常系数线性微分方程的解法
常系数线性微分方程的一般解法

如何将常系数线性微分方程与其他领域的知识进行交叉融 合,如人工智能、大数据等,是一个值得探索的方向。
复杂系统建模
随着对复杂系统的研究深入,如何建立更精确的数学模型 ,并求解这些模型,是未来研究的重要挑战。
应用拓展
随着科技的发展,常系数线性微分方程的应用领域也在不 断拓展,如何将其应用于新领域并解决实际问题,是一个 具有挑战性的任务。
二阶常系数线性微分方程
01
方程形式
y'' + p*y' + q*y = r
特征根法
根据特征方程的根的性质,将方程 化为标准形式,然后求解
03
02
解法
通过特征根法或公式法求解
公式法
根据特征方程的根,利用公式求解 通解
04
高阶常系数线性微分方程
方程形式
y(n) + a1*y(n-1) + a2*y(n-2) + ... + an*y = 0
是已知函数的线性组合。
齐次方程的解在求解非齐次方程时也经常用到,因为非齐次项
03
可以通过与齐次方程的解进行运算来消去。
非齐次方程的求解
01
非齐次方程是常系数线性微分 方程的一种常见形式,其解法 相对复杂。
02
非齐次方程的解可以通过常数 变易法或待定系数法求解,其 解的形式通常是已知函数的线 性组合加上一个特解。
常系数线性微分方程的一 般解法
• 引言 • 常系数线性微分方程的解法 • 举例说明 • 总结与展望
01
引言
微分方程的定义与重要性
微分方程是描述数学模型中变量之间 动态关系的数学工具,广泛应用于物 理、工程、经济等领域。
常系数线性微分方程组解法

dy (1) dx = 3 y 2 z , 例1 解微分方程组 dz = 2 y z . ( 2) dx 解 设法消去未知函数 y , 由(2)式得 式得
1 dz y = + z ( 3) 2 dx dy 1 d 2 z dz = 2 + , 两边求导得, 两边求导得, dx 2 dx dx
原方程组的通解为
1 y = ( 2C1 + C 2 + 2C 2 x )e x 2 , z = ( C + C x )e x 1 2
d 用 D 表示对自变量 x求导的运算 , dx
例如, 例如, y
(n)
+ a1 y ( n 1 ) + L + a n 1 y ′ + a n y = f ( x )
类似解代数方程组消去一个未知数,消去 类似解代数方程组消去一个未知数 消去 x
(1) ( 2) × D :
x D3 y = et , ( D 4 + D 2 + 1) y = De t .
4 2 t
(3) 3 (4) 4 (5) 5
( 2) ( 3) × D :
即
( D + D + 1) y = e
二、常系数线性微分方程组的解法
步骤: 步骤: 1. 从方程组中消去一些未知函数及其各阶导 数,得到只含有一个未知函数的高阶常系数线性 微分方程. 微分方程. 2.解此高阶微分方程,求出满足该方程的未知 解此高阶微分方程, 函数. 函数. 3.把已求得的函数带入原方程组,一般说来, 把已求得的函数带入原方程组,一般说来, 不必经过积分就可求出其余的未知函数. 不必经过积分就可求出其余的未知函数.
代入(1)式并化简 把(3), (4)代入 式并化简 得 代入 式并化简,
常系数线性微分方程的解法

则
e ,te , ..., t e ,te , ..., t .................. e ,te
m t m t 2 t 2 t
1 t
1 t
k1 1 1 t
e , e , e ,
k2 1 2 t
, ..., t
km 1 m t
为L[ x] 0的一个基本解组。
dnx d n 1 x a1 ( t ) n1 n dt dt dx an1 ( t ) an ( t ) x u( t ) dt
和
dnx d n 1 x a1 ( t ) n1 n dt dt dx an 1 ( t ) a n ( t ) x v ( t ) dt
K ( K 1) ( K n 1) a1 K ( K 1) ( K n 2) an 0
例
求欧拉方程
x 3 y x 2 y 4 xy 0 的通解.
