酶工程第6章酶的结构与功能
《酶工程》课后知识题目解析

《酶工程》课后知识题目解析第一章酶工程基础1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。
②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。
③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。
其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。
④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。
⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。
2.说说酶的研究简史酶的研究简史如下:(1)不清楚的应用:酿酒、造酱、制饴、治病等。
(2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科医生Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。
1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。
(3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。
3.说说酶工程的发展概况I.酶工程发展如下:①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod 提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971年各国科学家开始使用“酶工程”这一名词。
酶工程第6章-脱氧核酶2012

图; 9.转染48h; 10. 转染60h; 11. 转染60h后的阴性对
照; 12. 转染72h。
利用核酶或脱氧核酶抑制有害基因的基本原理
对医疗应用来说最主要的还是寻找那些具 有切割特定RNA顺序的核酶,从而可以在体 内抑制某些有害基因。
基因治疗的概念出现在二十几年前,现在已 经在临床上得到了实际应用。基因治疗最早的临 床研究是1990年Blaese 等进行的对腺苷脱氨酶 (ADA)缺乏症的治疗,随后在对遗传病、病毒侵染、 肿瘤等疾病的治疗中得到广泛的应用。中国也是 开展基因治疗比较早的国家,1991年薛京伦等开 展了血友病B基因治疗的临床实验,并取得比较理 想的效果。
结构稳定。生理条件下DNA比RNA稳定106 倍,DNA的磷酸二酯键比蛋白质的肽键抗 水解能力要高100倍。
成本低廉、易于合成和修饰。 脱氧核酶具有催化效率高和高度专一性等
特性。
脱氧核酶(Deoxyribozyme,DRz)的分类
分类依据:借鉴国际酶学委员会对蛋白酶 的分类方法,将DRz 分成4 类:水解酶、转移 酶、合成酶和氧化酶 具有水解酶活性的DRz 1、作用于RNA 的DRz 主要包括水解RNA的“10-23”、“8-17”DRz。
手枪形脱氧核酶自我剪切作用机理
切割点
10
5‘ 20
3‘ C A
茎I(结合部位)
40
茎II (催化部位) 30
手枪形结构脱氧核酶的自身切割位点在第14nt处,其3’端约27个碱基对自身切割活 性的发挥至关重要。
“二分”型结构脱氧核酶
酶工程课程复习资料整理

绪论一.酶是生物催化剂酶是具有生物催化功能的生物大分子,按其化学组成的不同可以分为两类:蛋白类酶(P-酶)与核酸类酶(R-酶)。
理解:1、酶是由生物细胞产生2、酶发挥催化功能不仅在细胞内,在细胞外亦可二.酶学研究简史1897年,Buchner兄弟发现,用石英砂磨碎的酵母细胞或无细胞滤液能和酵母细胞一样进行酒精发酵。
标志着酶学研究的开始。
说明:酶分子不仅只是在细胞内起作用,而且在细胞外同样具有催化功能。
这一发现开启了现代酶学,乃至现代生物化学的大门。
三.酶工程的现状:目前大规模利用和生产的商品酶还很少。
