上为 上偏移(图14-8c、d)。
字轴;25-螺栓
ቤተ መጻሕፍቲ ባይዱ
图14-5为东风EQ1090E型汽车驱动桥主减速器及差速器零件分解图。
图14-5 东风EQ1090E型汽车驱动桥主减速器及差速器零件分解图 1-槽形扁螺母;2-垫圈;3-主动锥齿轮叉形凸缘;4-油封座;5-油封座衬垫;6-主动锥齿轮外油封;7-油封导向 环;8-主动锥齿轮内油封;9-止推垫圈;10-主动锥齿轮前轴承;11-轴承调整垫片;12-隔套;13-前轴承座; 14-主动锥齿轮;15-主动锥齿轮后轴承;16-主动锥齿轮调整垫片;17-螺塞;18-主减速器壳;19-从动锥齿轮 支承套总成;20-支承套;21-支承螺柱;22-锁片;23-螺母;24-主减速器壳垫片;25-垫圈;26-差速器左壳; 27/30-锁止垫片;28-差速器轴承;29-轴承调整螺母;31-轴承盖锁片;32-垫片;33-主减速器轴承盖;34-垫圈 ;35-螺栓;36-半轴齿轮垫片;37-半轴齿轮;38-行星齿轮轴(十字轴);39-行星齿轮;40-行星齿轮垫片;41差速器右壳;42-差速器壳连接螺栓;43-从动锥齿轮;44-从动锥齿轮连接螺栓