解 作变量变换
x e t 或 t ln x,
原方程的特征方程为
k 2k 3k 0,
2
作业 : P164 2(3),(5),(7);3(2),(4);4(2)
' n n 1
及2l ( k1 + 2l n)个互异复根
i 1 1 i 1 , i 1 1 i 1 , ..., il l i l , il l i l
重次分别为s1 , s2 ,..., sr .显然
k1 k2 ... kr 2( s1 s2 ... sr ) n, 则
练 习 题
求下列欧拉方程的通解 : 1.x y xy y 0;
2
常系数线性微分方程

常系数线性微分方程常系数线性微分方程是微分方程中一类重要的特殊形式,其特点是方程中的系数是常数。
本文将介绍常系数线性微分方程的定义、求解方法以及相关性质。
一、常系数线性微分方程的定义常系数线性微分方程又称为齐次线性微分方程,其一般形式为:\[a_ny^{(n)}+a_{n-1}y^{(n-1)}+...+a_1y'+a_0y=0\]其中,n为方程的阶数,\(y^{(n)}\)表示y的n阶导数。
二、常系数线性微分方程的求解方法1. 特征方程法通过设定方程的解为\(y=e^{mx}\),将其代入原方程中,得到特征方程:\[a_nm^n+a_{n-1}m^{n-1}+...+a_1m+a_0=0\]解特征方程,可得到n个不同的解,分别是\(m_1, m_2,..., m_n\)。
则原方程的通解为:\[y=c_1e^{m_1x}+c_2e^{m_2x}+...+c_ne^{m_nx}\]其中,\(c_1, c_2,..., c_n\)为常数。
2. 变量分离法对于一些特殊的常系数线性微分方程,可以通过变量转换将其化为可分离变量的形式,从而简化求解过程。
三、常系数线性微分方程的性质1. 零解的存在唯一性对于常系数线性微分方程,其零解必然存在且唯一。
2. 齐次性质如果y1(x)是常系数线性微分方程的一个解,那么ky1(x)(k为常数)也是该微分方程的解。
3. 叠加性质如果y1(x)和y2(x)分别是常系数线性微分方程的解,那么y(x)=y1(x)+y2(x)也是该微分方程的解。
4. 线性性质设y1(x)和y2(x)分别是齐次常系数线性微分方程的两个解,c1和c2为常数,则c1y1(x)+c2y2(x)也是该微分方程的解。
总结:常系数线性微分方程作为微分方程中的重要形式,在工程、物理学以及其他科学领域中具有广泛的应用。
求解常系数线性微分方程的方法多种多样,特征方程法和变量分离法是常用的求解方法。
同时,常系数线性微分方程满足一系列重要性质,这些性质使得我们可以更加灵活地利用微分方程进行问题的建模和求解。
消元法求解常系数线性微分方程组

消元法求解常系数线性微分方程组下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!消元法求解常系数线性微分方程组导言在微积分和线性代数领域,线性微分方程组是一类重要的数学问题,它们在物理学、工程学以及其他科学领域中有着广泛的应用。
常微分方程的常系数线性方程

常微分方程的常系数线性方程常微分方程是求解自然现象中变量随时间变化的数学工具。
它是描述自然现象中许多重要现象如振荡、决策、生长和衰变等的基础。
常微分方程又可分为一阶方程和高阶方程。
一般的高阶方程可以通过将其转化为同阶但有更多变量的方程来解决。
而本文所涉及的是常微分方程中的常系数线性方程,它是一类重要的高阶方程,大量实际问题都可以用常系数线性方程来描述和解决。
一、基本概念和定义常系数线性方程是指高阶形式为$y^n + a_{n-1}y^{n-1} + ... + a_1y’ + a_0y = f(x)$的方程,其中$n \in N, a_i \in R (i=0,1,...,n-1)$是常数,$f(x)$是已知函数,$y=y(x)$是要解的未知函数。
该方程中的常数称为常系数,线性指$f(x)$为一次函数,即不含有未知函数$y$的高次项。
二、解法为了求解常系数线性方程,我们首先要解其特征方程,即解形如$y^n + a_{n-1}y^{n-1} + ... + a_1y’ + a_0y = 0$的齐次方程。
特征方程的根称为特征根,常系数线性方程的解法要分三种情况:实根不同、重根和虚根。
(1)实根不同的情况当特征方程有$n$个不同实根$\lambda_1,\lambda_2,...,\lambda_n$时,设对应的齐次方程的$n$个线性无关解分别为$y_1,y_2,...,y_n$,那么方程的通解为$y=c_1y_1+c_2y_2+...+c_ny_n$,其中$c_1,c_2,...,c_n$是任意常数。
(2)重根的情况当特征方程有一个重根$\lambda$时,设对应的齐次方程的两个线性无关解分别为$y_1=e^{\lambda x}$和$y_2=xe^{\lambda x}$,那么方程的通解为$y=(c_1+c_2x)e^{\lambda x}$,其中$c_1,c_2$是任意常数。