第一章.酶学概论第一节.酶作为生物催化剂的显著特点一.酶作为生物催化剂的显著特点:高效、专一二.同工酶(概):能催化相同的化学反应,但其酶蛋白本身的分子结构组成不同的一组酶。
三.共价修饰调节1.概念:通过其它的酶对其结构进行共价修饰,从而使其在活性形式和非活性形式之间相互转变。
2.常见修饰类型:磷酸化与去磷酸化;腺苷酸化与脱腺苷酸化;尿苷酸化与脱尿苷酸化;泛素化;类泛素化3.例子:糖原磷酸化酶——磷酸化形式有活性(葡萄糖)n+Pi→(葡萄糖)n-1+1-磷酸葡萄糖4.常见磷酸化部位:丝氨酸/苏氨酸,酪氨酸和组氨酸四.酶活性调节方式要能判断所举酶的例子是什么类型调节1. 别构调节2. 激素调节:如乳糖合酶修饰亚基的水平是由激素控制的。
妊娠时,修饰亚基在乳腺生成。
分娩时,由于激素水平急剧的变化,修饰亚基大量合成,它和催化亚基结合,大量合成乳糖。
3. 共价修饰调节:如糖原磷酸化酶、磷酸化酶b激酶4.限制性蛋白水解作用与酶活性控制。
如酶原激活5.抑制剂和激活剂的调节6.反馈调节7.金属离子和其它小分子化合物的调节8.蛋白质剪接五.反馈调节(概):催化某物质生成的第一步反应的酶的活性,往往被其终端产物所抑制。
这种对自我合成的抑制叫反馈抑制。
A-J :代谢物实线箭头:酶促催化步骤虚线箭头:反馈抑制步骤代谢途径的第一步和共同底物进入分支途径的分支点是反馈抑制的最为重要的位点。
酶的结构与功能PPT课件

二. 酶的结构与功能
A 50% [S]90%V =81 [S]10%V
B [S]90%V =3 [S]10%V
1 2 3为非调节酶的曲线 B.为别构酶的S形曲线
2. 变构酶
二. 酶的结构与功能
完整的酶分子 (活性形式)
催化亚基 (三聚体)
调节亚基 (二聚体)
1. 酶的活性中心 (2)酶活性中心的特点
二. 酶的结构与功能
1. 活性中心在酶分子总体积中只占相当小的部分 (约1%2%),相当于23个氨基酸残基。 2. 都是酶分子表面的一个凹穴,有一定的大小和形 状,但不是刚性的,而具有一定的柔性。
3. 活性中心为非极性的微环境,有利于与底物结合。
1. 酶的活性中心 (2)酶活性中心的特点
二. 酶的结构与功能
指酶分子中直接和底物结合,并和酶催化作用直 接有关的部位。 (1)酶活性中心的组成: 由一些氨基酸残基的侧链基团组成。 这些基团在一级结构上可能相距很远,甚至可 能不在一条肽链上,但在蛋白质空间结构上彼 此靠近,形成具有一定空间结构的区域。
对于结合酶,辅因子常常是活性中心的组成部分。
二. 酶的结构与功能
结合部位:底物在此与酶分子结合。一个酶的结 合部位又可以分为各种亚位点,分别与底物的不 同部位结合。 催化部位:底物的敏感键在此被打断或形成新的 键,从而发生一定的化学反应。一个酶的催化部 位可以不止一个。
1. 酶的活性中心
二. 酶的结构与功能
有些酶的分子表面除了活性中心外,还具有
第2节 酶的结构与功能
1. 酶的组成成分
一. 酶的结构
根据组成成分,酶可分为两类: 单纯酶 —— 仅由蛋白质组成的酶。 结合酶 —— 除蛋白质外,还有非蛋白质成分。 全酶 = 酶蛋白 + 辅因子 辅因子有两种:
【生物化学】第六章 酶促反应动力学

本章纲要
一、化学动力学基础 二、底物浓度对酶反应速度的影响 三、抑制剂对酶反应速度的影响 四、激活剂对酶反应速度的影响 五、温度对酶反应速度的影响 六、pH对酶反应速度的影响
一、化学动力学基础
了解反应速率及其测定 反应分子数和反应级数
一、化学动力学基础
㈠ 反应速率及其测定
单位时间内反应物的减少量或生成物的增加量用瞬时速率表示, 单位: 浓度/时间,研究酶反应速度以酶促反应的初速度为准。
第六章 酶促反应动力学
Enzyme kinetics
概述
研究酶促反应的速率以及影响此速率的各 种因素的科学,是酶工程中的重要内容
研究酶结构和功能的关系以及酶的作用机 制,需要动力学提供实验数据
发挥酶促反应的高效率,寻找最为有利的 反应条件
酶在代谢中的作用和某些药物的作用机制 具有理论研究的意义和实践价值
