专题复习五方程不等式与函数的实际应用题
中考实际应用题(函数、方程、不等式)

一次函数的实际应用例1.如图,1l 表示商场一天的家电销售额与销售量的关系,2l 表示一天的销售成本与销售量的关系.①当2 x 时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售 件时,销售额等于销售成本. ③1l 对应的函数表达式是 .④写出利润与销售量间的函数表达式.例2.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm ,个体车主的月费用是y 1元,出租车公司的月费用是y 2元, y 1、y 2分别与x 之间的函数关系图像,如图,观察图像并回答下列问题; (1)每月行驶的路程在什么范围内时,租用公司的车更省钱? (2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km ,那么这个单位租哪家的车比较合算?2 O 4 2 3l 1y (万元) x l 2· y (元)y 2y 1kmO 1000150030003000例3.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨, 该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C、D 两县运化肥到A、B两县的运出发地C D运费目的地A 35 40B 30 45(1) 设C县运到A县的化肥为x吨,求总费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2) 求最低总运费,并说明总运费最低时的运送方案.例4. 如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP =x,四边形APCD的面积为y.⑴写出y与x之间的函数关系式及x的取值范围;⑵说明是否存在点P,使四边形APCD的面积为1.5?反比例函数的实际应用例1.在压力不变的情况下,某物体承受的压强p(Pa) 是它的受力面积S(m2)的反比例函数,其图像如图所示。
(1)求p 与S 之间的函数关系式;(2)求当S=0.5m 2时,物体承受的压强p 。
中考数学总复习 题型专项(六)方程组、不等式与函数的实际应用题试题(2021学年)

广西贵港市2017届中考数学总复习题型专项(六)方程组、不等式与函数的实际应用题试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西贵港市2017届中考数学总复习题型专项(六)方程组、不等式与函数的实际应用题试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西贵港市2017届中考数学总复习题型专项(六)方程组、不等式与函数的实际应用题试题的全部内容。
题型专项(六)方程、不等式与函数的实际应用题类型1 方程(组)、不等式的实际应用1.(2016·岑溪模拟)某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园区的销售价格分别为6元/千克、4元/千克,今年3月份一共销售了3000千克,总销售额为16 000元.(1)3月份该枇杷在市区、园区各销售了多少千克?(2)4月份是枇杷旺季且适逢“三月三”小长假,为了促销,枇杷园决定4月份将该枇杷在市区、园区的销售价格均在3月份的基础上降低a%,预计这种枇杷在市区、园区的销售量将在3月份的基础上分别增长30%、20%,要使4月份该枇杷的总销售额不低于18 360元,则a的最大值是多少?解:(1)设在市区销售了x千克,则在园区销售了(3 000-x)千克.则6x+4(3 000-x)=16 000.解得x=2 000.3 000-x=1 000。
答:今年3月份该枇杷在市区销售了2 000千克,在园区销售了1 000千克.(2)根据题意,得6(1-a%)×2 000(1+30%)+4(1-a%)×1 000(1+20%)≥18360。
初中中考复习之方程、不等式和函数的综合(精编含答案)

中考复习之方程、不等式和函数的综合一、选择题:1.下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x- ④2y=3x A .1个B .2个C .3个D . 4个2.已知关于x 的方程22(x 1)(x b)2++-=有唯一实数解,且反比例函数1by x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为【 】 A. 3y x =-B. 1y x =C. 2y x =D. 2y x=- 3.已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D4.二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过【 】 A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 5. 已知:M ,N 两点关于y 轴对称,且点M 在双曲线1y=2x上,点N 在直线y=x+3上,设点M 的坐标为(a ,b ),则二次函数y=﹣abx 2+(a+b )x 【 】A .有最大值,最大值为92-B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92-二、解答题1.一辆警车在高速公路的A 处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y (升)与行驶时间x (小时)的函数关系的图象如图所示的直线l 上的一部分. (1)求直线l 的函数关系式;(2)如果警车要回到A 处,且要求警车中的余油量不能少于10升,那么警车可2.“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如下表所示:(1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每购满1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?3.在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B 村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?4.温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示。
中考复习之函数、方程、不等式综合应用专题(doc 22页)

中考复习之函数、方程、不等式综合应用专题(doc 22页)变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。
两条直线的位置关系与二元一次方程组的解:(1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2.(3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。
三、考点精讲考点一:函数与方程(组)综合应用例1.(2010广西梧州)直线y=2x+b与x 轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x =2时,y =0,∴关于x 的方程2x +b =0的解是x =2。
【解答】2【评注】本题考察的灵活运用所学的一次函数知识解决问题的能力,方法可以不同,但直接把函数转化为方程,理解它们之间的对应关系,无需求b 值,就会加快解题速度。