(3)虚根的情况当特征方程有$n$个对应的虚根$\alpha_1 \pm \beta_i i(1\leq i\leq m)$时,设对应的齐次方程的$n$个线性无关解分别为:$y_1=e^{\alpha_1x}cos\beta_1x,...,y_{2m-1}=e^{\alpha_1x}cos\beta_mx$$y_2=e^{\alpha_1x}sin\beta_1x,...,y_{2m}=e^{\alpha_1x}sin\beta _mx$那么方程的通解为$y=(c_1cos\beta_1x+c_2sin\beta_1x)e^{\alpha_1x}+...+(c_{2m-1}cos\beta_mx+c_{2m}sin\beta_mx)e^{\alpha_1x}$,其中$c_1,c_2,...,c_{2m}$是任意常数。
常微分方程基本公式

常微分方程基本公式一、一阶常微分方程。
1. 可分离变量方程。
- 形式:(dy)/(dx)=f(x)g(y)- 解法:将方程变形为(dy)/(g(y)) = f(x)dx,然后两边分别积分∫(dy)/(g(y))=∫f(x)dx + C,其中C为任意常数。
2. 齐次方程。
- 形式:(dy)/(dx)=F((y)/(x))- 解法:令u = (y)/(x),即y = ux,则(dy)/(dx)=u + x(du)/(dx)。
原方程化为u + x(du)/(dx)=F(u),这是一个可分离变量方程,可按照可分离变量方程的方法求解。
3. 一阶线性微分方程。
- 形式:(dy)/(dx)+P(x)y = Q(x)- 通解公式:y = e^-∫ P(x)dx(∫ Q(x)e^∫ P(x)dxdx + C)二、二阶常系数线性微分方程。
1. 齐次方程。
- 方程形式:y''+py'+qy = 0(其中p,q为常数)- 特征方程:r^2+pr + q=0- 当特征方程有两个不同实根r_1,r_2时,通解为y = C_1e^r_1x+C_2e^r_2x;- 当特征方程有重根r时,通解为y=(C_1+C_2x)e^rx;- 当特征方程有一对共轭复根r_1,2=α±β i时,通解为y = e^α x(C_1cosβ x + C_2sinβ x)。
2. 非齐次方程。
- 方程形式:y''+py'+qy = f(x)- 通解结构:y = y_h+y_p,其中y_h是对应的齐次方程的通解,y_p是一个特解。
- 当f(x)=P_m(x)e^λ x(P_m(x)是m次多项式)时,特解y_p的形式:- 若λ不是特征方程的根,则y_p=Q_m(x)e^λ x(Q_m(x)是m次待定多项式);- 若λ是特征方程的单根,则y_p=xQ_m(x)e^λ x;- 若λ是特征方程的重根,则y_p=x^2Q_m(x)e^λ x。
常微分方程中的常系数线性方程及其解法

常微分方程中的常系数线性方程及其解法常微分方程(Ordinary Differential Equation,ODE)是一种数学模型,用于描述时间或空间上量的变化规律。
常微分方程中的常系数线性方程是ODE中一个重要的类别,其解法具有一定的规律性和普适性。
本文将就常微分方程中的常系数线性方程及其解法做简要介绍。
一、常系数线性方程的定义常系数线性方程是指其系数不随自变量t的变化而改变的线性方程。
一般写为:$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=f(t)$$其中a的值为常数,f(t)为已知函数,y(t)为未知函数,方程中最高阶导数的阶数为n。
n阶常系数线性方程也称为n阶齐次线性方程;当f(t)≠0时,称其为n阶非齐次线性方程。
二、常系数线性方程的解法对于一般形式的常系数线性方程,我们常用特征根的方法来求解。
具体来说,先考虑对应的齐次线性方程$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=0$$设y(t)=e^{rt},则有$$r^ne^{rt}+a_{n-1}r^{n-1}e^{rt}+...+a_1re^{rt}+a_0e^{rt}=0$$整理得到$$(r^n+a_{n-1}r^{n-1}+...+a_1r+a_0)e^{rt}=0$$根据指数函数的性质得到$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$求解方程$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$可得到n个特征根,设其为$r_1,r_2,...,r_n$。
则对于齐次线性方程,其通解为$$y(t)=c_1e^{r_1 t}+c_2e^{r_2 t}+...+c_ne^{r_n t}$$其中$c_1,c_2,...,c_n$为待定常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an (t )x u(t )
和
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an (t )x v(t )
的解.