C是反应物的浓度变化, K为速率常数,是时间的倒数 基元反应:反应物分子在碰撞中一步直接转化为生成物分子的反应。
一、化学动力学基础
2. 反应级数:实验测得的表示反应速率与反应浓度之间关系的概念。 对于基元反应
1.一级反应单分子反应符合V=KC的反应
蔗糖+水
葡萄糖+果糖 V=KC蔗糖C水
由于水的浓度变化影响可忽略(非限制性因素)则V=KC蔗糖
二、底物浓度对酶反应速度的影响
㈠ 中间络合物学说
L.米歇利斯和L.M.门腾(1913)基于酶被底 物饱和的现象,提出“中间产物”学说:
酶与底物反应时,通过特异识别作用,先 形成酶底物复合物,然后再形成产物和酶分 子,酶分子重新结合底物。
该学说已得到大量实验证实
012345678
80
60
酶结构和功能课件

2. 酶的调节中心
二. 酶的功能结构
有些酶的分子表面除了活性中心外,还具有重要的 功能部位——调节中心,它可以与小分子的代谢物相结 合,使酶分子的构象发生改变,从而影响酶的活性。
这种作用叫变构效应(又叫别构效应),具有变构效 应的酶叫变构酶,引起变构的小分子物质叫变构剂(调 节物)。
2. 酶的调节中心
1. 酶的组成成分
辅因子的作用:
一.酶的化学结构
2. 酶的聚合状态
一.酶的化学结构
由酶的聚合状态,酶可分为三类:
单体酶 —— 酶蛋白仅有一条多肽链。
寡聚酶 —— 酶蛋白是寡聚蛋白质,由几个至几十个亚 基组成,以非共价键连接。
多酶复合体 —— 由几个酶聚合而成的复合体。
1. 酶的活性中心
二. 酶的功能结构
对于结合酶,辅因子常常是活性中心的组成部分。
1. 酶的活性中心 (2)酶的活性中心的特点
二. 酶的功能结构
都是酶分子表面的一个凹穴,有一定的大小和形状, 但不是刚性的,而具有一定的柔性。
活性中心为非极性的微环境,这有利于与底物的结合。
活性中心内还含有少数极性基团,它们直接与底物相 作用。
1. 酶的活性中心 (2)酶的活性中心的特点
二. 酶的功能结构
1. 酶的活性中心
二. 酶的功能结构
活性中心
催化部位
底物的敏感键在此被打断或 形成新的键,从而发生一定 的化学反应。一个酶的催化 部位可以不止一个。
结合部位
底物在此与酶分子结合。 一个酶的结合部位又可以 分为各种亚位点,分别与 底物的不同部位结合。
1. 酶的活性中心
二. 酶的功能结构
变构酶的 v-[S] 的关系不符合米氏方程,所以其 曲线不是双曲线型。
酶工程教学大纲

《酶工程》课程教学大纲总学时数:30一、课程的地位、性质和任务酶工程(enzyme engneering)是生物技术专业的主干必修课,是酶学、微生物学的基本原理与化学工程有机结合而产生的一门新的科学技术,在生物技术人才培养中处于至关重要的地位。
它涉及细胞工程、基因工程、发酵工程、生物分离工程和化学工程等诸多学科,主要内容包括酶的发酵生产、酶的分离纯化、酶和细胞固定化以及酶的分子工程。
学生通过酶工程的学习,能够掌握酶的生产与分离纯化的基本理论、基本技术以及自然酶、化学修饰酶、固定化酶的研究和应用,了解酶在各行各业中的最新发展及研究趋势。
二、课程教学的基本要求学生通过酶工程的学习,应熟悉从应用目的出发研究酶,在一定生物反应装置中利用酶的催化性质的研究路线,掌握酶的生产与应用的基本理论、基本技术、酶的分离纯化、固定化酶以及酶的化学修饰的研究和应用,进一步了解酶在各行各业中实际应用的最新发展和发展趋势,在以后的毕业环节和工作中能够自觉地应用这些技术方法来指导自己的工作。
本课程理论课30学时,于本科三年级第二学期开设。
讲授方式:1.讲授2.利用CAI课件三、各章主要内容、学时分配及教学要求第一章绪论 2学时【单元目标】1.了解酶工程的研究意义;2.掌握酶工程的概念及研究内容。