例2.(2010青海)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【分析】(1)根据利润的等量关系,列出方程,再根据题意,舍掉x 1(2)代入-=x a b 2即可【解答】解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-x)=1500解得:x 1=10 x 2=5 因为顾客要得到实惠,5<10所以 x=5答:每千克应涨价5元.(2)设商场每天获得的利润为y 元,则根据题意,得y=( x +5)(200-10x)= -10x 2+150x -500当x=5.7)10(21502=-⨯-=-a b 时,y 有最大值. 因此,这种水果每千克涨价7.5元时,能使商场获利最多【评注】(1)中列方程解应用题关键是找出相等关系, 根据实际情况,解答的取舍很关键,这是个易错点(2)中二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的最值即可解题.考点二:函数与不等式(组)综合应用 例1.(2010江苏镇江)深化理解对非负实数x “四舍五入”到个位的值记为<x >即:当n 为非负整数时,如果11,22nx n ≤<则<x >=n如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①<π>= (π为圆周率); ②如果<2x -1>=3,则实数x 的取值范围为 ;(2)①当><+>=+<≥x m m x m x :,,0求证为非负整数时;②举例说明><+>>=<+<y x y x 不恒成立;(3)求满足43x x 的所有非负实数x 的值;(4)设n 为常数,且为正整数,函数y =x 2-x +14的自变量x 在n ≤x ≤n +1范围内取值时,函数值y 为整数的个数记为a ;满足k n 的所有整数k 的个数记为b .求证:a =b =2n .【分析】(1)第一空:π≈3,所以填3;第二空:根据题中的定义得3-12≤2x -1<3+12,解这个不等式组,可求得x 的取值范围;(2)根据定义进行证明和举反例;(3)用图象法解,可设y =<x >,y =43x ,在直角坐标系中画出这两函数的图象,交点的横坐标就是x 的值.(4)根据在12<n ≤x ≤n +1范围内y 随x 的增大而增大,所以可得出y 的取值范围,从而求出y 的整数解的个数,同样地由定义得,1122n k n ,把此式两边平方可得2211()(),22n k n k 与y 的取值范围一致.所以a =b.【解答】(1)①3;②x 79≤<44 2211()(),22n k n(2)①证明:[法一]设<x >=n ,则n -12≤x <n +12,n 为非负整数;又(n +m )-12≤x +m <(n +m )+12,且m +n 为非负整数,∴<x +m >=n +m =m +<x >[法二]设x =k +b ,k 为x 的整数部分,b 为其小数部分1)当0≤b <0.5时,<x >=km +x =(m +k )+b ,m +k 为m +x 的整数部分,b 为其小数部分<x +m >=m +k∴<x +m >=m +<x >2)当b ≥0.5时,<x >=k +1则m +x =(m +k )+b ,m +k 为m +x 的整数部分,b 为其小数部分<x +m >=m +k +1∴<x +m >=m +<x >综上所述:<x +m >=m +<x >②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x >+<y >= <x +y >不一定成立.(3)[法一]作x y x y 34,=>=<的图象,如图 (注:只要求画出草图,如果没有把有关点画成空心点,不扣分)y=<x>的图象与y=43x图象交于点(0,0)、3(,1)4、3(,2)2∴x=0,33,42[法二]∵x≥0,43x为整数,设43x=k,k为整数则x=34k,∴<34k>=k,∴131,0242k k k k-≤<+≥∵0≤k≤2,∴k=0,1,2 ∴x=0,33,42(4)∵函数y=x2-x+14=(x-12)2,n为整数,当n≤x<n+1时,y随x的增大而增大,∴(n-12)2≤y<(n+1-12)2即(n-12)2≤y<(n+-0.5 O 0.5y32.521.5112)2, ①∴n 2-n +14≤y <n 2 +n +14,∵y 为整数 ∴y = n 2-n +1,n 2-n +2,n 2-n +3,…,n 2-n +2n ,共2n 个y .∴a =2n ② (8分) 则,)21()21(,212122+<≤-∴+<≤-n k n n k n ③比较①,②,③得:a =b =2n【评注】这是一道创新题,要求学生读懂定义,能用定义解决简单的实际问题,然后能更进一步地结合已经学过的知识进行拓展,是一道不易的压轴题,学生要在短时间解决此问题,要求平时的学习要有一定的创新思维,特别是自学习能力的培养显得尤为重要.就这题而言,对不等式组,及不等式组的整数解的应用要掌握得非常熟练,还有二次函数式的变形能力也要求较高.例2.(2010湖北荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价y 1(万元)之间满足关系式y 1=170-2x ,月产量x (套)与生产总成本y 2(万元)存在如图所示的函数关系.(1)直接写出....y 2与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?【分析】(1)用待定系数法,根据图形容易求解;(2)根据题意列不等式组,可求得月产量x 的范围;(3)利用利润=总售价-总成本,根据二次函数的性质求解.【解答】解:(1)y 2=500+30x.(2)依题意得:⎩⎨⎧≥-≤+.902170,5030500x x x解得:25≤x ≤40(3)∵W =xy 1-y 2=x (170-2x )-(500+30x )=-2x 2+140x -500,∴W=-2(x-35)2+1950.而25<35<40, ∴当x=35时,1950W.最大即月产量为35件时,利润最大,最大利润是1950万元.【评注】本题是一次函数、二次函数的综合运用的最优方案设计问题,是中考的热点题型,也是代数知识部分的核心知识.考点三:方程(组)与不等式(组)综合应用例1.(2010四川内江)已知非负数a,b,c满足条件a+b=7,c-a=5,设S=a+b+c 的最大值为m,最小值为n,则m-n =.【分析】把a+b=7和c-a=5两式相加,即可得b+c=12,所以S=a+b+c=a+12,故确定S的最大值和最小值的关键就是确实a的取值范围.由a+b=7得b=7-a,根据a≥0,b≥0,有7-a≥0,所以0≤a≤7;由c-a=5,得c=5+a,因为c≥0,所以5+a≥0,即a≥-5,由于a≥0,所以一定有a≥-5,所以0≤a≤7,所以m=7+12=19,n=0+12=12,从而m-n=7-0=7.【解答】7【评注】代数式的最值问题是中学数学中比较常见的问题,这类问题解法多样,灵活性较强,常用的方法有:配方法、计算法、消元法、构造法、换元法、利用基本不等式法,等等.例2.(2010福建福州)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元.用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于l OO元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【分析】利用购买3个书包和2本词典的总价及二者单价间的关系可用一元一次方程求出书包和词典的单价;而在(2)中,根据购买书包和词典的价格范围列一元一次不等式组求出书包的范围,再根据书包的取值为正整数求出方案.【解答】(1)解:设每个书包的价格为x 元,则每本词典的价格为(x -8)元.根据题意得: 3 x +2(x -8)=124解得:x =28.∴ x -8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设昀买书包y 个,则购买词典(40-y )本.根据题意得:1000[232040]1001000[282040]120y y y y -+-⎧⎨-+-⎩(),().≥≤解得:10≤y≤12.5.因为y 取整数,所以y 的值为10或11或12. 所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.【评注】利用一元一次方程(或二元一次方程组)与一元一不等式组结合来设计方案问题是中考的热点.解答这类问题关键是根据题意列出不等关系,再根据实际问题求出不等式(或组)的整数解来确定方案考点四:函数、方程(组)与不等式(组)综合应用例1.(2010湖南衡阳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。