汽车驱动桥的设计

汽车驱动桥的设计

汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。

本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。

一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。

差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。

后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。

二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。

根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。

其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。

三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。

当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。

同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。

四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。

其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。

总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。

同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。

驱动桥的结构和类型

驱动桥的结构和类型

驱动桥的结构和类型驱动桥的结构和类型,听上去像是汽车工程师的专属话题,但其实这也是个值得聊聊的有趣话题。

开车的朋友们可能知道,驱动桥就是车子动力传递的关键部分。

你想想,车子在路上风驰电掣,背后可都是这些“桥”的功劳。

哎,别小看它们,没它们可真开不动。

说到驱动桥,得先了解一下它的基本结构。

简单来说,驱动桥由几个重要的部分组成,像是齿轮、差速器和半轴。

齿轮呢,就像是车子的小“心脏”,负责将发动机的动力传递给车轮。

而差速器就有点像我们生活中的“调解员”,在车轮转动的时候,能够让两个轮子转得不一样快。

想象一下,你在转弯的时候,外侧的车轮得转得比内侧快,不然可真是拐不过来啊。

再说半轴,它就像是连接齿轮和车轮的桥梁,把动力一股脑儿地送到车轮上。

就这几个部分,构成了驱动桥的基本结构。

哎,听起来有点复杂,但实际上,车子的每一个零件都有它存在的道理。

就像咱们生活中,每个人都有自己的角色,缺了谁都不行。

接下来聊聊驱动桥的类型。

这可有意思了,驱动桥可以分为前驱和后驱,还有四驱。

前驱就是动力在前面,驱动前轮。

这种设计就像是前面带头大哥,动力直接从发动机传到前轮,车子在行驶的时候更稳定,尤其在雨雪天气,前轮抓地力更强,感觉就像走在云端一样。

后驱呢,动力在后面,驱动后轮。

想象一下,车尾带着动力冲出去,那种感觉就像是“奋勇争先”,不怕泥泞,后驱的车子在加速的时候,后轮更有力量。

开着后驱的车子,转弯时更能感受到那种“漂移”的快感,简直就像在赛道上飞驰。

还有四驱,顾名思义,四个轮子都在“发力”。

这车子就像是个全能选手,无论是泥泞小路,还是山路十八弯,四驱都能轻松应对。

驾驭四驱的感觉就像是穿越各种地形的勇士,开车的同时,心中也充满了冒险的刺激。

再来聊聊驱动桥的优缺点。

前驱车的优点就是结构简单,制造成本低,维护也相对容易。

不过,缺点就是在高速行驶时可能不如后驱那样稳定。

而后驱车的优点就多了,动力分配更均匀,驾驶体验更好,但成本高,维护难度也增加。

简述驱动桥的结构及组成

简述驱动桥的结构及组成

简述驱动桥的结构及组成驱动桥是汽车、火车、机器人等机械设备中的重要部分,它起到了传递动力的作用。

它是由多个零部件组成的,每个零部件都有着自己的功能。

本文将简述驱动桥的结构及组成,以便读者更好地了解驱动桥的工作原理。

驱动桥的结构驱动桥由两个主要部分组成:驱动轴和差速器。

驱动轴负责把动力从发动机传递到车轮,差速器则负责将动力分配到两个车轮上。

驱动轴驱动轴是将动力从发动机传递到车轮的部分。

它通常由两个轴管和一个万向节组成。

轴管是一根空心的金属管,它连接发动机和车轮。

万向节则是连接轴管的部分,它允许轴管在转动时发生一定的角度变化。

这是因为车轮在行驶过程中会遇到不同的路面,角度变化可以保证驱动轴在转动时不会断裂。

差速器差速器是驱动桥中最重要的部分。

它负责将动力分配到两个车轮上。

差速器有三个主要的零部件:差速器齿轮、差速器齿轮座和侧齿轮。

差速器齿轮位于差速器中心,它连接了两个轴管。

差速器齿轮座是连接差速器齿轮的部分,它允许差速器齿轮在转动时发生一定的角度变化。

侧齿轮则连接车轮。

组成驱动桥由多个零部件组成。

除了驱动轴和差速器之外,还有其他的部分。

下面简要介绍一下这些部分。

1. 轴承轴承是连接驱动轴和车轮的部分。

它可以减少摩擦力,使车轮转动更加流畅。

2. 齿轮齿轮是驱动桥中的重要部分。

它负责将动力从发动机传递到车轮。

齿轮通常由多个齿轮组成,它们可以形成不同的齿轮比。

这样可以调整车辆的速度和扭矩。

3. 轴承座轴承座是连接轴承的部分。

它可以保证轴承不会移动,保证车轮正常运转。

4. 轮毂轮毂是连接车轮的部分。

它可以保证车轮在行驶过程中不会脱落。

5. 制动器制动器是驱动桥中的重要部分。

它可以减缓车辆的速度,保证车辆在行驶过程中的安全。

制动器通常由刹车盘和刹车片组成。

6. 弹簧弹簧是驱动桥中的重要部分。

它可以减少车辆在行驶过程中的震动,保证车辆的平稳性。

7. 振动减震器振动减震器是驱动桥中的重要部分。

它可以减少车辆在行驶过程中的震动,保证车辆的平稳性。

汽车驱动桥的详细结构及分类

汽车驱动桥的详细结构及分类

驱动桥的详细结构及分类我爱车网类型:转载来源:腾讯汽车时间:2011-03—02 作者:驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。

它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。

驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥.当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥.因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。

独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。

(1)非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。

他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。

这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。

整体式驱动桥即非断开式驱动桥组成驱动桥的轮廓尺寸主要取决于主减速器的型式。

在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。

在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。

在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。

对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万方数据
重型汽车驱动桥的基本结构及发展方向
作者:高志刚
作者单位:河北省张北县交通局,076450
刊名:
科学与财富
英文刊名:SCIENCES & WEALTH
年,卷(期):2010,(8)
被引用次数:0次
1.期刊论文刘永辉.朱小波重型汽车驱动桥的基本结构及发展方向-科技经济市场2006(8)
全面阐述了重型汽车驱动桥的基本结构及发展趋势.
2.期刊论文金荣植新型重型汽车驱动桥锥齿轮材料17Cr2Mn2TiH钢-汽车工艺与材料2008(9)
对采用我国新研制的17Cr2Mn2TiH钢生产的重型汽车驱动桥圆锥齿轮进行了台架寿命试验,结果表明,该齿轮完全可以达到重型汽车驱动桥齿轮的相关技术要求.同时,采用17Cr2Mn2TiH钢替代含Ni较高的17CrNiM06H、20CrNi3H等钢,不仅大大降低了齿轮钢材成本,而且热处理工艺简单.因此可以大大降低其制造成本.这是目前我国重型汽车驱动桥齿轮行业摆脱制造成本过高的一种很好尝试.
3.会议论文严欣贤.周跃良.白志成重型汽车主减速器疲劳寿命试验扭矩的确定研究2005
本文通过对重型汽车驱动桥的疲劳寿命试验方法的研究,在指出传统等幅加载方法不足的的基础上,根据汽车齿轮的疲劳寿命与应力的关系曲线重新确定了重型车驱动桥疲劳寿命试验方法,其它类型的车辆的驱动桥疲劳台架试验可参考该方法确定驱动桥的疲劳试验载荷.
4.期刊论文严伯昌重型汽车驱动桥总成的检修-工程机械与维修2007(11)
重型汽车驱动桥总成主要由驱动桥壳体、主减速器总成(含差速器)、轮边减速器总成、制动钳以及全浮式左右半轴等部分组成.任何壳体类零件出现微小裂纹或壳体轻微变形均可导致零件间相对位置精度及齿轮间的啮合关系发生改变,从而降低驱动桥的作业效率和使用寿命,影响整机的使用性能和作业能力.因此应做好以下几个部件的检修.
5.期刊论文金荣植重型汽车驱动桥齿轮材料与工艺对疲劳性能影响的探讨-汽车工艺与材料2009(11)
对于重型汽车驱动桥齿轮一般需进行疲劳性能考核.试验方法是将被考核齿轮以总成形式安装在总成试验台上,使其在与实际工作条件接近一致的情况下运行.
6.学位论文李欣重型货车驱动桥桥壳结构分析及其轻量化研究2006
驱动桥桥壳是汽车上重要的承载件和传力件,作为具有广泛应用市场的非断开式驱动桥的桥壳不仅支承汽车重量,将载荷传递给车轮,而且还承受由驱动车轮传递过来的牵引力、制动力、侧向力、垂向力的反力以及反力矩,并经悬架传给车架或车身。