【授课内容】一.酶与酶工程发展简史(一)酶学研究简史(二)酶工程研究简史二. 酶工程简介1.酶工程2.组成3.分类第二章微生物发酵产酶 4学时【单元目标】1.掌握酶生物合成的调节类型及调节机制2.了解产酶微生物的分离和选育方法3.了解动植物细胞与微生物细胞发酵产酶的异同【授课内容】第一节酶生物合成及调节一、酶的生物合成(一)RNA的生物合成--转录(transcription) (二)蛋白质的生物合成--翻译(translation) 1.翻译2.翻译过程即蛋白质的合成过程二、酶生物合成的调节(一)基因调控理论(二)酶合成调节的类型1.诱导 (induction)2.阻遏 (repression)(三)酶合成的调节机制三、提高酶产量的策略(一)菌种选育1.诱变育种2.基因工程育种(二)条件控制第二节酶发酵动力学一、细胞生长动力学(Monod方程)二、产酶动力学(一) 酶生物合成的模式1.生长偶联型2.部分生长偶联型3.非生长偶联型(二) 产酶动力学第三节微生物发酵产酶一、产酶微生物的分离和选育二、微生物发酵产酶方法1.固体培养2.液体培养3.固定化细胞三、微生物酶的类型1.胞外酶2.胞内酶第三章动、植物细胞培养产酶2学时一、动植物细胞与微生物细胞主要特性差异二、植物细胞培养产酶1.植物细胞培养的特点、提取法缺点2.培养基特点3.培养方法4.培养条件的影响与控制5.植物细胞培养产酶实例三、动物细胞培养产酶1.动物细胞培养的特点2.培养基3.培养方法4.培养条件的影响与控制第四章酶的提取与分离纯化 12学时【单元目标】1.掌握酶分离纯化的常用方法及其原理2.掌握几种常用的电泳方法及操作步骤2.了解酶的纯化方案的设计【授课内容】第一节酶的分离4学时一、发酵液预处理(一)发酵液的相对纯化(二)发酵液的固液分离二、细胞破碎(一)细胞壁组成(二)细胞破碎的方法(三)细胞破碎确认三、酶的提取(extraction)(一)理想提取液具备的条件、目标原则(二)提取方法四、离心分离(一)基本原理(二)离心机的种类(三)常用离心方法1.差速离心2.密度梯度离心3. 等密度梯度离心又称沉降平衡离心(四)应用五、沉淀分离(根据溶解度的不同)(一)盐析沉淀法(改变离子强度)(二)有机溶剂沉淀(降低介电常数)(三)等电点沉淀(isoelectric precipitation) (四)有机聚合物沉淀法(五)选择性变性沉淀法六、萃取(extraction)分离(一)溶剂萃取法(二)双水相萃取技术(三)超临界流体萃取(四)反胶团萃取第二节酶的精制5学时一、膜分离技术(一)扩散膜分离(二)加压膜分离(三)电场膜分离二、层析法(一)吸附层析(adsorption chromatography)1.原理2.吸附剂3.洗脱剂4.应用(二)凝胶过滤层析)(gel filtration chromatography)1.基本原理2.凝胶的种类和性质3.操作4.应用(三)离子交换层析(ion exchange chromatography,IEC)1. 原理2. 阴离子交换剂分离蛋白质的过程3. 操作4. 应用- 制备纯化生物大分子(四)疏水层析(hydrophobic interaction)1、原理2. 吸附剂3. 操作4. 应用(五)亲和层析(affinity chromatography)1. 原理2. 基质的选择3. 配体的选择4. 偶联(亲和吸附剂的制备)5. 操作及应用(六) 高效(压)液相层析(HPLC:high performance(pressure)liquid chromatography)1. 基本原理2. 分类3. 色谱仪组成第三节电泳一、电泳的基本理论1. 原理2. 电泳的分类3. 电泳常用设备二、聚丙烯酰胺凝胶电泳1.原理2.分离效应三、SDS-聚丙烯酰胺凝胶电泳1. 原理2. 操作四、等电聚焦 ( isoelectric focusing,IEF )1. 原理2. 操作3. 应用第四节酶的浓缩、干燥与结晶2学时一、酶的浓缩(一)蒸发浓缩(二)超滤浓缩(三)吸水剂(四)反复冻融浓缩(五)沉淀法二、酶的干燥三、酶的结晶(一)结晶的条件(二)结晶的方法第五节纯化方案的设计与评价1学时一、纯化方案的设计(一)纯化方法的选择依据(二)纯化方法的排序二、纯化方案的评价(一)酶活力测定(二)蛋白质浓度测定(三)提纯倍数与回收率第五章酶分子的化学修饰 2学时【单元目标】1.掌握酶活性中心的概念及共性2.了解酶化学修饰的目的及原理3.