方程与不等式的应用大题专练(真题6道模拟30道)-中考数学重难题型押题培优导练案(专用)【原卷版】

方程与不等式的应用大题专练(真题6道模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率方程与不等式的应用(大题)2012、2013、2014、2015、2016/2019 十年5考方程与不等式的应用是北京中考以前常考的内容,主要考查分式方程的应用,同时也有可能会考查一元二次方程的应用、方程组的应用、不等式的应用.1、列方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程/时间,工作量问题:工作效率=工作量/工作时间,销售问题:利润=售价-进阶=进件×(1+利润率),总利润=单件利润×销售量等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2015·北京·中考真题)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?【例2】(2019·北京·中考真题)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.【真题再现】必刷真题,关注素养,把握核心1.(2012·北京·中考真题)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.2.(2014·北京·中考真题)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.3.(2013·北京·中考真题)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.4.(2016·北京·中考真题)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约_____________亿元,你的预估理由_____________.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京十一学校一分校模拟预测)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.2.(2020·北京朝阳·三模)通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.3.(2021·北京·101中学三模)在“新冠”期间,某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?4.(2022·北京四中九年级开学考试)今年通州区在老旧小区改造方面取得了巨大成就,人居环境得到了很大改善.如图,某小区规划在长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中的小路分别与AB和AD平行,其余部分种草.通过测量可知草坪的总面积为112m2,求小路的宽.5.(2022·北京丰台·九年级期末)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m,宽12m,矩形冰场的长与宽的比为4:3,如果要,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预使冰场的面积是原空地面积的23留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?6.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为x m,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?7.(2021·北京市三帆中学九年级期中)刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?8.(2021·北京师范大学第二附属中学西城实验学校九年级期中)学生会要组织“西实杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行______场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?9.(2021·北京市鲁迅中学九年级期中)某水果店出售一种进价为每千克10元的热带水果,原售价为每千克20元.(1)连续两次降价后,每千克售价16.2元,若每次下降的百分率相同,求每次下降的百分率.(2)这种水果每月的销售量y(千克)与销售单价x(元)之间存在着一次函数关系:y=-10x+200,当销售单价为多少元时,每月可获得最大利润?10.(2022·北京昌平·模拟预测)佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.求第一次该种水果的进价是每千克多少元?11.(2022·北京四中九年级阶段练习)某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.12.(2021·北京西城·一模)奥林匹克森林公园南园(奥森南园)是深受北京长跑爱好者追捧的跑步地点.小华和小萱相约去奥森南园跑步踏青,奥森南园有5千米和3千米的两条跑道(如图所示).小华选择了5千米的路线,小萱选择了3千米的路线,已知小华平均每分钟比小萱平均每分钟多跑100米,两人同时出发,结果同时到达终点.求小萱的速度.13.(2021·北京·九年级专题练习)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.14.(2021·北京·九年级专题练习)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?15.(2021·北京·九年级专题练习)列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.16.(2021·北京·九年级专题练习)某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.17.(2012·北京海淀·中考模拟)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?18.(2021·北京·九年级专题练习)列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:时间A型B型销售额型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.(2021·北京·九年级专题练习)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组{x+y= (x)0.02+y0.01=...(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.20.(2021·北京·九年级专题练习)商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元?