如果n阶线性微分方程
dnx
d n1 x
dx
dt n a1(t ) dt n1 ... an1(t ) dt an (t )x f (t )
关于复值解有如下结论 :
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an (t )x 0
(4.2)
定理4.2.1 如果方程(4.2)中所有系数ai (t)都是实值
函数,而x z(t) (t) i (t)是方程的复值解,则z(t) 的实部 (t),虚部 (t)和其共轭复数z (t )也都是方程
则
e1t,e2t , ..., eit ,
e1t cos 1t,e1t sin 1t,...,eit cos it,eit sin it
为L[x] 0的一个实值基本解组。
II: 特征根有重根的情形
结果2:如果L[ x] 0的特征方程F n a1 n1 ... an 0 有m个互异的实根1,2,...,m , (1,2,...,m中可能有
实变量的复值函数的极限, 连续性, 可导性与实 变量的实值函数相应概念一致.
设K i是任一复数,定义
eKt et (cos t i sin t )
则有
cos t 1 (ei t ei t ), sin t 1 (ei t ei t )
2
2i
另外,还有如下重要性质:
(1) e( K1 K2 )t e K1t ge K2t ,
中的系数a1(t)(t 1, 2, ..., n)都是常数,则称它们为n阶常系数 线性微分方程,即
dnx dt n
a1
d n1 x dt n1 ... an1
dx dt an x
f (t),
(1)
其中ai (i 1, 2,..., n)都是常数。特别地,如果方程中的非齐次 项f ( x) 0,则称它为n阶常系数齐线性微分方程。如果令
一些是复数),重次分别为k1,k2,...,km (k1+k2+...+km n), 则
e1t,te1t , ..., t k1 1e1t , e2t,te2t , ..., t k2 1e2t ,
.................. emt,temt , ..., t km 1emt ,
为L[x] 0的一个基本解组。
为代数方程
F n a1 n1 ... an 0
的根。
定义1:
称多项式F n a1 n1 ... an为L[ x] 0的特征多项式; 称方程F n a1 n1 ... an 0为L[ x] 0的特征方程; 称方程F n a1 n1 ... an 0的根为L[ x] 0的特征根。
L[ x]
dnx dt n
a1
d n1 x dt n1
...
an1
dx dt
an x,
则方程(1)可简记为L[x] f ( x),而它所对应的齐线性方程可
记为L[x] 0。
一、常系数齐线性微分方程的 解法
I: 特征根是单根的情形 II: 特征根有重根的情形
定理1:函数x eit为方程L[x] 0的解当且仅当=0
练习题答案
1.y
C1
C2 x
.
2.y
C1 x
C2 x2
1 2
(ln2
x
ln
x)
1 4
.
3.y
C1
x2
C2
x2
ln
x
x
1 6
x2
ln3
x.
作业 : P164 2(3),(5),(7);3(2),(4);4(2)
dt 上述结果可以写为
xy Dy,
x2 y d 2 y dy (D2 D) y D(D 1) y, dt 2 dt
x3 y d 3 y 3 d 2 y 2 dy dt 3 dt 2 dt
(D3 3D2 2D) y D(D 1)(D 2) y,
一般地, xk y(k) D(D 1) (D k 1) y.
为L[x] 0的一个实值基本解组。
一、欧拉方程
形如
xn y(n) p1 xn1 y(n1) L pn1 xy pn y f ( x) (4.29)
的方程(其中 p1 , p2 pn为常数) 叫欧拉方程.