了解酶化学修饰的种类及应用【授课内容】第一节酶的活性中心一、活性中心的概念二、活性中心的共性三、研究酶活性中心的方法1.物理学方法2.化学修饰法3.蛋白质工程第二节酶化学修饰及修饰目的一、酶化学修饰1.限制酶大规模应用的原因2.改变酶特性有两种主要的方法3.酶化学修饰的概念二、酶化学修饰的目的1.研究酶的结构与功能的关系2.人为改变天然酶的某些性质,扩大酶的应用范围第三节酶化学修饰的原理一、如何增强酶天然构象的稳定性与耐热性二、如何保护酶活性部位与抗抑制剂三、如何维持酶功能结构的完整性与抗蛋白水解酶四、如何消除酶的抗原性及稳定酶的微环境第四节酶化学修饰的设计一、充分认识酶分子的特性二、修饰剂的选择三、反应条件的选择第五节酶化学修饰的种类及应用一、酶的表面化学修饰(一)大分子修饰(大分子结合修饰)1.定义2.修饰剂3.应用(二)小分子修饰(酶蛋白侧链基团修饰)1.定义2.侧链基团修饰剂3.几种重要的修饰反应(三)交联修饰(交联法)(四)固定化修饰(共价偶联法)二、酶分子内部修饰(一)蛋白主链修饰(肽链有限水解修饰)(二)氨基酸置换修饰(三)金属离子置换修饰第六章酶与细胞的固定化 2学时【单元目标】1.掌握固定化酶和固定化细胞的定义及特点2.了解固定化酶和固定化细胞的性质及应用【授课内容】第一节酶与细胞的固定化一、固定化酶和固定化细胞的定义及特点1.固定化酶 (immobilized enzyme)2.固定化细胞(immobilized cell)二、固定化方法(一)酶的固定化方法1.吸附法(adsorption)2.共价偶联法(covalent binding or covalent coupling)3.交联法(crosslinking)4.包埋法(encapsulation)(二)各种固定化方法的优缺点比较(三)细胞的固定化方法1.固定化细胞的分类2.固定化方法(四)原生质体的固定化方法第二节固定化酶和固定化细胞的性质与表征一、固定化酶的性质二、固定化细胞的性质三、固定化酶(细胞)的评价指标第三节固定化酶与固定化细胞的应用一、在工业生产上的应用1.氨基酰化酶(Aminoacylase)2.葡萄糖异构酶二、固定化酶在医学上的应用1.消血栓2. 人工肾三、在分析检测中的应用1. 酶传感器1)酶传感器的原理2)酶传感器的应用2. 酶联免疫测定第七章酶反应器 2学时【单元目标】1.了解酶反应器的几种类型2.了解酶反应器的设计原理及操作【授课内容】第一节酶反应器的特点与类型一、酶反应器的类型(一)搅拌罐型(Stirred Tank Reacter, STR)(二)固定床型(也称填充床,Packed Bed Reactor, PBR )(三)流化床型(Fludized Bed Reactor, FBR)(四)膜式反应器(Membrane Reactor)(五)鼓泡塔型反应器二、酶反应器的发展第二节酶反应器的设计与选择一、酶反应器的设计1.设计目的2.设计原理(依据)二、酶反应器的选择(一)酶的应用形式(二)底物的物理性质(三)反应操作要求(四)酶的稳定性(五)应用的可塑性及成本三、酶反应器的操作第八章酶的应用 4学时【单元目标】1.了解酶在医药方面的应用2.了解酶在食品方面的应用3.了解酶在化工方面的应用4. 了解酶在环境保护方面的应用5. 了解酶在生物技术领域的应用【授课内容】第一节酶在医药方面的应用第二节酶在食品方面的应用第三节酶在化工方面的应用第四节酶在环境保护方面的应用第五节酶在生物技术领域的应用四、使用教材与主要参考书目录1教材《酶工程》(第二版)作者:郭勇科学出版社 20042 主要参考书目郭勇现代生化技术,华南理工大学出版社, 1996郭勇酶的生产与应用,化学工业出版社个,2003罗贵民酶工程,化学工业出版社,2002张树政酶制剂工业,科学出版社,1984邹国林酶学,武汉大学出版社, 1997五、考核方法和成绩构成本课程为考试考核,包括两部分:期中及平时为30%,期末70%。
酶工程第章酶的结构和功能

羧肽酶A活性中心的结构