(2)某部门准备购买这两种防寒商品共80件,要求每种商品都要购买,且帐篷的数量多于40顶,但因为资金不足,购买总金额不能超过8500元,请问共有几种购买方案?(要求写出具体的购买方案).21.(2022·北京·九年级单元测试)小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.22.(2020·北京·首都师范大学附属中学九年级阶段练习)2018年9月17日世界人工智能大会在.上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一-部分.(说明:积分=胜场积分十平场积分+负场积分)(1)D代表队的净胜球数m=______;(2)本次决赛中,胜一场积______分,平一场积______分,负一场积_______分;(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A 队一共能获得多少奖金.23.(2021·北京·九年级专题练习)某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.如表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了. 项目得分项目 学生 七巧拼图趣题巧解数学应用魔方复原折算后总分甲 66 95 68乙 66 80 60 68 70 丙 6690806880据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x 和y ,请用含x 和y 的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为 ;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得 分. 24.(2020·北京市第一六一中学模拟预测)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行 促销:参与促销的水果免配送费且一次购买水果的总价满 128 元减 x 元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.(1)当x=8时,某顾客一次购买苹果和车厘子各 1 箱,小石会得到 ______________元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则 x 的最大值为_____ . 参入促销水果水果 促销单价 苹果 58元/箱 粑粑柑70元/箱车厘子100元/箱火龙果48元/箱25.(2020·北京·101中学九年级阶段练习)我国的传统佳节端午节,历来有吃“粽子”的习俗,某食品加工厂拥有A、B两条不同的粽子生产线,原计划A生产线每小时加工粽子400个,B生产线每小时加工粽子500个.(1)若生产线A,B一共加工12小时,且生产粽子总数量不少于5500个,则B生产线至少加工多少小时?(2)原计划A,B生产线每天均工作8小时,由于受其它原因影响,在实际生产过程中,A生产线每小时比原计划少生产100a个(a>0),B生产线每小时比原计划少生产100个,为了尽快将粽子投放到市场,A生产线每天比原计划多工作2a小时,B生产线每天比原计划多工作a小时,这样一天恰好生产粽子6400个,求a的值.26.(2020·北京石景山·二模)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.小石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行促销:参与促销的水果免配送费且一次购买水果的总价满128元减x元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.参与促销水果水果促销前单价苹果58元/箱耙耙柑70元/箱车厘子100元/箱火龙果48元/箱(1)当x=8时,某顾客一次购买苹果和车厘子各1箱,需要支付_____元,小石会得到______元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则x的最大值为_____.27.(2021·北京·101中学九年级开学考试)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?28.(2022·北京·景山学校九年级阶段练习)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.29.(2021·北京·九年级专题练习)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?30.(2021·北京·九年级专题练习)小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.11(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有几种点餐方案.12。
方程不等式及函数的应用题

方程不等式及函数的应用题1.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?2.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?3.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?4.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?5.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.6.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?7.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?8.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.9.向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.10.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.11.大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)①进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.12.甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?13.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?14.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?15.某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?16.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.17.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数关系式.18.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.19.已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?20.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?。
