常系数线性微分方程组的解法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 1
exp At exp(0 2 t) exp(0 0 t)
e2t


0
0 0
e2t
{E

0
1 0 0 t 0
12 0
t2 2!

}
e2t


0
0
e2t


1 0
t 1

e2t
1 0
t 1
.
,

0.
常系数线性方程组
例4
试求矩阵A=
2 1
1 4
特征值和特征向量.
解 特征方程为
det(
E

A)



1
2
1
4

2
6
9

0
因此 3为两重特征根, 为求其对应的特征向量
考虑方程组
1
(E A)c 1
1 1
c1 c2
( E

A)u

5i

5
5
5i

u1 u2


0
解得
u


1 i
,

0.
对特征根2 3 5i的特征向量v (v1, v2 )T 满足
(
E

A)u

5i

5
5 5i

v1 v2


0
解得
v


i 1
例2
试求出x'

2 0
1 2
x的基解矩阵.
解 因为
2 1 2 0 0 1 A 0 2 0 2 0 0
而后面两个矩阵是可交换的
常系数线性方程组
2 0
0 2

2E,
0 0
12 0 0 0
0 0 ,

2 0



,
e
Jnt

常系数线性方程组
二 基解矩阵的计算公式
1 基解矩阵与其特征值和特征向量的关系
类似第四章4.2.2,寻求
x' Ax,
形如 (t) etc, c 0,
(5.33) (5.43)
的解, 其中常数和向量c是待定的.
将(5.43)代入(5.33)得
etc Aetc,
a1

exp At E
a2



t 1!

a12
a22
an


常系数线性方程组


t
2
2!
an2


a1m
a2m

ea1t

tm


ea2t


m!



anm


eant

因et 0,上式变为
(E A)c 0,
(5.44)
常系数线性方程组
方程(5.44)有非零解的充要条件是
det(E A) 0,
结论 微分方程组(5.33)有非零解(t) etc的充要条件是
是矩阵A的特征根, c是与对应的特征向量.
即 (t) et为(5.33)解 (E A)c 0,有非零解


0
解得
c

1 1
,
0,
是对应于特征根 3的特征向量
常系数线性方程组
2 基解矩阵的计算方法---常系数线性微分方程组的解法
(1) 矩阵A具有n个线性无关的特征向量时
定理10 如果矩阵A具有n个线性无关的特征向量

A k ck ,
t c,
k!
k!

而数项级数
A k ck
k 1 k !
收敛 .
常系数线性方程组
2 矩阵指数的性质
(1) 若AB BA,则eAB eAeB. (2) 对任何矩阵A, (exp A)1存在,且
(exp A)1=exp(-A). (3) 若T是非奇异的,则
exp(T-1AT ) T-1(exp A)T.
1! 2!
(m 1)!
A(E At A2 t2 Am tm ) Aexp At A(t),
2!
m!
故(t) exp At是基解矩阵
常系数线性方程组
例1 如果A是一个对角矩阵
a1

A
a2




an
试求出x' Ax的基解矩阵.
解 由(5.34)得
常系数线性方程组
一、矩阵指数expAt的定义和求法
1 expAt的定义
定义 设A为n n常数矩阵,则定义矩阵指数
expA为下列矩阵级数的和
exp A Ak E A A2 Am
k1 k !
2!
m!
(5.34)
其中E为单位矩阵, Am为A的m次幂, A0 E,0! 1.
注1: 矩阵级数(5.34)是收敛的.
由于
Ak

Ak ,
k! k!

而数项级数
Ak
k1 k !
收敛 .
常系数线性方程组
注2: 级数
exp At Ak tk E At A2 t2 Am tm
k1 k !
2!
m!
在t的任何有限区间上是一致收敛的.
由于
Akt k
§4.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t), dt
这里系数矩阵A为n n常数矩阵, f (t)在
a t b上连续的向量函数;
若f (t) 0,则对应齐线性微分方程组为
dx Ax, dt
(5.33)
本节主要讨论(5.33的基解矩阵的求法.
常系数线性方程组
Байду номын сангаас
(2) 基解矩阵的一种求法
对n阶矩阵A设 A T 1JT
其中T为奇异矩阵, J为Jordan矩阵.
则 eAt T 1eJtT.
其中 J1
J
J2



e J1t


, eJt
eJ2t


J
n


注1: 由eAtT 1 T 1eJt知,T 1eJt也是基解矩阵.
常系数线性方程组
3 常系数齐线性微分方程组的基解矩阵
(1)定理9 矩阵
(t) exp At 是(5.33)的基解矩阵,且 (0) E.
证明: 当t 0时,由exp At定义知 (0) E;
又因为 '(t) (exp At)'
A A2 t A3 t2 Am tm1
例3
试求矩阵A=
3 5
5 3
特征值和特征向量.
解 A的特征值就是特征方程
det( E

A)



5
3
5
3

2

6

34

0
的根, 1 3 5i, 2 3 5i.
常系数线性方程组
对特征根1 3 5i的特征向量u (u1,u2 )T 满足
相关文档
最新文档