羧肽酶A催化多肽链上羧基端氨基酸的水解。 当末端氨基酸是含有较大疏水基团的氨基酸时 (苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸),反 应速度很快。但是当有这些较大疏水基团的氨基 酸残基进入亚位点3~6时,就会减低酶对这些底 物的亲和力。说明羧肽酶A对底物的识别和结合 有多个位点。同时,苯丙氨酸是羧肽酶A的竞争 性抑制实验证实,还有一个组氨酸残基的 咪唑基位于木瓜蛋白酶活性中心的催化部位(木瓜 蛋 白 酶 共 有 212 个 氨 基 酸 , 有 His81 和 His159 两 个 His)。Husain和Lowe用1,3-二溴丙酮修饰木瓜蛋白 酶,在pH5.6,1克当量的试剂完全抑制了木瓜蛋白 酶的活性。对修饰后的酶进行氨基酸分析,发现少 一个组氨酸。在用1,3-二溴丙酮(2-14C)的修饰实验 中,发现修饰剂连接了Cys-25和His-159两个残基, 因此知道了这两个基团之间的距离在 5 以内。这个 结论通过x-光衍射分析法又进一步得到了肯定。
差示标记法
胰蛋白酶的差示标记
胰蛋白酶催化碱性氨基酸的羧基形成的肽键水 解。人们认为在胰蛋白酶的活性中心必有酸性基团 存在。ψ胰蛋白酶(Lys6-Ile7之间断裂成为β胰蛋 白 酶 ; Lys6-Ile7 和 Lys131-Ser132 两 处 断 裂 成 为 α 胰 蛋 白 酶 ; Lys6-Ile7 、 Lys131-Ser132 和 Lys176Asp177三处断裂成为ψ胰蛋白酶)失去了水解碱 性氨基酸的羧基形成的肽键的能力,而保留了一般 的酯酶活性,估计Asp177的β-COOH可能与结 合底物有关(与底物中的碱性氨基酸结合)。
一、酶的活性中心
1.酶的活性中心和必需基团的概念 在酶蛋白中,只有少数特异的氨基酸残基与催 化活性直接相关。这些特异的氨基酸残基可以在肽 链的一级结构上相距较远,但通过肽链的折叠、盘 旋,使它们在空间上接近,形成活性中心(或称活 性部位)。组成活性中心的氨基酸残基有些执行结 合底物的任务,有些执行催化反应的任务。我们把 组成活性中心的氨基酸残基的侧链基团及一些维持 整个酶分子构象所必需的侧链基团称为必需基团。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差示标记法
胰蛋白酶的差示标记
胰蛋白酶催化碱性氨基酸的羧基形成的肽键水 解。人们认为在胰蛋白酶的活性中心必有酸性基团 存在。ψ胰蛋白酶(Lys6-Ile7之间断裂成为β胰蛋 白 酶 ; Lys6-Ile7 和 Lys131-Ser132 两 处 断 裂 成 为 α 胰 蛋 白 酶 ; Lys6-Ile7 、 Lys131-Ser132 和 Lys176Asp177三处断裂成为ψ胰蛋白酶)失去了水解碱 性氨基酸的羧基形成的肽键的能力,而保留了一般 的酯酶活性,估计Asp177的β-COOH可能与结 合底物有关(与底物中的碱性氨基酸结合)。
羧肽酶A活性中心的结构
羧肽酶A催化多肽链上羧基端氨基酸的水解。 当末端氨基酸是含有较大疏水基团的氨基酸时 (苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸),反 应速度很快。但是当有这些较大疏水基团的氨基 酸残基进入亚位点3~6时,就会减低酶对这些底 物的亲和力。说明羧肽酶A对底物的识别和结合 有多个位点。同时,苯丙氨酸是羧肽酶A的竞争 性抑制剂。
各种类型残基举例
接触残基: R1、R2、R6、 R8 、 R9 、 R163 、 R164 、
R165
非贡献残基: R3、R5、R7
辅助残基: R4
结构残基 : R10、R162、 R169
2.酶活性中心的拓扑学
酶的活性中心可以设想为一个口袋或是一条 沟槽,形状与底物相近。不同的酶的口袋适合不 同的底物。口袋中有相应的结合残基与底物上的 某些基团结合,发生反应的底物上的键与催化基 团靠近。亲水基团与亲水残基亲合,疏水基团与 疏水残基亲合,带电荷的基团与带相反电荷的残 基亲合。
酶活性中心基团的确定
同位素标记活性中心基团后,用蛋白酶部分 水解,得到同位素标记的肽段,分析其氨基酸顺 序,可以了解活性中心附近的氨基酸顺序。
