第七节 载荷和应力的分类

第七节 载荷和应力的分类
第七节 载荷和应力的分类

第七节 载荷和应力的分类

一、载荷分类

作用在机械零件上的载荷可分为静载荷和变载荷两类。不随时间变化或变化较缓慢的载荷称为静载荷。随时间变化的载荷称为变载荷。

在设计计算中,还常把载荷分为名义载荷与计算载荷。根据额定功率用力学公式计算出作用在零件上的载荷称为名义载荷,它没有反映载荷随时间作用的不均匀性、载荷在零件上分布的不均匀性及其它影响零件受载等因素。因此,常用载荷系数K 来考虑这些因素的综合影响。载荷系数K 与名义载荷的乘积即称为计算载荷。

二、应力分类

按应力随时间变化的特性不同,可分为静应力和变应力。不随时间变化或变化缓慢的应力称为静应力(见图1–2a )。随时间变化的应力称为变应力(见图1–2b 、c 、d )。绝大多数机械零件都是处于变应力状态下工作的。

a)

b)

c)

d) 图1-2 静应力及边应力

a)静应力 b)稳定循环变应力 c)不稳定循环变应力 d)随机变应力

变应力可分为稳定循环变应力(见图1–2b )、不稳定循环变应力(见图1–2c )及随机变应力(见图1–2d )。瞬时作用的过载或冲击所产生的应力称为尖峰应力(见图1–2d )。 稳定循环变应力的类型是多种多样的,但归纳起来有如图1–3所示的三种基本类型:(a )非对称循环变应力;(b)脉动循环变应力;(c)对称循环变应力。

为了表示稳定循环变应力状况,引入下列变应力参数:s max –––变应力最大值;s min ––––变应力最小值;s m –––平均应力;s a –––应力幅;r –––循环特性。

如图1–3所示可知,s max=s m+s a;s min=s m–s a;s m=(s max+s min)/2;s a=(s max–s min)/2;r=s min/s max=(s m–s a)/(s m+s a)。当r=+1时,表明s max=s min,即为静应力;当r=–1时,表明s max 与s min的数值相等但符号(即方向)相反,这类应力称为对称循环变应力;当r=0时,即s min=0,s m=s a=s max/2,这类应力称为脉动循环变应力。当r为任意值为(即r1+1、–1、0),这类应力统称为非对称循环变应力(见图1–3a)。

a)

b)