并且在汽车行驶过程中,由于道路条件的千变万化,桥壳受到车轮与地面间产生的冲击载荷的影响,可能引起桥壳变形或折断。

因此,驱动桥壳应具有足够的强度、刚度和良好的动态特性,合理地设计驱动桥壳也是提高汽车平顺性的重要措施。

随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低,由于与带轮边减速器的驱动桥相比,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加,结构简单。

因此,未来重型车车桥将由典型的斯太尔双级减速驱动桥向单级桥方向发展。

本文正是以新型的10T级的单级减速驱动桥的桥壳为研究对象。

本文的重点是:以有限元静态分析、动态分析及机械结构优化设计理论为基础,将CAD软件UG和有限元分析软件ANSYS结合起来,完成了从驱动桥壳三维建模到有限元分析的整个过程,得出了驱动桥壳在四种典型工况下的应力分布和变形结果及它在自由约束状态的前16阶固有频率和振型,计算证明,该桥壳满足强度要求,可以认为它在汽车各种行驶条件下是可靠的,并且不会引起共振。

在此基础上,应用ANSYS的优化模块对其进行结构优化,优化结果表明,桥壳质量有了明显的减少,最大等效应力接近许用应力,大大提高了材料的利用率,且应力分布更加合理。

其中,本文总结了使用以上软件建立模型及有关分析和优化工况的规范化步骤,以达到提高工作效率的目的,得到了有益于工程实际的结论。

研究结果表明,利用CAD建模技术和CAE分析技术可以显著提高汽车驱动桥桥壳的设计水平、缩短设计周期、降低开发成本并提高产品竞争力。

该方法具有普遍性,可以为其他类型的驱动桥桥壳的设计和分析提供借鉴和参考。

7.期刊论文赵娜.李静.ZHAO Na.LI Jing新型独立悬架断开式重型驱动桥-农业装备与车辆工程2009(12)
自行设计的独立悬架断开式重型驱动桥由主减速器、差速器、半轴、油气弹簧、上下摆臂和桥壳等组成.其应用提高了重型汽车的动力性、平顺性和通过性.
8.期刊论文范翠玲.牟均发.Fan Cuiling.Mou Junfa TL3400系列非公路用自卸车-工程机械2007,38(10)
TL3400系列非公路用自卸车是陕西同力重工有限公司在吸收国内外重型汽车、工程机械先进技术基础上,历时近三年研发成功的具有自主知识产权、适应于多种特定用途的经济适用型非公路运输车辆.为土方运输和各种露天矿剥岩、矿石运输提供了经济、高效、低耗的运输设备.介绍TL3400系列非公路自卸车的主要技术指标,结构及特点.该车具有适应重载工况而特殊设计的悬挂系统、16t级加强型宽体工程驱动桥、14.00-20型宽大工程轮胎,使得该车具有超强的承载能力,同时提供了超强的附着能力,保证了车辆的制动稳定性和良好的通过性,采用了大速比工程驱动桥,其输出转矩比同功率公路车大30%以上,爬坡能力强劲,重载起步顺畅.转向系统采用了机械式液压内助力加外助力的结构,保证重型车转向操纵的轻便性和准确性.
9.期刊论文杨金文.YANG Jin-wen冲焊式153载重汽车驱动后桥壳加工工艺的改进-机械工程师2009(7)
153载重汽车驱动桥是重型汽车选用较广的驱动后桥,而冲焊桥壳具有外观好、重量轻、清洁度高、故障率低等优点.文中介绍了改善桥壳外观、提高焊接质量、减少生产过程中的桥壳变形、提高桥壳加工精度的工艺改进.
10.期刊论文王元荪重型汽车专利摘编(六)-重型汽车2005(6)
专利名称:一种铸态高屈服强度球墨铸铁材料
专利申请号:200310114496.7 公开号:CN1554793
申请人:中国重型汽车集团有限公司
本发明属于铸造材料的技术领域,特别涉及一种铸态高屈服强度球墨铸铁材料.用于重型汽车大吨位、高牵引力的驱动桥差速器壳.本发明的球墨铸铁材料,其化学成分的重量百分比为,C:3.5~
3.8%,Si:2.0~2.5%,Mn:0.4~0.6%,Cu:0.5~0.7%,Mo:0.25~0.35%,Ni:0.3~0.5%,P≤0.06%,S≤0.03%,Ti≤0.05%,Cr≤0.1%,余量为Fe.
本文链接:/Periodical_kxycf201008018.aspx
授权使用:河南理工大学(hnlg),授权号:05748229-c065-4fba-b6b7-9ebb011ea71c
下载时间:2011年4月4日。

相关文档
最新文档