实验表明,同类酶不仅有相同的活性中心基 团,而且附近的氨基酸顺序也很相似。
一些丝氨酸蛋白酶活性中心 丝氨酸附近的肽链组成
* 表示有催化活性的丝氨酸残基
一些半胱氨酸蛋白酶活性 中心的半胱氨酸残基附近
第六章 酶的结构和功能
一、酶的活性中心 二、酶活性中心化学基团的鉴定 三、组成酶活性中心的重要化学基团 四、酶促化学修饰和酶活性调节 五、酶的空间结构与功能的关系 六、酶催化作用的机制 七、羧肽酶A催化作用的机制
一、酶的活性中心
1.酶的活性中心和必需基团的概念 在酶蛋白中,只有少数特异的氨基酸残基与催 化活性直接相关。这些特异的氨基酸残基可以在肽 链的一级结构上相距较远,但通过肽链的折叠、盘 旋,使它们在空间上接近,形成活性中心(或称活 性部位)。组成活性中心的氨基酸残基有些执行结 合底物的任务,有些执行催化反应的任务。我们把 组成活性中心的氨基酸残基的侧链基团及一些维持 整个酶分子构象所必需的侧链基团称为必需基团。
的氨基酸顺序
* 表示有催化活性的半胱氨酸残基
四、酶促化学修饰和 酶活性调节
前述化学修饰是人工所为,本节介绍的 是天然过程。
1.酶原的激活
(1)酶原 生物体内大多数酶当它们自发地(有些在分
子伴侣的指导协助下)折叠成特定的三维结构时, 即获得了全部酶活力。也有一些酶刚合成出来是 没有活性的前体,称为酶原。当酶原在特定的 (体内)位置被水解断裂一个和一些肽键,就成 为了有活性的酶。
某些常用的修饰剂
鉴别化学修饰剂是否已经 引入酶活性中心的标准
a.酶活性的丧失程度与修饰的程度成正比。 b.底物或可逆抑制剂可保护共价修饰剂的抑制作用。
分析化学修饰结果时 应注意的问题
对化学修饰实验得出的结论应非常慎重,因为 可能被修饰的基团位于活性中心以外的附近,由于 空间位阻使得底物无法进入活性中心,从而表现出 酶失去活性。活性中心往往有多个与底物结合的基 团,修饰其中的一个往往不能使酶失去活性,可能 导致结合力减弱,也可能改变被结合底物的专一性。
酶原的激活
人的胃肠道中有许多蛋白酶,包括胃蛋白酶、 胰蛋白酶、胰凝乳蛋白酶、羧肽酶和弹性蛋白酶 等,它们在细胞内刚合成时,是酶原形式,当分 泌到胃肠道中后,受到胃肠道中蛋白酶的作用, 肽键断裂,转变成活性酶。这样可以避免这些酶 对分泌器官的破坏。
(2)酶原激活的机制
胰凝乳蛋白酶原的活化
2.共价修饰调节
胰蛋白酶的差示标记
Eyl 和 Inagami 的 实 验 证 明 了 上 述 推 测 。 他 们 用 苯甲脒(benzamidine,C6H5C(=NH)NH2)作为β胰 蛋白酶的竞争性抑制剂,以1-乙基-3-二甲氨丙基碳 二 亚 胺 为 缩 合 剂 ( 1-ethyl-3-dimethylaminopropyl carbodiimide , C2H5-N=C=N-(CH2)3-N(CH3)2 ) , 以 甘氨酰胺(glycine amide)为修饰剂,以差示标记法 证明了Asp177是结合底物的一个基团。酶的羧基与 甘氨酰胺以酰胺键结合后几乎完全抑制了酶水解Nα- 苯 甲 酰 基 -L- 精 氨 酸 乙 酯 ( N-α-benzoyl-Larginine ethyl ester)的能力。
一个在无光时稳定的化合物可逆地结合到酶 的活性中心,照光后受光解激活,产生高反应性 基团,与酶的活性中心共价结合。常见的试剂是 光解时给出高度易反应的碳烯的重氮化合物或硝 烯的叠氮化合物。
在植物生理学研究中,用氚偶氮—IAA作光 亲和标记试剂,经紫外光照射后,从番茄茎细胞 质膜上分离出了IAA受体蛋白。
羧肽酶A活性中心 的结构示意图
return
二、酶活性中心化学基团 的鉴定
常用的方法有:
化学修饰法 反应动力学法 x-光晶体衍射法
1.化学修饰法
酶分子中有许多氨基酸残基的侧链基团可 以被化学修饰,如羟基、巯基、咪唑基、氨基、 羧基等。如果一个基团是必需的,则被修饰后 酶活性会大大下降,甚至完全失活。
共价修饰调节中最重要的也是最主要的是 磷酸化/脱磷酸化。
一些可被磷酸化/脱磷酸 调节的酶
(2)蛋白激酶