c)图1-3 稳定循环变应力

a)非对称循环变应力b)脉动循环变应力c)对称循环变应力

通常在设计时,对于应力变化次数较少(例如在整个使用寿命期间应力变化次数小于103的通用零件)的变应力,可近似地按静应力处理。

变应力由变载荷产生,也可能由静载荷产生。在静载荷作用下产生变应力的例子如图1–4所示,图示为转轴和滚动轴承a点的应力变化。

图1–4 在静载荷作用下产生变应力的例子

零件的失效形式与材料的极限应力及零件工作时的应力类型有关。在进行强度计算时,首先要弄清楚零件所受应力的类型。

分析设计中应力分类的一次结构法

1997年7月14日收到初稿,1997年10月6日收到修改稿。 分析设计中应力分类的一次结构法 陆明万陈勇李建国(清华大学工程力学系,北京,100084)(全国压力容器标准化技术委员会,北京,100088)摘要我国新的设计规范JB 24732295《钢制压力容器———分析设计标准》于1995年3月颁布 实施。如何将有限元分析或实验应力分析得到的总应力场分解成规范中定义的各种应力类别是应用JB 24732295或美国ASME 《锅炉及压力容器规范》第Ⅲ篇和第Ⅷ篇第2分册时必须解决的关键问题。本文提出应力分类的两步法和一次结构法,将它们和等效线性化方法相结合,给出了圆满解决该问题的有效方法。文中还阐述了应力分解的不唯一性、自限应力、约束分类和一次结构等重要概念。 关键词分析设计应力分类一次结构法等效线性化方法 1引言 “分析设计法”是一种以弹性应力分析和塑性失效准则为基础的设计方法,已被世界各国公开承认和广泛采用。我国也于1995年3月颁布了采用分析设计法的设计规范JB 24732295。在分析设计法中弹性计算应力被分成:一次总体薄膜应力(P m )、一次局部薄膜应力(P L )、一次弯曲应力(P b )、二次应力(Q )和峰值应力(F )等五大类。以塑性失效准则来判断,各类应力对结构破坏的危害程度是不同的,所以规范中根据等强度设计原则对不同的应力规定了不同的许用极限,其差别达3倍,甚至更多。这样,如何正确地进行应力分类,将有限元分析或实验应力分析所得到的总应力场分解成规范中定义的各类应力成为应用中最为关心、且必须解决的关键问题。国内外发表了大量文章来讨论这一问题,其中等效线性化方法是已被广泛采用的典型方法。一些著名的有限元分析程序如ANSY S 、M ARC 、NAST RAN 等都已实现了等效线性化的后处理功能。我们也曾在文献[1~3]中作了讨论。 等效线性化方法要求设计者在所考虑结构的几个可能的危险部位指定一些贯穿壁厚的(通常是垂直于中面的)应力分类线,然后根据合力等效和合力矩等效的原理将沿应力分类线分布的弹性计算应力分解出薄膜应力和线性弯曲应力,剩下的非线性分布应力就是一个与平衡外载无关的自平衡力系。等效线性化概念起源于ASME 规范,被K roenke 等首先应用于二维轴对称问题[4~6]。对于三维一般情况,H ollin g er 和H echm er 两人就基于应力线性化的三维应力准则问题发表了一系列的重要文章[7~13]。 本文将首先介绍文献[1]中提出的应力分类的两步法。然后,作为等效线性化方法的扩充,提出一种有效的应力分解方法“一次结构法”。 第4期年8月第19卷 1998核动力工程Nuclear Power En g ineerin g Vol.19.No.4Au g .1998

压力容器分析设计的应力分类法与塑性分析法

压力容器分析设计的应力分类法与塑性分析法 作者:宋诚 来源:《石油研究》2020年第07期 摘要:压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。 关键词:压力容器;应力分类法;塑性分析法 近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。 1应力分类法 1.1一次应力 一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。一次应力超过材料屈服极限时压力容器就会发生变形破坏。主要可以分为以下几种情况:第一,总体薄膜应力。因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。第二,局部薄膜应力。是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。第三,一次弯曲应力。由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。 1.2二次应力 二次应力是指压力容器部件受到约束而出现的剪应力。二次应力满足变形条件。例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。在这种情况下,连接部位会附加剪力应力,从而形成二次应力。二次应力的出现,也是由于局部范围之内材料出现少量变形,相连部位之间约束缓和,变形协调化,变形不会继续发展,将应力值限制

应力分析设计规定

目次 1 总则 (1) 1.1 范围 (1) 1.2 管道应力分析的任务 (1) 2 引用文件 (2) 3 设计 (2) 3.1 一般规定 (2) 3.2 管道冷紧 (3) 3.3 摩擦力 (3) 3.4 弹簧支吊架 (3) 3.5 设计条件 (4) 3.6 应力计算 (5) 3.7 力与力矩计算 (5) 3.8 管道应力分析评定标准 (5) 3.9 应力分析的方法 (8) 3.10 应力分析管道分类 (9) 4 应力分析报告 (12)

1 总则 1.1 范围 本标准规定了石油化工装置内管道应力分析的原则和相关要求。 本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。 专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。 执行本规定的同时,尚应符合国家现行有关标准。 1.2 管道应力分析的任务 管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况: a) 因管道应力过大或金属疲劳而引起管道或支架损坏; b) 管道连接处发生泄漏; c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形; d) 管道从所在支架上脱落; e) 由于外部振动或管内流体引起的管道共振; f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。 2 引用文件 GB50009 建筑结构荷载规范 GB/T20801 压力管道规范工业管道 SH/T3039 石油化工非埋地管道抗震设计通则 ASME B31.3 Process Piping API610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries API617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries API661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service 3 设计

一点应力状态概念及其表示方法

一点应力状态概念及其表示方法 凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。

2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆件内点不同(方向)截面上 的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

§8-2平面应力状态的工程实例1.薄壁圆筒压力容器

为平均直径,为壁厚 由平衡条件 得轴向应力:(8-1a) 图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面) 由平衡条件或, 得环向应力:(8-1b) 2.球形贮气罐(图8-6) 由球对称知径向应力与纬向应力相同,设为 对半球写平衡条件:

得(8-2) 3.弯曲与扭转组合作用下的圆轴 4.受横向载荷作用的深梁         §8-3平面一般应力状态分析——解析法 空间一般应力状态

如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。 1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。由剪应力互等定理,有: , , 。2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。 3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。 2.平面一般应力状态斜截面上应力 如图8-10所示,斜截面平行于轴且与面成倾角,由力的平衡条件: 和 可求得斜截面上应力,:

应力分类

管道在内压、持续外载以及热胀、冷缩和其它位移等荷载作用下,其最大应力往往超过材料的屈服极限,使材料在工作状态下发生塑料变形。高温管道的蠕动和应力松弛,也将使管系上的应力状态发生变化。这些情况说明,管系上的应力与一般结构、机械分析中所遇到的低温的和稳定的应力不同。因此,对于不同种类的应力应当区别对待,根据它可能产生的效应和对于破坏所起的作用不同,给予不同的限定。 对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。 一、一次应力 一次应力是由所加荷载引起的正应力和剪应力。它必须满足外部、内部力和力矩的平衡法则。一次应力的基本特征是非自限性的,它始终随所加荷载的增加而增加,超过屈服极限或持久强度,将使管道发生塑性变形。因此,必须防止发生过度的塑性变形,并为爆破或蠕变失效留有足够的裕度。 管道承受内压和持续外载而产生的应力,属于一次应力。管道承受风荷载、地震荷载、水冲击和安全阀动作冲击等荷载而产生的应力,也属于一次应力,但这些荷载都是属于偶然荷载,这些应力属动荷载产生的应力,应当在动力计算中考虑。 一次应力有三种类型:一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。 一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。 一次局部薄膜应力,是由内压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响而在管道或附件的局部区域有所增强的一次薄膜应力。这类应力虽然具有二次应力的一些特征,但为安全计,通常仍划为一次应力。这种应力达到屈服极限时,只引起局部屈服,塑性应变仍然受到周围弹性材料的约束,所以屈服是允许的。假若有一个应力区域,其应力强度超过1.1倍的基本许用应力,在纵向方向的延伸距离不大于图片点击可在新窗口打开查看,并且与另一个超过一次一般薄膜应力极限的区域沿纵向方向的距离不小于图片点击可在新窗口打开查看(这里的图片点击可在新窗口打开查看和S是超过一次一般薄膜应力极限处的管子平均半径和壁厚),此应力区域可以认为是局部的,划为一次局部薄膜应力,否则就应按一次一般薄膜应力考虑。例如,在固定支架处或接管连接处由于外载产生的一次薄膜应力,通常划为一次局部薄膜应力。 一次弯曲应力是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。这种应力达到屈服极限时,也只引起局部屈服。在应力验算中,通常不单独评价一次弯曲应力强度。

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用

理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、

压力容器应力分析设计方法的进展和评述优选稿

压力容器应力分析设计方法的进展和评述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理 论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿 命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。 综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法 和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME 新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为:

焊接应力的分类

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。 焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。 (2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。 (4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。 焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 1.预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工时预先考虑收缩余

量,以便焊后工件达到所要求的形状、尺寸。 2.反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 3. 刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 4. 选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。 5. 锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 6. 加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。 7. 焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。工件达到所要求的形状、尺寸。在制造过程中的工艺措施和方法: 1.采用线能量小的工艺参数和焊接方法,或强制冷却措施

应力、应力状态分析(习题解答)

8-9 矩形截面梁如图所示,绘出1、2、3、4点的应力单元体,并写出各点的应力计算式。 解:(1)求支反力R A =,R B = (2)画内力图如图所示。 x Pl (-)(+) Pl M kN ·m) P P y (-) (-) (+) V kN) 题8-9图 (3) 求梁各点的正应力、剪应力: (4)画各点的应力单元体如图所示。 9-1 试用单元体表示图示构件的A 、B 的应力单元体。 (a )解:(1)圆轴发生扭转变形,扭矩如图所示。 111max 222222333333max 442330,22(')[()]448 11 4()12 12 00(0, 0) 16 Z Z Z Z z V p A b h h h h P P b M V S Pl h y I I b b h b h b M S M Pl W b h σττστστστ==-=-? =-??-?? ?-?= ?=? = =??????=====- =- =??