中考复习:情景应用题--函数、方程与不等式

考点四:函数、方程(组)与不等式(组) 综合应用
例4.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装 240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装, 工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电 动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工 人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14 辆电动汽车。 (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽 调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人 的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发 2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招 聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出 的工资总额W(元)尽可能的少?
例5.如图所示,某地区对某种药品的需求量y1(万 件),供应量y2(万件)与价格x(元/件)分别近似满 足下列函数关系式:y1=-x + 70,y2=2x-38,需求量 为0时,即停止供应.当y1=y2时,该药品的价格称为稳 定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量. (2)价格在什么范围内,该药品的需求量低于供应量? (3)由于该地区突发疫情,政府部门决定对药品供应 方提供价格补贴来提高供货价格,以利提高供应量.根 据调查统计,需将稳定需求量增加6万件,政府应对每 件药品提供多少元补贴,才能使供应量等于需求 量.Ox(元/件)y(万件)y1=-x+70y2=2x-38
考点一:函数与方程(组)综合应用
例1.某水果批发商场经销一种水果,如果每千克 盈利5元,每天量 将减少10千克. (1)现该商场要保证每天盈利1500元,同时又要 顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济利益角度考虑,这种水 果每千克涨价多少元,能使商场获利最多?
题型专项(七)-方程、不等式、函数的实际应用题

题型专项(七) 方程、不等式、函数的实际应用题(黄石中考第23题)类型1 方程、不等式的实际应用1.(黄石2014T 23)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和熏衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)(1)试求玫瑰花、熏衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和熏衣草,根据市场调查,要求玫瑰花的种植面积大于熏衣草的种植面积(两种花卉的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127 500元,则他们有几种种植方案?解:(1)设玫瑰花、熏衣草的亩平均收入分别为x ,y 元,依题意,得⎩⎨⎧5x +3y =33 500,3x +7y =43 500,解得⎩⎪⎨⎪⎧x =4 000,y =4 500.答:玫瑰花每亩的收入为4 000元,熏衣草每亩的平均收入是4 500元.(2)设种植玫瑰花m 亩,则种植熏衣草面积为(30-m)亩,依题意,得m >30-m.解得m >15.当15<m ≤20时,总收入w =4 000m +4 500(30-m)+15×100+(m -15)×200≥127 500,解得15<m ≤20; 当m >20时,总收入w =4 000m +4 500(30-m)+15×100+5×200+(m -20)×300≥12 7500,解得m ≤20(不合题意).综上所述,种植方案如下:1.(2016·长沙)2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨.由题意,得⎩⎨⎧2x +3y =31,5x +6y =70,解得⎩⎪⎨⎪⎧x =8,y =5. 答:一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨.(2)设该渣土运输公司派出小型号的渣土运输车m 辆,则派出大型号的渣土运输车为(20-m)辆.由题意,得5m +8(20-m)≥148.解得m ≤4.∵小型渣土车至少派出2辆,∴m ≥2.∴2≤m ≤4. ∵m 为正整数,∴m 取2,3,4.故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆; 第二种方案:大型运输车17辆,小型运输车3辆; 第三种方案:大型运输车16辆,小型运输车4辆.2.以“月季,城市因你而美丽”为主题的2016南阳月季展,将于本月底开幕.南阳月季博览园(主会场)出售的门票分为成人票和儿童票.购买3张成人票和2张儿童票共需40元,购买2张成人票和3张儿童票共需35元. (1)求成人票和儿童票的单价;(2)花展期间,若干家庭结伴到博览园游玩,成人与儿童共20人,售票处规定:一次性购票数量超过19张,可购买团体票,每张票均按成人票价的八折出售.请你帮助他们选择花费最少的购票方式.解:(1)设成人票的单价为x 元,儿童票的单价为y 元,根据题意可得⎩⎨⎧3x +2y =40,2x +3y =35,解得⎩⎨⎧x =10,y =5, 答:成人票的单价为10元,儿童票的单价为5元. (2)当购买团体票20张时,需要20×10×0.8=160(元); 设20人中有儿童a 人,则成人(20-a)人,根据题意可得 5a +10(20-a)≤160, 解得a ≥8,即儿童人数大于8时,单独购票,当儿童人数少于8人团体购票,当儿童人数为8人,两种方式都可以.类型2 一次函数的实际应用1.(黄石2013T 23)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1,y 2关于x 的函数图象如图所示:(1)根据图象,直接写出y 1,y 2关于x 的函数关系式;(2)若两车之间的距离为s 千米,请写出s 关于x 的函数关系式;(3)甲、乙两地间有A ,B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.解:(1)⎩⎪⎨⎪⎧y 1=60x (0≤x ≤10),y 2=-100x +600(0≤x ≤6).(2)s =⎩⎪⎨⎪⎧-160x +600(0≤x ≤154),160x -600(154<x ≤6),60x (6<x ≤10).(3)由题意,得s =200.①当0≤x ≤154时,-160x +600=200,∴x =52.∴y 1=60x =150(km ),即A 加油站离甲地的距离为150 km ; ②当154<x ≤6时,160x -600=200,∴x =5.∴y 1=60x =300(km ),即A 加油站离甲地的距离为300 km ; ③当6<x ≤10时,60x>360(舍).综上所述,A 加油站离甲地的距离为150 km 或300 km .1.(2016·深圳)荔枝是深圳特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.解:(1)设桂味售价为每千克x 元,糯米磁售价为每千克y 元,则⎩⎨⎧2x +3y =90,x +2y =55,解得⎩⎪⎨⎪⎧x =15,y =20. 