特点:各项未知函数导数的阶数与乘积因子自 变量的方次数相同.
解法:欧拉方程是特殊的变系数方程,通过变 量代换可化为常系数微分方程.
例2:求方程
d4x dt 4
2
d2x dt 2
x
0的一个基本解组。
问题:如何求实系数方程的实值基本解组?
结果2':如果L[ x]
0的特征方程F
n
a1 n1
...
an
0
1 2
有r个互异的实根1,2,...,r ,重次分别为k1,k2,...,kr
及2l(k1+2l n)个互异复根
i1 1 i1 , i1 1 i1 , ..., il l il , il l il
§4.2 常系数线性微分方程的解法
一、复值函数与复值解 二、常系数齐线性微分方程的解法 三、常系数非齐线性微分方程的解法
一. 复值函数与复值解
定义 : 如果对于区间a t b中的每一个实数t,有复
数z(t)=(t)+i (t)与它对应,则称z(t)是定义在实值
区间[a, b]上的一个复值函数.
(2) de Kt KeKt , dt
(3)
dn dt n
(e Kt
)
K ne Kt
.
复值解 : 如果实变量复值函数z(t)满足方程
dnx dt n
a1
(
t
)
d n1 x dt n1
L
an1
(t
)
dx dt
an(t)x
f (t)
则称实变量复值函数z(t )为方程(4.1)的复值解.
(4.1)ຫໍສະໝຸດ 将上式代入欧拉方程,则化为以 t 为自变量
的常系数 线性微分方程.
dny
d n1 y
dy
dt b1 dt n1 L bn1 dt bn y 0
(4.30)
如果(4.30)有形如y et的解,则方程(4.29)有形如 y xK的解,因此可以直接求欧拉方程形如y xK 的解.以y xK代入(4.29)并约去因子xK ,就得到确 定K的代数方程
K (K 1)L (K n 1) a1K (K 1)L (K n 2) L an 0
例 求欧拉方程
x3 y x2 y 4xy 0 的通解.
解 作变量变换 x et 或 t ln x, 原方程的特征方程为
k 3 2k 2 3k 0,
特征方程的根为 k1 0, k2 1, k3 3.
(4.2)的解.
定理4.2.2 设方程
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an(t)x u(t ) iv(t )
有复值解x U(t) iV (t),这里ai (t), u(t),v(t)都是实 函数,那么这解的实部U(t)和虚部V (t)分别是方程
所以所求方程的通解为
Y C1 C2et C3e3t
C1
C2 x
C3 x3 .
欧拉方程解法思路
变系数的线性 变量代换
常系数的线性微
微分方程
x et 或 t ln x
分方程
注意:欧拉方程的形式.
练习题
求下列欧拉方程的通解: 1.x2 y xy y 0; 2.x2 y 2xy 2 y ln2 x 2 ln x; 3.x2 y 3xy 4 y x x2 ln x.
e1t cos 1t,te1t cos 1t,...,t kr e 1 it cos 1t, e1t sin 1t, te1t sin 1t,...,t kr e 1 it sin 1t,
...................................,
e1t cos i t, te1t cos it,...,t kr e 1 it cos it, e1t sin i t, te1t in it,...,t kr e 1 it sin it,
重次分别为s1, s2 , ..., sr .显然
k1 k2 ... kr 2(s1 s2 ... sr ) n,则
e1t,te1t , ..., t k1 t e1t , e2t,te2t , ..., t k2 t e2t , .................. ert,tert , ..., t kr t ert ,
作变量变换 x et 或 t ln x,
将自变量换为 t,
dy dy dt 1 dy , dx dt dx x dt
d2y dx2
1 x2
d2y
dt 2
dy , dt
d3y dx 3
1 x3
d3y dt 3
d2y 3
dt 2
2 dy , dt
用 D 表示对自变量 t 求导的运算 d ,
例1:求方程
d3 dt
x
3
d2x dt 2
2x
0的一个基本解组。
问题:如何求实系数方程的实值基本解组?
结果1':如果L[ x] 0的特征方程F n a1 n1 ... an 0 有k个互异的实根1,2,...,k , 及2l(k 2l n)个复根