80A - + 160 80 T (kN ·m ) (2)绘制A 、B 两点的应力单元体: A 、 B 两点均在圆轴最前面的母线上,横截面上应力沿铅垂方向单元体如图所示: 3 3 1601020.216 80510.216 A A t b B t T Pa kPa W T Pa kPa W τπτπ= ==?===-? (b )解:(1)梁发生弯曲变形,剪力、弯矩图如图所示。 - + 120 V kN) 40 M kN ·m) + 120 4020 60 题9-1(b )

(2)绘制A 、B 两点的应力单元体: A 点所在截面剪力为正,A 点横截面的剪力为顺时针,同时A 点所在截弯矩为正下拉,而A 点是压缩区的点。 B 点所在截面剪力为负,B 点横截面的剪力为逆时针,同时B 点所在截弯矩为正下拉,而B 点是拉伸区的点。单元体如图所示: 3 3 3.3 3 3 3.60100.0537.50.1200.212 12010(0.1200.050.075) 5.6250.1200.20.1201220100.0512.50.1200.212 4010(0.1200.05A A A t A z A A t B B B t B z B B t M y Pa MPa I V S Pa MPa I b M y Pa MPa I V S I b στστ?=-?=-?=-??????=?==????=?=?=??-????=?=?g g 30.075) 1.8750.1200.20.12012 Pa MPa =-?? 9-2(c 解:(1)由题意知: 30,20.5030o x x y MP MPa MP στσα==-==,,。 (2)求30o 斜截面上的应力 cos 2sin 22230503050 cos 60(20)sin 6052.32() 223050sin 2cos 2sin 60(20)cos 6018.67() 22 x x x x x o o o o x x x MPa MPa αασσσσσατα σστατα+-= + -+-=+--?=--=+=+-?=- (e) 试用解析法求出(1)图示应力单元体-30o 斜截面的应力。(2)主应力与主方向,以及面内的剪应力极值;(2)在单元体上标出主平面。 解:(1)由题意知: o MPa MP x x 30.20,10-=-=-=ατσ。见图(a )

第七节 载荷和应力的分类

第七节 载荷和应力的分类 一、载荷分类 作用在机械零件上的载荷可分为静载荷和变载荷两类。不随时间变化或变化较缓慢的载荷称为静载荷。随时间变化的载荷称为变载荷。 在设计计算中,还常把载荷分为名义载荷与计算载荷。根据额定功率用力学公式计算出作用在零件上的载荷称为名义载荷,它没有反映载荷随时间作用的不均匀性、载荷在零件上分布的不均匀性及其它影响零件受载等因素。因此,常用载荷系数K 来考虑这些因素的综合影响。载荷系数K 与名义载荷的乘积即称为计算载荷。 二、应力分类 按应力随时间变化的特性不同,可分为静应力和变应力。不随时间变化或变化缓慢的应力称为静应力(见图1–2a )。随时间变化的应力称为变应力(见图1–2b 、c 、d )。绝大多数机械零件都是处于变应力状态下工作的。 a) b) c) d) 图1-2 静应力及边应力 a)静应力 b)稳定循环变应力 c)不稳定循环变应力 d)随机变应力 变应力可分为稳定循环变应力(见图1–2b )、不稳定循环变应力(见图1–2c )及随机变应力(见图1–2d )。瞬时作用的过载或冲击所产生的应力称为尖峰应力(见图1–2d )。 稳定循环变应力的类型是多种多样的,但归纳起来有如图1–3所示的三种基本类型:(a )非对称循环变应力;(b)脉动循环变应力;(c)对称循环变应力。 为了表示稳定循环变应力状况,引入下列变应力参数:s max –––变应力最大值;s min ––––变应力最小值;s m –––平均应力;s a –––应力幅;r –––循环特性。

如图1–3所示可知,s max=s m+s a;s min=s m–s a;s m=(s max+s min)/2;s a=(s max–s min)/2;r=s min/s max=(s m–s a)/(s m+s a)。当r=+1时,表明s max=s min,即为静应力;当r=–1时,表明s max 与s min的数值相等但符号(即方向)相反,这类应力称为对称循环变应力;当r=0时,即s min=0,s m=s a=s max/2,这类应力称为脉动循环变应力。当r为任意值为(即r1+1、–1、0),这类应力统称为非对称循环变应力(见图1–3a)。 a) b) c)图1-3 稳定循环变应力 a)非对称循环变应力b)脉动循环变应力c)对称循环变应力 通常在设计时,对于应力变化次数较少(例如在整个使用寿命期间应力变化次数小于103的通用零件)的变应力,可近似地按静应力处理。 变应力由变载荷产生,也可能由静载荷产生。在静载荷作用下产生变应力的例子如图1–4所示,图示为转轴和滚动轴承a点的应力变化。 图1–4 在静载荷作用下产生变应力的例子 零件的失效形式与材料的极限应力及零件工作时的应力类型有关。在进行强度计算时,首先要弄清楚零件所受应力的类型。