答:桂味售价为每千克15元,糯米味售价为每千克20元.(2)设购买桂味t 千克,总费用为w 元,则购买糯米磁(12-t)千克, ∴12-t ≥2t.∴t ≤4.w =15t +20(12-t)=-5t +240.∵k =-5<0,∴w 随t 的增大而减小. ∴当t =4时,w min =220(元).答:购买桂味4千克,糯米磁8千克时,总费用最少.2.(2016·大庆)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x(天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x(天)的关系如图中线段l 2所示(不考虑其他因素).(1)求原有蓄水量y 1(万m 3)与时间x(天)的函数关系式,并求当x =20时的水库总蓄水量;(2)求当0≤x ≤60时,水库的总蓄水量y(万m 3)与时间x(天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.解:(1)设y 1=kx +b ,把(0,1 200)和(60,0)代入到y 1=kx +b ,得⎩⎨⎧b =1 200,60k +b =0, 得⎩⎪⎨⎪⎧k =-20,b =1 200. ∴y 1=-20x +1 200.当x =20时,y 1=-20×20+1 200=800. (2)设y 2=k 1x +b 1,把(20,0)和(60,1 000)代入到y 2=k 1x +b 1中,得⎩⎨⎧20k 1+b 1=0,60k 1+b 1=1 000,解得⎩⎪⎨⎪⎧k 1=25,b 1=-500. ∴y 2=25x -500.当0≤x ≤20时,y =-20x +1 200;当20<x ≤60时,y =y 1+y 2=-20x +1 200+25x -500=5x +700. y ≤900,则5x +700≤900,解得x ≤40.当y 1=900时,900=-20x +1 200,解得x =15. ∴发生严重干旱时x 的范围为15≤x ≤40.3.(2016·武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:其中(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1,y 2与x 的函数关系式; (2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 解:(1)y 1=(6-a)x -20(0<x ≤200),y 2=-0.05x 2+10x -40(0<x ≤80);(2)甲产品:∵3≤a ≤5,∴6-a >0,∴y 1随x 的增大而增大. ∴当x =200时,y 1max =1 180-200a(3≤a ≤5). 乙产品:y 2=-0.05x 2+10x -40(0<x ≤80), ∴当0<x ≤80时,y 2随x 的增大而增大. 当x =80时,y 2max =440(万元).∴产销甲种产品的最大年利润为(1 180-200a)万元,产销乙种产品的最大年利润为440万元. (3)1 180-200a >440,解得3≤a <3.7时,此时选择甲产品; 1 180-200a =440,解得a =3.7时,此时选择甲乙产品; 1 180-200a <440,解得3.7<a ≤5时,此时选择乙产品. ∴当3≤a <3.7时,生产甲产品的利润高; 当a =3.7时,生产甲乙两种产品的利润相同; 当3.7<a ≤5时,生产乙产品的利润高.类型3 二次函数的实际应用1.(2015黄石T 23)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x >0即售价上涨,x <0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y 与x 之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润不少于6 000元应如何控制销售价格?解:(1)由题意,可得y =⎩⎪⎨⎪⎧300-10x (0≤x ≤30)300-20x (-20≤x<0); (2)由题意,可得w =⎩⎨⎧(20+x )(300-10x )(0≤x ≤30),(20+x )(300-20x )(-20≤x<0),化简,得w =⎩⎨⎧-10x 2+100x +6 000(0≤x ≤30),-20x 2-100x +6 000(-20≤x<0), 即w =⎩⎪⎨⎪⎧-10(x -5)2+6 250(0≤x ≤30),-20(x +52)2+6 125(-20≤x<0). 由题意可知x 应取整数,故当x =-2或x =-3时,w <6 125<6 250,故当销售价格为65元时,利润最大,最大利润为6 250元. (3)由题意w ≥6 000,如图,令w =6 000,即6 000=-10(x -5)2+6 250,6 000=-20(x +52)2+6 125,解得x 1=-5,x 2=0,x 3=10.∴当w ≥6 000时,-5≤x ≤10.故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6 000元.1.(2016·大冶模拟)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x(单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的y 1与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130 kg 时,该产品每千克生产成本与销售价相等,都为42元.(2)设线段AB 所表示的y 1与x 之间的函数关系式为y =k 1x +b 1, ∵y =k 1x +b 1的图象过点(0,60)与(90,42),∴⎩⎨⎧b 1=60,90k 1+b 1=42,∴解得⎩⎪⎨⎪⎧k 1=-0.2,b 1=60.∴这个一次函数的表达式为y =-0.2x +60(0≤x ≤90).(3)设y 2与x 之间的函数关系式为y =kx +b ,∵经过点(0,120)与(130,42),∴⎩⎨⎧b =120,130k +b =42,解得⎩⎪⎨⎪⎧k =-0.6.b =120.∴这个一次函数的表达式为y =-0.6x +120(0≤x ≤130).设产量为x kg 时,获得的利润为W 元,当0≤x ≤90时,W =x[(-0.6x +120)-(-0.2x +60)]=-0.4(x -75)2+2 250, ∴当x =75时,W 的值最大,最大值为2 250;当90≤x ≤130时,W =x[(-0.6x +120)-42]=-0.6(x -65)2+2 535, ∴当x =90时,W =-0.6(90-65)2+2 535=2 160,由-0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2 160, 因此当该产品产量为75 kg 时,获得的利润最大,最大值为2 250元.2.(2016·黔东南)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因,当10<x ≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?解:(1)设一次购买x 只, 则20-0.1(x -10)=16,解得x =50.答:一次至少买50只,才能以最低价购买. (2)当10<x ≤50时,y =[20-0.1(x -10)-12]x =-0.1x 2+9x , 当x>50时,y =(16-12)x =4x ;综上所述:y =⎩⎪⎨⎪⎧-0.1x 2+9x (10<x ≤50),4x (x>50).