使 蛋 白 质 磷 酸 化 的 酶 称 为 蛋 白 激 酶 ( protein kinase,PK),PK已发现了很多种,一般分为三 大类:
①底物专一的蛋白激酶,如磷酸化酶激酶、丙酮酸 脱氢酶激酶等;
三、组成酶活性中心 的重要化学基团
酶活性中心有7种氨基酸残基参加的频率最高, 它们是Ser、His、Cys、Tyr、Asp、Glu、Lys。
同一类酶往往含有相同的活性中心基团。如 胰凝乳蛋白酶和胰蛋白酶活性活性中 心含有半胱氨酸残基,称为半胱氨酸蛋白酶。在脱 氢酶活性中心往往含有酪氨酸残基。这些知识可以 为未知活性中心基团的酶的研究提供线索。
要充分利用高反应性的情况。
(2)差示标记法
这种方法是非特异性试剂标记法的一个发 展。它利用竞争性抑制剂或底物预先占据活性 中心,使非特异性试剂只修饰活性中心以外的 基团,然后透析除去保护剂(即竞争性抑制剂 或底物),再用同位素标记的非特异性试剂修 饰活性中心的基团。经氨基酸分析可知哪些基 团位于活性中心。
2.动力学分析法
动力学分析法是利用改变酶反应介质的pH, 观察其对酶催化能力的影响。酶蛋白分子中含有 许多可解离的基团,pH改变必然会影响这些基 团的解离状态。当活性中心的必需基团的解离状 态发生变化时,会直接影响到酶的催化能力。因 此,通过pH~酶催化活性关系的研究,可能得 到与催化直接相关的某些基团的pK值,进而推 断这些基团的种类。
动力学分析法
各基团的pK值有一理论值,但由于微环境 的影响,实测的pK值往往与理论值有偏差,导 致分析基团种类的困难,这时需要用其他方法辅 助分析,如测该基团的解离热函△H,或加有机 溶剂,改变溶液的电导率,作pH依存关系实验, 从pK的变化来协助推断基团种类。
各种氨基酸残基的pK值 与解离热函△H
木瓜蛋白酶的非特异性试剂修饰
通过动力学实验证实,还有一个组氨酸残基的 咪唑基位于木瓜蛋白酶活性中心的催化部位(木瓜 蛋 白 酶 共 有 212 个 氨 基 酸 , 有 His81 和 His159 两 个 His)。Husain和Lowe用1,3-二溴丙酮修饰木瓜蛋白 酶,在pH5.6,1克当量的试剂完全抑制了木瓜蛋白 酶的活性。对修饰后的酶进行氨基酸分析,发现少 一个组氨酸。在用1,3-二溴丙酮(2-14C)的修饰实验 中,发现修饰剂连接了Cys-25和His-159两个残基, 因此知道了这两个基团之间的距离在 5 以内。这个 结论通过x-光衍射分析法又进一步得到了肯定。
3.X-光衍射分析法
用X射线衍射研究蛋白质的构象时,蛋白质 必须结晶。用波长很短的X射线(λ=0.154nm)照 射蛋白质晶体,发生散射,底片曝光后,得到衍 射图,再经计算机处理,绘出电子密度图,从中 构建出三维分子图像。
通过多种方法相互印证,可得出正确的结论。
肌红蛋白的X射线衍射图
部 分肽链的电子密度肌红蛋白分子中 图
(1) 使用非特异性试剂 对特殊基团的标记
非特异性试剂可以修饰特定的某种基团, 但不能区分活性中心内部和外部的基团。如果 某种基团只存在于活性中心,而其他部位没有, 就可以用非特异性试剂修饰。
木瓜蛋白酶的非特异性试剂修饰
木瓜蛋白酶(papain)分子中有7个半胱氨酸残 基,其中的6个形成3对二硫键,只有一个以自由巯基 的 形 式 存 在 于 活 性 中 心 ( Cys22-63 , Cys56-95 , Cys153-200 , 自 由 Cys25 ; 编 号 从 N 端 开 始 往 C 端 进 行)。在这种情况下就可以用任何一种硫氢基试剂来 修饰,如用碘乙酸修饰。碘乙酸对木瓜蛋白酶的活性 中心无任何特殊亲和力,但由于这种特殊情况,仍然 得到了巯基的修饰与酶活性的丧失相平行的结果。
酶活性部位微环境的影响
由于酶活性部位微环境的影响,活性中心的基 团对某一非特异性试剂的反应性可能会比活性中心 以外的基团的反应性高或低。如3-磷酸甘油醛脱氢 酶的活性中心的Ser能优先地被14C-碘乙酸标记; 牛胰核糖核酸酶活性中心的His能优先地被碘乙酸 标记,其Lys-41的ε-NH2可优先地被氟二硝基苯标 记。也有些酶活性中心的基团对某种非特异性试剂 的反应性很低。