已知一点的应力状态MPa

第一章 1-10. 已知一点的应力状态10100015520???? ? ? ??--=ΛΛΛ ij σMPa ,试求该应力空间中 122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少? 解:若平面方程为Ax+By+Cz+D=0,则方向余弦为: 2 2 2 C B A A ++= l ,2 2 2 C B A B ++= m ,2 2 2 C B A C n ++= 因此:312)(-2112 22= ++= l ,322)(-212-222-=++=m ;3 22)(-212n 222=++= S x =σx l +τxy m +τxz n=3100 325031200= ?-? S y =τxy l +σy m +τzy n = 3350 321503150=?+? S z =τxz l +τyz m +σz n=3 200 32100-=?- 1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为: ??? ? ? ??--=1030205040100ΛΛΛ ij σ,求出主应力,应力偏量及球张量,八面体应力。 解:=1J z y x σσσ++=100+50-10=140 =2J 2 22xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10) -402 -(-20)2 -302 =600 =3J 321σσσ=2 222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000 σ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7 σ8=σm =46.7 1-12设物体内的应力场为3 126x c xy x +-=σ,222 3 xy c y - =σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。 解:由应力平衡方程的:

应力与应力状态分析

应力与应力状态分析 拉伸模量 拉伸模量是指材料在拉伸时的弹性,其计算公式如下: 拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡) 其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。 §4-1 几组基本术语与概念 一、变形固体的基本假设 1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。 根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。 2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。 3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。 根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。 二、应力的概念 1、正应力的概念 分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。 由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。 沿截面法线方向的应力称为正应力,用希腊字母σ表示。 应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号K a P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。 几种单位的换算关系为:

1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P 2、切应力与全应力的概念 与截面相切的应力分量称为切应力,用希腊字母τ表示。 K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。 三、位移、变形及应变的概念 变形:构件的形状和尺寸的改变。 位移:构件轴线上点的位置变化和截面方位的改变。 变形和位移的关系:构件的变形必然会使结构产生位移,但结构的位移不一定是由构件的变形引起的,温度变化、支座移动等也会使结构产生位移。 单元体:围绕构件内某一点截取出来的边长为无限小的正六面体。 应变:描述单元体变形程度的几何量,包括线应变和角应变两类。 线应变(正应变)ε:单元体线性尺寸的相对改变量。ε=Δu / u 角应变(切应变)γ:单元体上直角的改变量。γ= 90°- θ 应力与应变的对应关系:正应力σ与正应变ε相互对应;切应力τ与切应变γ相互对应。 四、受力构件内一点处的应力状态的概念 构件内某点处的应力状态,是指通过该点的各个不同方位截面上的应力情况的总体。 研究应力状态,对全面了解受力杆件的应力全貌,以及分析杆件的强度和破坏机理,都是必需的。 为了研究一点处的应力状态,通常是围绕该点取一边长为无限小的正六面体,即单元体。 主平面:单元体上没有切应力的面称为主平面。 主应力:主平面上的正应力称为主应力。 可以证明,通过一点处的所有方向面中,一定存在三个互相垂直的主平面(即一定存在主单元体),因而每一点都对应着三个主应力。 一点处的三个主应力分别用σ1 , σ2 和σ3来表示,并按应力代数值的大小顺序排列,即σ1≥σ2≥σ3。 原始单元体:从一点处取出的各面上应力都已知的单元体,称为该点的原始单元体。对于杆件,通常用一对横截面和两对互相垂直的纵截面截取原始单元体。 主单元体:各面上没有切应力的单元体称为主单元体。 应力状态的分类: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态:一个主应力为零 单向应力状态:两个主应力为零

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 姓名:XXX 部门:XXX 日期:XXX

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 第 2 页共 6 页

2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、工艺和检测水平是保证分析设计能得以实施的前提条件。应力分类法 3.1.应力分类法是当今分析设计的主流方法 应力分类法有如下优点: 3.1.1.简单。采用工程设计人员非常熟悉的弹性应力分析方法。应力评定时直接给出各类等效应力的许用值,因而应力分类后的强度校核与常规设计类似。 第 3 页共 6 页

压力容器应力分析设计方法的进展和评述通用版

安全管理编号:YTO-FS-PD389 压力容器应力分析设计方法的进展和 评述通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