(3)y =-0.1x 2+9x =0.1(x -45)2+202.5,①当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大. ②当45<x ≤50时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当x =46时,y 1=202.4, 当x =50时,y 2=200. y 1>y 2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x =45时,最低售价为20-0.1(45-10)=16.5(元),此时利润最大.3.(2015·黄石模拟)某店因为经营不善欠下38 400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30 000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其他费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?解:(1)y =⎩⎪⎨⎪⎧-2x +140(40≤x ≤58),-x +82(58<x ≤71).(2)设员工人数为n ,依题意,可得(48-40)·(-2×48+140)-(106+82n)=0,352-106-82n =0,解得n =3. (3)设每天的利润为w ,依题意,有w =⎩⎪⎨⎪⎧(x -40)(-2x +140)-270(40≤x ≤58),(x -40)(-x +82)-270(58<x ≤71).整理为w =⎩⎪⎨⎪⎧-2(x -55)2+180(40≤x ≤58),-(x -61)2+171(58<x ≤71). 设该店最早需要m 天能还清所有债务,则有 ①m =68 400w =68 400-2(x -55)2+180≥68 400180=380(当x =55时取等号); ②m =68 400w =68 400-(x -61)2+171≥68 400171=400.(当x =61时取等号) 所以该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎪40m +18(m +20)≤2 000.⎩⎨解得 26≤m ≤28 . ⎪ ⎪ ⎩ ⎩ 专题复习(五) 方程、不等式与函数的实际应用题1.(2016· 永州)某种商品的标价为 400 元/件,经过两次降价后的价格为 324 元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为 300 元/件,两次降价共售出此种商品 100 件,为使两次降价销售的总利润不少于 3 210 元,问 第一次降价后至少要售出该种商品多少件?解:(1)设该种商品每次降价的百分率为 x%,依题意得 400×(1-x%)2=324,解得 x =10 或 x =190(舍去).答:该种商品每次降价的百分率为 10%.(2)设第一次降价后售出该种商品 m 件,则第二次降价后售出该种商品(100-m )件. 第一次降价后的单件利润为:400×(1-10%)-300=60( 元/件); 第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m +24×(100-m )=36m +2 400≥3 210,解得 m ≥22.5. ∴m ≥23.答:为使两次降价销售的总利润不少于 3 210 元,第一次降价后至少要售出该种商品 23 件.2.“全民阅读”深入人心,读好书让人终身受益.为打造书香校园,满足同学们的读书需求,学校图书馆准备到 新华书店采购文学名著和科技阅读两类图书.经了解,20 本文学名著和 40 本科技阅读共需 1 520 元,一本文学名 著比一本科技阅读多 22 元(注:所采购的文学名著书价格都一样,所采购的科技阅读书价格都一样). (1)求每本文学名著和科技阅读各多少元;(2)若学校要求购买科技阅读比文学名著多 20 本,科技阅读和文学名著总数不低于 72 本,总费用不超过 2 000 元, 请你为学校求出符合条件的购书方案;(3)请你求出此次活动学校最多需投入资金多少元?解:(1)设每本文学名著 x 元,每本科技 阅读 y 元.依题意,有⎧20x +40y =1 520, ⎧x =40,⎨解得⎨ ⎪x =y +22. ⎪y =18.答:每本文学名著和科技阅读分别是 40 元,18 元.(2)设购买文学名著 m 本,则科技阅读(m +20)本,依题意,有⎧⎪m +m +20≥72, 829由于 m 为正整数,∴m 取值为 26,27,28.也就是说这次购买方案有 3 种,即文学名著 26 本,科技阅读 46 本;文学名著 27 本,科技阅读 47 本;文学名著 28 本,科技阅读 48 本.(3)由(2)知,此次活动购买最多图书为文学名著 28 本,科技阅读 48 本. ∴28×40+48×18=1 984(元).答:此次活动学校最多需投 入资金 1 984 元.3.(2016· 孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进 A ,B 两种树木共 100 棵进行校园绿化升级.经市场调查:购买 A 种树木 2 棵,B 种树木 5 棵,共需 600 元;购买 A 种树木 3 棵,B 种树木 1 棵,共需 380 元.(1)求 A 种,B 种树木每棵各多少元;(2)因布局需要,购买 A 种树木的数量不少于 B 种树木数量的 3 倍.学校与中标公司签订的合同中规定:在市场价 格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花 费用最省,并求出最省的费用.⎪⎪⎩⎩⎪⎩10k1+b1=300.⎪⎩b1=-300.9k2+b2=300.⎪⎩b2=-600.∴5-5=(小时);答:甲车出发后小时或2小时或3小时或4后,两车相距20千米.⎪⎪⎪⎪⎩解:(1)设A种,B种树木每棵分别为a元,b元,则⎧2a+5b=600,⎧a=100,⎨解得⎨⎪3a+b=380.⎪b=80.答:A种,B种树木每棵分别为100元,80元.(2)设购买A种树木为x棵,则购买B种树木为(100-x)棵,则x≥3(100-x),解得x≥75.设实际付款总金额为y元,则y=0.9[100x+80(100-x)]=18x+7200.∵18>0,y随x的增大而增大,∴x=75时,y最小.即x=75,y最小值=18×75+7200=8550(元).∴当购买A种树木75棵,B种树木25棵时,所需费用最少,最少费用为8550元.4.(2016·龙东)甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与时刻t的对应关系,如图所示:(1)A、B两城之间的距离是多少千米?(2)求乙车出发后几小时追上甲车;(3)直接写出甲车出发后多长时间,两车相距20千米.解:(1)由图象知,A、B两城之间的距离是300千米.(2)设过(5,0),(10,300)的直线表达式为y甲=k1t+b1,则⎧5k1+b1=0,⎧k1=60,⎨解得⎨∴y甲=60t-300.设过(6,0),(9,300)的直线表达式为y乙=k2t+b2,则⎧6k2+b2=0,⎧k2=100,⎨解得⎨∴y乙=100t-600.⎪当y甲=y乙,即60t-300=100t-600.解得t=7.5.∴7.5-6=1.5.答:乙车出发后1.5小时追上甲车.1(3)①当y甲=20,即60t-300=20,解得t=53.1133②当y甲=y乙+20,即60t-300=100t-600+20,解得t=7.∴7-5=2(小时);③当y乙=y甲+20,即100t-600=60t-300+20,解得t=8.∴8-5=3(小时);222④当y甲=300-20,即60t-300=300-20,解得t=93.∴93-5=43(小时).1233⎪ ⎪ ⎩ ⎩5.(2016· 泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买 10 个乒乓球,乒乓球的单价为 2 元/个,若购买 20 副直拍球拍 和 15 副横拍球拍花费 9 000 元;购买 10 副横拍球拍比购买 5 副直拍球拍多花费 1 600 元. (1)求两种球拍每副各多少元;(2)若学校购买两种球拍共 40 副,且直拍球拍的数量不多于横拍球拍数量的 3 倍,请你给出一种费用最少的方案, 并求出该方案所需费用.解:(1)设直拍球拍每副 x 元,横拍球拍每副 y 元,由题意得⎧20(x +20)+15(y +20)=9 000, ⎧x =220,⎨解得⎨ ⎪5(x +20)+1 600=10(y +20). ⎪y =260.答:直拍球拍每副 220 元,横拍球拍每副 260 元.(2)设购买直拍球 拍 m 副,则购买横拍球拍(40-m)副,由题意得 m ≤3(40-m).解 得 m ≤30.设买 40 副球拍所需的费用为 w 元,则w =(220+20)m +(260 +20)(40-m)=-40m +11 200. ∵-40<0,∴w 随 m 的增大而减小.∴当 m =30 时,w 取最小值,最小值为-40×30+11 200=10 000(元).答:购买直拍球拍 30 副,购买横拍球拍 10 副时,费用最少,最少为 10 000 元.6.(2016· 武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销 x 件.已知产销两种产品的有关信息如下表:每件售价每件成本 每年其他费用 每年最大产产品甲乙(万元)620 (万元)a10(万元)2040+0.05x 2销量(件)20080其中 a 为常数,且 3≤a ≤5.(1)若产销甲、乙两种产品的年利润分别为 y 1 万元、y 2 万元,直接写出 y 1、y 2 与 x 的函数关系式; (2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 解:(1)y 1=(6-a)x -20(0<x ≤200);y 2=(20-10)x -(40+0.05x 2)=-0.05x 2+10x -40(0<x ≤80). (2)∵3≤a ≤5,∴6-a>0.∴y 随 x 的增大而增大. ∴当 x =200 时,y 1 的最大值为 1 180-200a.y 2=-0.05x 2+10x -40=-0.05(x -1 00)2+460,∵-0.05<0,0<x ≤80,抛物线开口向下,在对称轴的左侧,y 随 x 的增大而增大, ∴当 x =80 时,y 2 的最大值为 440.(3)当 1 180-200a>440 时,a<3.7; 当 1 180-200a =440 时,a =3.7; 当 1 180-200a<440 时,a>3.7;∴当 3≤a<3.7 时,选择产销甲种 产品获得最大年利润;当 a =3.7 时,产销甲、乙两种产品获得的最大年利润一样;综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.解:(1)将y=260代入y=32x,得260=32x,解得x=8.⎩当3.7<a≤5时,选择产销乙种产品获得最大年利润.7.(2016·临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?解:(1)当0<x≤1时,y甲=22x,y乙=16x+3;当x>1时,y甲=22+15(x-1)=15x+7,y乙=16x+3.1(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得0<x<2;1令y甲=y乙,即22x=16x+3,解得x=2;1令y甲>y乙,即22x>16x+3,解得2<x≤1.②当x>1时,令y甲<y乙,即15x+7<16x+3,解得x>4;令y甲=y乙,即15x+7=16x+3,解得x=4;令y甲>y乙,即15x+7>16x+3,解得1<x<4.1122128.(2016·天水)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元.为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系y=⎧⎪32x(0<x≤5),⎨⎪⎩20x+60(5<x≤19).(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)18此时,x值不满足0<x≤5,故这种情况不存在.∴5<x≤19时,则有20x+60=260,解得x=10.∴李红第10天生产的粽子数量为260只.(2)由图可知p1=2(0<x≤9).设p2=kx+b(9<x≤19),将(9,2),(19,3)代入,得⎧9k+b=2,⎨⎩19k+b=3,⎧⎪k=0.1,解得⎨⎪b=1.1.⎧64x(0<x≤5),⎩解:(1)∵300=a×302,∴a=.∴b=-.⎩-91(x-90)+700(30≤x≤90).(2)∵-(x-90)2+700=684,∴684-624=15,15+30+(90-78)=57(分钟).∴p2=0.1x+1.1(9<x≤19).当0<x≤5时,w=(4-2)×32x=64x,由一次函数的性质,知当x=5时,w最大=320.当5<x≤9时,w=(4-2)×(20x+60)=40x+120,由一次函数的性质,知当x=9时,w最大=480.当9<x≤19时,w=[4-(0.1x+1.1)]×(20x+60)=-2x2+52x+174=-2(x-13)2+512,由二次函数的性质,知当x=13时,w最大=512.∴w与x之间的函数表达式为:⎪w=⎨40x+120(5<x≤9),⎪⎩-2x2+52x+174(9<x≤19).由320<480<512,知第13天时利润最大,最大利润是512元.9.(2016·黄石)科技馆是少年儿童假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为⎧⎪ax2(0≤x≤30),y=⎨10:00之后来的游客较少可忽略不计.⎪b(x-90)2+n(30≤x≤90).(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?13∵n=700,b×(30-90)2+700=300,19⎧1x2(0≤x≤30),∴y=⎨3219解得x=78或x=102(舍去).4∴馆外游客最多等待57分钟.10.(2016·荆门)A城有某种农机30台,B城有农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台.从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变.如何调运,使总费用最少?解:依题意列表如下:表一:运送数量(台)送出地数量接收地C D合计A B 合计x34-x3430-x6+x36304070表二:运输费用(元/台)送出地费用接收地AB(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12540.∵表一中的数是非负整数,∴自变量x的取值范围是0≤x≤30,且为整数.(2)∵W≥16460,∴140x+12540≥16460.解得x≥28.∴28≤x≤30.此时整数x=28,29,30.∴共有3种方案,如下表:方案一C250150方案二D200240方案三A B C286D234C295D135C304D36(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12540.①当0<a<140时,140-a>0,W随x的增大而增大,∴x=0时,W最小.此时,使总费用最少的方案为:从A至C乡运0台,从A至D乡运30台,从B至C乡运34台,从B至D乡运6台;②当a=140时,各种调运费用相同,均是12540;③当140<a≤200时,140-a<0,W随x的增大而减小,∴x=30时,W最小.此时,使总费用最少的方案为:从A至C乡运30台,从A至D乡运0台,从B至C乡运4台,从B至D乡运36台.。