压力容器应力分析设计方法的进展 和评述通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、

弹性力学考题类型-7页精选文档

一、 已知某点的应力状态为 试求该点的主应力、应力主轴方向(仅计算σ1应力主轴方向)和最大切应力。 二、已知弹性体的体积力为常量,其应力分量为: 如弹性体为可能的应力状态,求待定系数A ,B 应满足的关系。 三、已知圆筒的内径和外径分别为a 和b ,圆筒受内压q 的作用,在圆筒外部受刚性位移约束,如图所示。试求圆筒应力。 已知轴对称应力和位移为: 解:做出圆筒的受力状态如下图所示。 极坐标下应力边界条件 θ θθθτστσf l m f m l s r s r s r s r =+=+)()()()( 3 对于圆筒的内表面, q f m l r ==-=,0,1 3 因此有内表面的边界条件为q r =-σ 即 q C a A a r r -=+= =22 σ (1) 3 圆筒外表面满足位移边界条件 ==b r r u 即 1[(1)2(1)]1[(1)2(1)]0r r b r b A u v v Cr E r A v v Cb E b === -++-=-++-= (2) 3 联立(1)(2)解得

()22 222 22 (1)(1)(1)12(1)2(1)q a b A a b q a C a b νννννν--= ++--+= ++- 4 因此可得圆筒的应力 圆筒的位移 圆筒内半径的改变量为 厚度变化量 四、图示的三角形悬臂梁,在上边界0=y 受到均布压力q 的作用,试用 下列应力的函数 ]tan cos cos sin )([2 222αφρφφρφαρC Φ-+-=求出其应力分量。(本题15分) 解:应力函数Φ应满足相容方程和边界条件,从中可解出常数 得出的应力解答是 在截面 mn 上,正应力和切应力为 刘章军:弹性力学内容精要与典型题解,中国水利水电出版社。P19.例2.8 五、图示薄板,在y 方向受均匀拉力作用,试证明在板中间突出部分的尖 点A 处无应力存在。 六、试考察 ,能解决图示弹性体的何种受力问题。(10分) 解:本题应按逆解法求解。 首先校核相容方程,▽4 Φ = 0是满足的。 然后,代入应力公式(4-5),求出应力分量: 再求出边界上的面力: 七、半平面体表面受有均布水平力q ,试用应力函数Φ= ρ2(B sin2φ+Cφ)求解应力分量。(20分)

管道应力分析设计规定——寰球标准

2003年 月 日发布 2003年 月 质 量 管 理 体 系 文 件 HQB-B06-05.306PP-2003 设计规定 管道应力分析设计规定 版 号:0 受控号:

号编 主编部室:管道室参编部室: 参编人员: 参校人员: 说明: 1.文件版号为A、B、C......。 2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。本规定(HQB-B06-05.306PP-2003)自2003年月实施。

目录 1. 总则 (1) 2. 应力分析管线的分类及应力分析方法 (2) 3. 管道应力分析设计输入和设计输出 (6) 4. 管道应力分析条件的确定 (9) 5. 管道应力分析评定准则 (11) 附件1 管线应力分析分类表 (14) 附件2 设备管口承载能力表 (15) 附件3 柔性系数k和应力增强系数i (16) 附件4 API 610《一般炼厂用离心泵》(摘录) (17) 附件5 NEMA SM23 (摘录) (22) 附件6 API 661 《一般厂用空冷器》(摘录) (23)

1. 总则 1.1 适用范围 1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。 本规定所列内容为管道应力分析设计工作的最低要求。 1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题: 1)管道的应力过大或金属疲劳引起管道或支架破坏。 2)管道连接处泄漏。 3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应 力,而影响了设备的正常运行。 4)管架因强度或刚度不够而造成管架破坏。 5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。 6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管 道振动及破坏。 1.2 应力分析设计工作相关的标准、规范: 1) GB150-1999 《钢制压力容器》 2) GB50316-2000 《工业金属管道设计规范》 3) HG/T20645-1998 《化工装置管道机械设计规定》 4) JB/T8130.2-95 《可变弹簧支吊架》 5) JB/T8130.1-95 《恒力弹簧支吊架》 6) HQB-B06-05.203PP-2003《简化柔性计算的规定》 7) ASME/ANSI B31.3 Process Piping 8) ASME/ANSI B31.1 Power Piping 9) ASME/ANSI B31.4 Liquid Transmission and Distribution piping systems 10)ASME/ANSI B31.8 Gas Transmission and Distribution piping systems 11)API 610 Centrifugal Pumps for General Refinery Services

压力容器应力分析设计方法的进展和评述正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 压力容器应力分析设计方法的进展和评述正式版

压力容器应力分析设计方法的进展和 评述正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途

压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法

相关文档
最新文档